1
|
Jia Z, Bolin M, Morén AF, Datta P, Asem H, Ågren H, Långström B, Nordberg A, Halldin C, Nag S. Good Manufacturing Practice Validation and Radiation Dosimetry for the Clinical Application of a Novel α7-nAChR Radioligand: [ 11C]KIn83. Molecules 2025; 30:1356. [PMID: 40142141 PMCID: PMC11945799 DOI: 10.3390/molecules30061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Nicotinic acetylcholine receptor (α7-nAChR) plays a crucial role in cognitive functions like memory and attention. Positron emission tomography (PET) imaging of α7-nAChR is gaining attraction for understanding and monitoring central nervous system disorders, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. We developed [11C]KIn83, a novel α7-nAChR radioligand, and evaluated its biological properties. This study focused on two objectives: (1) to validate its Good Manufacturing Practice (GMP)-compliant production, and (2) to assess the dosimetry of [11C]KIn83 using non-human primate (NHP) whole-body PET data. Radiolabeling and drug product delivery of [11C]KIn83 were conducted using an automated synthesis module within a controlled GMP environment. The quality control tests performed adhered to the European Pharmacopoeia guidelines. The production of [11C]KIn83 was validated according to GMP standards, encompassing automated synthesis and quality control measures. For the dosimetry assessment, two female cynomolgus monkeys underwent whole-body PET scans. The radioactivity values injected for [11C]KIn83 were 150 MBq and 155 MBq, respectively, with an estimated radiation dose of 0.0047 mSv/MBq. Our findings pave the way for future clinical studies that investigate the potential of [11C]KIn83 to measure α7-nAChR, aiding our understanding and possibly supporting diagnoses of different cognitive disorders.
Collapse
Affiliation(s)
- Zhisheng Jia
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| | - Martin Bolin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| | - Prodip Datta
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| | - Heba Asem
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| | - Hans Ågren
- Division of X-ray Photon Science, Uppsala University, 751 20 Uppsala, Sweden;
| | - Bengt Långström
- Department of Chemistry, Uppsala University, 751 20 Uppsala, Sweden;
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden;
- Theme Inflammation and Aging, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
- HUN-REN TKI, Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77 Stockholm, Sweden; (Z.J.); (M.B.); (A.F.M.); (P.D.); (H.A.); (S.N.)
| |
Collapse
|
2
|
Chao CK, Blecha J, Polvoy I, Nillo RM, Seo Y, Wilson DM, Forsayeth JR, VanBrocklin HF, Gerdes JM. First-in-human healthy volunteer dosimetry studies of the excitatory amino acid transporter 2 (EAAT2) PET imaging tracer methyl N 4-(7-[ 18F]fluoro-9H-fluoren-2-yl)asparaginate, [ 18F]RP-115. Nucl Med Biol 2025; 142-143:108992. [PMID: 39913962 DOI: 10.1016/j.nucmedbio.2025.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 05/04/2025]
Abstract
OBJECTIVE AND BACKGROUND The objective of this first-in-human study was to investigate the radiosynthesis, and the preliminary safety, biodistribution, and organ radiation dosimetry of the positron emission tomography (PET) imaging tracer methyl N4-([18F]7-fluoro-9H-fluoren-2-yl)asparaginate, known as [18F]RP-115, in a small cohort (n=8) of healthy volunteers. The [18F]RP-115 tracer is a methyl ester prodrug and undergoes metabolic saponification in the central nervous system to generate the corresponding carboxylic acid form that selectively binds to the excitatory amino acid transporter 2 (EAAT2) protein. PROCEDURES AND METHODS A multi-step high molar activity tracer radiosynthesis was devised to produce doses. Eight healthy human participants (four male and four female), aged 56-75, received a bolus intravenous injection of [18F]RP-115 (administered activity range: 70.3-355 MBq) prior to a total of 94 min of PET-MR scanning performed as three sequential scanning sessions. Regional tissue volumes of interest were defined, time-integrated activity coefficients (TIAC) were derived, and then estimates of organ and tissue activities and effective doses (whole body) were calculated, with two versions of OLINDA software (1.1 and 2.0) that incorporated two tissue weighting factor sets (ICRP-60 and -103), respectively. MAIN FINDINGS Tracer was routinely produced in good radiochemical yields and as suitable high molar activity doses for injection. The [18F]RP-115 injections and PET-MR scans were well-tolerated and no adverse events were reported (≤48 h). Radioactivity was widely biodistributed with good organ uptake. TIACs and estimated radiation organ doses were determined, for which a few statistically significant estimated organ dose differences between males and females were noted. The kidneys were identified as the critical target organ. PRINCIPAL CONCLUSIONS Injection of [18F]RP-115 was considered safe. The estimated kidney radiation doses relative to administered radioactivity identified a more optimal human [18F]RP-115 tracer injected amount of <211 MBq. This more optimal [18F]RP-115 tracer injected activity definition is similar to the amounts used for other established [18F]labeled clinical PET tracers such as [18F]FDG, and it will be used in future RP-115 clinical PET imaging studies.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA
| | - Ryan Michael Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - John R Forsayeth
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - John M Gerdes
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| |
Collapse
|
3
|
Yan X, Siméon FG, Liow JS, Morse CL, Jana S, Montero Santamaria JA, Jenkins M, Zoghbi SS, Pike VW, Innis RB, Zanotti-Fregonara P. [ 18F]SF51, a novel 18F-labeled PET radioligand for translocator protein 18kDa (TSPO) in brain, works well in monkeys but fails in humans. J Cereb Blood Flow Metab 2025; 45:365-372. [PMID: 39654356 PMCID: PMC11629344 DOI: 10.1177/0271678x241304924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
[18F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume (VT). This cohort included two high-affinity binders (HABs), three mixed-affinity binders (MABs), and two low-affinity binders (LABs). Two other participants received whole-body scans to assess radiation exposure. Peak brain radioactivity reached a standardized uptake value (SUV) of 1.4 at 3 minutes post-injection, diminishing to 30% of peak by 120 minutes. The average VT for all genotype groups was notably low (<1 mL·cm-3), emphasizing the radioligand's poor binding in brain. [18F]SF51 remained sensitive to the TSPO polymorphism in vivo, as shown by a two-fold difference in VT between HABs and LABs. VT stabilization by 80 minutes post-injection suggested minimal radiometabolite accumulation in brain. The average effective dose was 13.8 ± 0.9 µSv/MBq. Contrary to previously published animal data, [18F]SF51 showed low binding to human TSPO, with uptake remaining influenced by the rs6971 polymorphism. These findings highlight the challenges of developing TSPO radioligands and underscore the significant species differences that may influence translational outcomes.ClinicalTrials.gov identifier: NCT05564429; registered 10/03/2022.
Collapse
Affiliation(s)
- Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Akkermans J, Miranda A, Verhaeghe J, Elvas F, Zajicek F, Bard J, Liu L, Khetarpal V, Doot R, Staelens S, Bertoglio D. Biodistribution and dosimetry of the PET radioligand [ 18F]CHDI-650 in mice for detection of mutant huntingtin aggregates. EJNMMI Res 2024; 14:126. [PMID: 39729164 DOI: 10.1186/s13550-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [18F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans. RESULTS Wild-type male and female CD-1 Swiss mice (n = 15/sex) were used to assess in vivo PET imaging-based and ex vivo biodistribution-based tracer distribution of [18F]CHDI-650 at 30-, 60-, 120-, 240- and 360-min post-injection. Three-dimensional volumes of interest of the organs were drawn on the co-registered PET/CT image and organs were collected after dissection. Organ radioactivity levels were determined using both modalities. The residence time was calculated and extrapolated to human phantoms. The absorbed and effective doses were computed with OLINDA/EXM 2.2 and IDAC-Dose2.1. Ex vivo and PET-imaging biodistribution of [18F]CHDI-650 showed rapid washout after 30 min in most of the organs with the highest uptake in the gallbladder and urine in mice. Extrapolation of the data to human phantoms with OLINDA showed a total mean in vivo based effective dose of 21.7 μSv/MBq with the highest equivalent organ dose in the urinary bladder wall (4.52 μSv/MBq). The total mean ex vivo based effective dose was calculated to be 20.6 μSv/MBq. The highest equivalent organ dose ex vivo in the urinary bladder wall was estimated to be 4.22 μSv/MBq. The predicted exposure in humans using IDAC-Dose correlated well to those obtained with OLINDA for both in vivo and ex vivo measurements (r = 0.9320 and r = 0.9368, respectively). CONCLUSIONS Dosimetry analysis indicated absorbed and effective doses of [18F]CHDI-650 are well below the recommended limits, suggesting that the radioligand is suitable for clinical assessment. Based on the highest effective dose estimates, an injection of 370 MBq in humans would result in a radiation dose of 8.03 mSv.
Collapse
Affiliation(s)
- Jordy Akkermans
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Jonathan Bard
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Longbin Liu
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Vinod Khetarpal
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Robert Doot
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Kaittanis C, Teceno T, Knight A, Petibon Y, Sandoval P, Cohen L, Ahn SH, Belanger AP, Clark LM, Nguyen QD, Ruangsiriluk W, Mukherji S, Constantinescu CC, Amenta AL, Narayanan S, Deshpande M, Islam R, Yuan S, McQuade P, Winkelmann CT, Lohith TG. Longitudinal imaging of therapeutic enzyme expression after gene therapy for Fabry disease using positron emission tomography and the radiotracer [ 18F]AGAL. Mol Ther 2024:S1525-0016(24)00748-2. [PMID: 39563031 DOI: 10.1016/j.ymthe.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Longitudinal, non-invasive, in vivo monitoring of therapeutic gene expression is an unmet need for gene therapy (GT). Positron emission tomography (PET) radiotracers designed to bind to therapeutic proteins may provide a sensitive imaging platform to guide treatment response and dose optimization in GT. Herein, we evaluate a novel PET tracer ([18F]AGAL) for targeting α-galactosidase A (GLA), an enzyme deficient in Fabry disease. Gla knockout mice were subjected to either GT with an adeno-associated virus encoding the human GLA (AAVGLA) or recombinant GLA for enzyme replacement studies. PET imaging, ex vivo autoradiography, biochemical analyses and radiation dosimetry were performed. [18F]AGAL exhibited pH-dependent binding to GLA, suggesting recognition of the active enzyme residing within the acidified lysosomes. Imaging studies in the Fabry mouse model showed quick renal clearance with high radioactive uptake in the heart at 6 weeks that was sustained for 26 weeks after a single administration of AAVGLA, indicating effective and durable transgene expression from GT. Good concordance was achieved between in vivo PET imaging and ex vivo quantification of GLA levels in biofluids and tissues. Biodistribution and dosimetry in non-human primate showed acceptable radiation exposure for multiple injections, demonstrating its potential for translation to clinical trial use.
Collapse
Affiliation(s)
| | - Tyler Teceno
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Ashley Knight
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Yoann Petibon
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Phil Sandoval
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Lawrence Cohen
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Shin Hye Ahn
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Louise M Clark
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Shreya Mukherji
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | | | | | - Sarav Narayanan
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | | | - Rizwana Islam
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Shipeng Yuan
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | - Paul McQuade
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA
| | | | - Talakad G Lohith
- Takeda Pharmaceutical Company Limited, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
7
|
Tago T, Sakata M, Kanazawa M, Yamamoto S, Ishii K, Toyohara J. Preclinical validation of a novel brain-penetrant PET ligand for visualization of histone deacetylase 6: a potential imaging target for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2024; 51:2193-2203. [PMID: 38441662 DOI: 10.1007/s00259-024-06666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/25/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Histone deacetylase 6 (HDAC6) has emerged as a therapeutic target for neurodegenerative diseases such as Alzheimer's disease. Noninvasive imaging of HDAC6 in the brain by positron emission tomography (PET) would accelerate research into its roles in these diseases. We recently discovered an 18F-labeled derivative of the selective HDAC6 inhibitor SW-100 ([18F]FSW-100) as a potential candidate for brain HDAC6 radioligand. As a mandatory step prior to clinical translation, we performed preclinical validation of [18F]FSW-100. METHODS Process validation of [18F]FSW-100 radiosynthesis for clinical use and assessment of preclinical toxicity and radiation dosimetry estimated from mouse distribution data were performed. In vitro selectivity of FSW-100 for 28 common receptors in the brain and HDAC isoforms was characterized. [18F]FSW-100 PET imaging was performed in non-human primates in a conscious state to estimate the feasibility of HDAC6 imaging in humans. RESULTS Three consecutive validation runs of the automated radiosynthesis gave [18F]FSW-100 injections with radiochemical yields of 12%, and the injections conformed to specified quality control criteria for batch release. No acute toxicity was observed for non-radiolabeled FSW-100 or radioactivity decayed [18F]FSW-100 injection, and the former was negative in the Ames test. The whole-body effective dose estimated from biodistribution in mice was within the range of that of previously reported 18F-radioligands in humans. In vitro selectivity against common receptors and other HDAC isoforms was confirmed. [18F]FSW-100 demonstrated good penetration in monkey brain, and in vivo blocking studies suggested that the uptake was specific. CONCLUSION These results support the clinical utility of [18F]FSW-100 for in vivo imaging of HDAC6 in the brain.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | | | | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
8
|
Constantinescu CC, Brown T, Wang S, Yin W, Barret O, Jennings D, Tauscher J. Clinical Characterization of [ 18F]T-008, a Cholesterol 24-Hydroxylase PET Ligand: Dosimetry, Kinetic Modeling, Variability, and Soticlestat Occupancy. J Nucl Med 2023; 64:1972-1979. [PMID: 37770111 PMCID: PMC10690114 DOI: 10.2967/jnumed.123.265912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
This series of studies characterized [18F]T-008, a PET radiotracer for imaging cholesterol 24-hydroxylase (CH24H), in healthy volunteers (ClinicalTrials.gov identifier NCT02497235). Assessments included radiation dosimetry, kinetic modeling, test-retest variability (TRT) evaluation, and a dose occupancy evaluation using soticlestat, a selective CH24H inhibitor. Soticlestat is currently in phase 3 development for the treatment of seizures in Dravet syndrome and Lennox-Gastaut syndrome. Methods: In the dosimetry study, 5 participants (3 men) underwent serial whole-body scans to estimate organ-absorbed doses and effective doses of [18F]T-008 using OLINDA/EXM 1.1. For the kinetic modeling and TRT study, 6 participants (all men) underwent two 210-min dynamic [18F]T-008 PET scans with arterial blood sampling. The regional total volume of distribution was estimated using a 1-tissue-compartment model, a 2-tissue-compartment model, and Logan graphic analysis. In the dose occupancy study, 11 participants (all men) underwent 120-min scans at baseline and 2 time points (peak and trough) after receiving single oral doses of soticlestat (50-600 mg). The relationship between effect-site soticlestat concentration and brain occupancy was evaluated with a specially developed pharmacokinetic model and a saturable maximal occupancy model. Results: The estimated mean whole-body effective dose was 0.0292 mSv/MBq (SD, 0.00147 mSv/MBq). [18F]T-008 entered the brain rapidly, with a distribution consistent with known CH24H distribution densities. The 2-tissue-compartment model and Logan graphic analysis best described the tracer kinetics. The mean TRT for estimating total volume of distribution was 7%-15%. Single doses of soticlestat in the range 50-600 mg resulted in occupancies of 64%-96% at 2 h and 11%-79% at 24 h. The estimated half-maximal effect-site concentration of soticlestat was 5.52 ng/mL. Conclusion: [18F]T-008 is a suitable PET radiotracer for quantitatively analyzing CH24H in the human brain. Using [18F]T-008 and PET, we demonstrated that soticlestat was brain-penetrant and established target engagement by displacing [18F]T-008 in a dose-dependent manner in the brain.
Collapse
Affiliation(s)
| | - Terry Brown
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | - Shining Wang
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | - Wei Yin
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | | | | | | |
Collapse
|
9
|
Kurihara C, Applegate KE, Jeong JH, Akahane K, Kang KW. Radiological protection in human research ethics using a case study: toward update of the ICRP Publication 62. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:044002. [PMID: 37857271 DOI: 10.1088/1361-6498/ad04f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
The benefits of biomedical research involving humans are well recognised, along with the need for conformity to international standards of science and ethics. When human research involves radiation imaging procedures or radiotherapy, an extra level of expert review should be provided from the point of view of radiological protection. The relevant publication of the International Commission for Radiological Protection (ICRP) is now three decades old and is currently undergoing an update. This paper aims to provoke discussions on how the risks of radiation dose and the benefits of research should be assessed, using a case study of diagnostic radiology involving volunteers for whom there is no direct benefit. Further, the paper provides the current understanding of key concepts being considered for review and revision-such as the dose constraint and the novel research methods on the horizon, including radiation biology and epidemiology. The analysis revisits the perspectives described in the ICRP Publication 62, and considers the recent progress in both radiological protection ethics and medical research ethics.
Collapse
Affiliation(s)
| | - Kimberly E Applegate
- Department of Radiology, University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Keiichi Akahane
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
11
|
Abstract
Nuclear medicine procedures are generally avoided during pregnancy out of concern for the radiation dose to the fetus. However, for clinical reasons, radiopharmaceuticals must occasionally be administered to pregnant women. The procedures most likely to be performed voluntarily during pregnancy are lung scans to diagnose pulmonary embolism and 18F-fluoro-2-deoxyglucose (18F-FDG) scans for the staging of cancers. This article focuses on the challenges of fetal dose calculation after administering radiopharmaceuticals to pregnant women. In particular, estimation of the fetal dose is hampered by the lack of fetal biokinetic data of good quality and is subject to the variability associated with methodological choices in dose calculations, such as the use of various anthropomorphic phantoms and modeling of the maternal bladder. Despite these sources of uncertainty, the fetal dose can be reasonably calculated within a range that is able to inform clinical decisions. Current dose estimates suggest that clinically justified nuclear medicine procedures should be performed even during pregnancy because the clinical benefits for the mother and the fetus outweigh the small and purely hypothetical radiation risk to the fetus. In addition, the fetal radiation dose should be minimized without compromising image quality, such as by encouraging bladder voiding and by using positron emission tomography (PET)/magnetic resonance imaging (MRI) devices or high-sensitivity PET scanners that generate images of good quality with a lower injected activity.
Collapse
|
12
|
Wang Y, Cai L, Zhou K, Cui M, Yao S. Biodistribution and Dosimetry Evaluation for a Novel Tau Tracer [18F]-S16 in Healthy Volunteers and Its Application in Assessment of Tau Pathology in Alzheimer’s Disease. Front Bioeng Biotechnol 2022; 9:812818. [PMID: 35223820 PMCID: PMC8866701 DOI: 10.3389/fbioe.2021.812818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Background: The goal of this study was to report a fully automated radiosynthetic procedure of a novel tau tracer [18F]-S16 and its safety, biodistribution, and dosimetry in healthy volunteers as well as the potential utility of [18F]-S16 positron emission tomography (PET) in Alzheimer’s disease (AD).Methods: The automated radiosynthesis of [18F]-S16 was performed on a GE Tracerlab FX2 N module. For the biodistribution and dosimetry study, healthy volunteers underwent a series of PET scans acquired at 10, 60, 120, and 240 min post-injection. The biodistribution and safety were assessed. For the AD study, both AD and healthy controls (HCs) underwent dynamic [18F]-S16 and static [18F]-FDG PET imaging. [18F]-S16 binding was assessed quantitatively using standardized uptake value ratios (SUVRs) measured at different regions of interest (ROIs). [18F]-S16 SUVRs were compared between the AD patients and HCs using the Mann–Whitney U-test. In AD patients with all cortical ROIs, Spearman rank-correlation analysis was used to calculate the voxel-wise correlations between [18F]-S16 and [18F]-FDG.Results: The automated radiosynthesis of [18F]-S16 was finished within 45 min, with a radiochemical yield of 30 ± 5% (n = 8, non-decay-corrected). The radiochemical purity was greater than 98%, and the specific activity was calculated to be 1,047 ± 450 GBq/μmol (n = 5), and [18F]-S16 was stable in vitro. In the healthy volunteer study, no adverse effect was observed within 24 h post-injection, and no defluorination was observed in vivo. The radiotracer could pass through the blood–brain barrier easily and was rapidly cleared from the circulation and excreted through the hepatic system. The whole-body mean effective dose was 15.3 ± 0.3 μSv/MBq. In AD patients, [18F]-S16 accumulation was identified as involving the parietal, temporal, precuneus, posterior cingulate, and frontal lobes. No specific [18F]-S16 cerebral uptake was identified in HCs. The SUVR of AD patients was significantly higher than that of HCs. No specific binding uptake was found in the choroid plexus, venous sinus, and white matter. A significant correlation was found between [18F]-S16 binding and hypometabolism across neocortical regions.Conclusion: [18F]-S16 could be synthesized automatically, and it showed favorable biodistribution and safety in humans. [18F]-S16 PET indicated a high image quality for imaging tau deposition in AD and distinguishing AD from HCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shaobo Yao
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
- Department of Nuclear Medicine, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Shaobo Yao,
| |
Collapse
|
13
|
Lehnert W, Riss PJ, Hurtado de Mendoza A, Lopez S, Fernandez G, Ilheu M, Amaral H, Kramer V. Whole-body biodistribution and radiation dosimetry of [ 18F]PR04.MZ: a new PET radiotracer for clinical management of patients with movement disorders. EJNMMI Res 2022; 12:1. [PMID: 35006412 PMCID: PMC8748605 DOI: 10.1186/s13550-021-00873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE [18F]PR04.MZ is a new PET imaging agent for dopamine transporters, providing excellent image quality and allowing for the evaluation of patients with movement disorders such as Parkinson's disease. The objective of this study was to evaluate the biodistribution and radiation dosimetry of [18F]PR04.MZ by serial PET imaging. METHODS Six healthy subjects (n = 3 males, n = 3 females) were enrolled in this study. A series of 14 whole-body PET/CT scans were acquired until 5.5 h post-injection of 200 ± 11 MBq of [18F]PR04.MZ. After rigid co-registration, volumes of interest were outlined either on CT or PET images. Time-integrated activity coefficients were calculated for selected source organs. Organ absorbed doses, and the effective dose were calculated using IDAC-Dose 2.1. RESULTS Physiological uptake of [18F]PR04.MZ was mainly observed in the striatum, brain, liver, gall bladder, intestine, red marrow and cortical bone. [18F]PR04.MZ was primarily excreted via hepatobiliary clearance and, to a lower extent, via renal clearance. The normalized absorbed doses were highest in gall bladder wall (32.2 ± 6.4 µGy/MBq), urinary bladder wall (27.2 ± 4.5 µGy/MBq), red marrow (26.5 ± 1.4 µGy/MBq), cortical bone surface (26.3 ± 2.5 µGy/MBq), liver (22.5 ± 1.8 µGy/MBq) and kidneys (21.8 ± 1.1 µGy/MBq). The effective dose according to ICRP 60 and 103 was 16.3 ± 1.1 and 16.6 ± 1.5 µSv/MBq, respectively. CONCLUSION [18F]PR04.MZ has a favourable dosimetry profile, comparable to those of other 18F-labelled PET tracers, and is suitable for larger clinical applications. Trial registration CEC SSM Oriente, Santiago, Chile, permit 20140520.
Collapse
Affiliation(s)
- Wencke Lehnert
- Department of Nuclear Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Patrick J Riss
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Ana Hurtado de Mendoza
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Sandra Lopez
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Gonzalo Fernandez
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Marcelo Ilheu
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile
| | - Horacio Amaral
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile
| | - Vasko Kramer
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile.
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile.
| |
Collapse
|
14
|
Toyohara J, Sakata M, Ishibashi K, Mossel P, Imai M, Wagatsuma K, Tago T, Imabayashi E, Colabufo NA, Luurtsema G, Ishii K. First clinical assessment of [ 18F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood-brain barrier. Ann Nucl Med 2021; 35:1240-1252. [PMID: 34368924 DOI: 10.1007/s12149-021-01666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. METHODS [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. RESULTS No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was < 2%ID. Absorbed dose was the highest in the pancreas (mean ± SD, 203 ± 45 μGy/MBq) followed by the liver (83 ± 11 μGy/MBq). Mean effective dose with and without urination was 17 ± 1 μSv/MBq. [18F]MC225 readily entered the brain, distributing homogeneously in grey matter regions. 2-TCM provided lower Akaike information criterion scores than did 1-TCM. VT estimated by Logan plot was well correlated with that of 2-TCM (r2 > 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). CONCLUSIONS This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Masamichi Imai
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Etsuko Imabayashi
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125, Bari, Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
15
|
Slart RHJA, Tsoumpas C, Glaudemans AWJM, Noordzij W, Willemsen ATM, Borra RJH, Dierckx RAJO, Lammertsma AA. Long axial field of view PET scanners: a road map to implementation and new possibilities. Eur J Nucl Med Mol Imaging 2021; 48:4236-4245. [PMID: 34136956 PMCID: PMC8566640 DOI: 10.1007/s00259-021-05461-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023]
Abstract
In this contribution, several opportunities and challenges for long axial field of view (LAFOV) PET are described. It is an anthology in which the main issues have been highlighted. A consolidated overview of the camera system implementation, business and financial plan, opportunities and challenges is provided. What the nuclear medicine and molecular imaging community can expect from these new PET/CT scanners is the delivery of more comprehensive information to the clinicians for advancing diagnosis, therapy evaluation and clinical research.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands. .,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Charalampos Tsoumpas
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | - Walter Noordzij
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | - Antoon T M Willemsen
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | - Ronald J H Borra
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| |
Collapse
|
16
|
Preclinical Safety Evaluation and Human Dosimetry of [ 18F]MK-6240, a Novel PET Tracer for Imaging Neurofibrillary Tangles. Mol Imaging Biol 2021; 22:173-180. [PMID: 31111397 DOI: 10.1007/s11307-019-01367-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE [18F]MK-6240 is a selective, high-affinity positron emission tomography tracer for imaging neurofibrillary tangles, a key pathological signature that correlates with cognitive decline in Alzheimer disease. This report provides safety information from preclinical toxicology studies and first-in-human whole-body biodistribution and dosimetry studies of [18F]MK-6240 for its potential application in human brain imaging studies. PROCEDURES MK-6240 was administered intravenously (IV) in a 7-day rat toxicity study at × 50, × 100, and × 1000 dose margins relative to projected highest clinical dose of 0.333 μg/kg. The IV formulation of MK-6240 for clinical use and the formulation used in the 7-day rat toxicity study was tested for hemolysis potential in human and Wistar rat whole blood. Sequential whole-body positron emission tomography scans were performed in three healthy young subjects after IV bolus injection of 180 ± 0.3 MBq [18F]MK-6240 to characterize organ biodistribution and estimate whole-body radiation exposure (effective dose). RESULTS MK-6240 administered IV in a 7-day rat toxicity study did not show any test article-related changes. The no-observed-adverse-effect level in rats was ≥ 333 μg/kg/day which provides a margin 1000-fold over an anticipated maximum clinical dose of 0.333 μg/kg. Additionally, the MK-6240 formulation was not hemolytic in human or Wistar rat blood. [18F]MK-6240 activity was widely distributed to the brain and the rest of the body, with organ absorbed doses largest for the gall bladder (202 μGy/MBq). The average (±SD) effective dose was 29.4 ± 0.6 μSv/MBq, which is in the typical range for F-18 radiolabeled ligands. CONCLUSIONS Microdoses of [18F]MK-6240 are safe for clinical positron emission tomography imaging studies. Single IV administration of 185 MBq (5 mCi) [18F]MK-6240 is anticipated to result in a total human effective dose of 5.4 mSv and thus allows multiple positron emission tomography scans of the same subject per year.
Collapse
|
17
|
Zanotti-Fregonara P, Lammertsma AA, Innis RB. 11C Dosimetry Scans Should Be Abandoned. J Nucl Med 2020; 62:158-159. [PMID: 33310737 DOI: 10.2967/jnumed.120.257402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| |
Collapse
|
18
|
Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020; 118:104813. [PMID: 33144077 PMCID: PMC7605856 DOI: 10.1016/j.yrtph.2020.104813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories). Review of toxicology and pharmacology information for novel therapeutic modalities. Identification of occupational hazards associated with novel therapeutic modalities. Occupational hazards and exposure risks differ across pharmaceutical modalities. Occupational exposure control banding systems are not one size fits all. Banding system variations offer benefits while enabling proper exposure controls.
Collapse
Affiliation(s)
- Jessica C Graham
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Gene Schulze
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| |
Collapse
|
19
|
Toyohara J, Sakata M, Tago T, Colabufo NA, Luurtsema G. Automated synthesis, preclinical toxicity, and radiation dosimetry of [ 18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood-brain barrier. EJNMMI Res 2020; 10:84. [PMID: 32700099 PMCID: PMC7376787 DOI: 10.1186/s13550-020-00674-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION [18F]MC225 is a selective substrate for P-glycoprotein (P-gp) that has good metabolic stability and shows higher baseline uptake compared with other P-gp substrates such as (R)-[11C]Verapamil. Prior to clinical translation, it is necessary to perform process validation of the radiosynthesis, assessment of preclinical toxicity, and radiation dosimetry. METHODS The production of [18F]MC225 was automated on a CFN-MPS200 multipurpose synthesizer. The acute toxicity of MC225 was evaluated at a dose of 2.5 mg/kg bodyweight, which is more than 10,000-fold the postulated maximum clinical dose of [18F]MC225. The acute toxicity of [18F]MC225 injection at a 200-fold dose, to administer a postulated dose of 185 MBq of [18F]MC225, was also evaluated after the decay-out of 18F. The mutagenicity of MC225 was studied by a reverse mutation test using Salmonella typhimurium and Escherichia coli (Ames test). In vivo biodistribution and dosimetry studies of [18F]MC225 were carried out in normal mice. Human dosimetry was estimated using OLINDA software. RESULTS The mean decay-corrected yields of [18F]MC225 at end of synthesis were 13%, with > 99% radiochemical purity, > 1000 GBq/μmol molar activity, and ≤ 1.5 μg/185 MBq of total chemical contents. All process validation batches complied with the product specifications and the process was confirmed to be appropriate for the production of [18F]MC225. No acute toxicity of MC225 or [18F]MC225 injection was found. No mutagenic activity was observed for MC225. The biodistribution study demonstrated both hepatobiliary and renal excretion of radioactivity. The most critical organ was the pancreas, with (63.8 μGy/MBq) or without urination (63.9 μGy/MBq) at 360 min after injection. The estimated effective dose (μSv/MBq) with and without urination at 360 min after injection was calculated as 15.7 and 16.9, respectively. CONCLUSION [18F]MC225 shows acceptable pharmacological safety at the dose required for adequate PET imaging. The potential risk associated with [18F]MC225 PET imaging is well within acceptable dose limits.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nicola A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Clinical validation of the novel HDAC6 radiotracer [ 18F]EKZ-001 in the human brain. Eur J Nucl Med Mol Imaging 2020; 48:596-611. [PMID: 32638097 PMCID: PMC7835181 DOI: 10.1007/s00259-020-04891-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Purpose Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that modulates intracellular transport and protein quality control. Inhibition of HDAC6 deacetylase activity has shown beneficial effects in disease models, including Alzheimer’s disease and amyotrophic lateral sclerosis. This first-in-human positron emission tomography (PET) study evaluated the brain binding of [18F]EKZ-001 ([18F]Bavarostat), a radiotracer selective for HDAC6, in healthy adult subjects. Methods Biodistribution and radiation dosimetry studies were performed in four healthy subjects (2M/2F, 23.5 ± 2.4 years) using sequential whole-body PET/CT. The most appropriate kinetic model to quantify brain uptake was determined in 12 healthy subjects (6M/6F, 57.6 ± 3.7 years) from 120-min dynamic PET/MR scans using a radiometabolite-corrected arterial plasma input function. Four subjects underwent retest scans (2M/2F, 57.3 ± 5.6 years) with a 1-day interscan interval to determine test-retest variability (TRV). Regional volume of distribution (VT) was calculated using one-tissue and two-tissue compartment models (1-2TCM) and Logan graphical analysis (LGA), with time-stability assessed. VT differences between males and females were evaluated using volume of interest and whole-brain voxel-wise approaches. Results The effective dose was 39.1 ± 7.0 μSv/MBq. Based on the Akaike information criterion, 2TCM was the preferred model compared to 1TCM. Regional LGA VT were in agreement with 2TCM VT, however demonstrated a lower absolute TRV of 7.7 ± 4.9%. Regional VT values were relatively homogeneous with highest values in the hippocampus and entorhinal cortex. Reduction of acquisition time was achieved with a 0 to 60-min scan followed by a 90 to 120-min scan. Males demonstrated significantly higher VT than females in the majority of cortical and subcortical brain regions. No relevant radiotracer related adverse events were reported. Conclusion [18F]EKZ-001 is safe and appropriate for quantifying HDAC6 expression in the human brain with Logan graphical analysis as the preferred quantitative approach. Males showed higher HDAC6 expression across the brain compared to females.
Collapse
|
21
|
Schmidt ME, Janssens L, Moechars D, Rombouts FJR, Timmers M, Barret O, Constantinescu CC, Madonia J, Russell DS, Sandiego CM, Kolb H. Clinical evaluation of [ 18F] JNJ-64326067, a novel candidate PET tracer for the detection of tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3176-3185. [PMID: 32535652 PMCID: PMC7680304 DOI: 10.1007/s00259-020-04880-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.
Collapse
Affiliation(s)
- Mark E Schmidt
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Luc Janssens
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Diederik Moechars
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Maarten Timmers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Olivier Barret
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, French Atomic Energy Commission, Fontenay-aux-roses, France
| | | | - Jennifer Madonia
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Biohaven Pharmaceuticals, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
22
|
Sattler B, Kranz M, Wenzel B, Jain NT, Moldovan RP, Toussaint M, Deuther-Conrad W, Ludwig FA, Teodoro R, Sattler T, Sadeghzadeh M, Sabri O, Brust P. Preclinical Incorporation Dosimetry of [ 18F]FACH-A Novel 18F-Labeled MCT1/MCT4 Lactate Transporter Inhibitor for Imaging Cancer Metabolism with PET. Molecules 2020; 25:E2024. [PMID: 32357571 PMCID: PMC7248880 DOI: 10.3390/molecules25092024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.
Collapse
Affiliation(s)
- Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
- Tromsø PET Center, University Hospital of North Norway, 9009 Tromsø, Norway
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, 9009 Tromsø, Norway
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Nalin T. Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Tatjana Sattler
- Department of Claw Animals, University of Leipzig, 04103 Leipzig, Germany
| | - Masoud Sadeghzadeh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| |
Collapse
|
23
|
Nag S, Varnäs K, Arakawa R, Jahan M, Schou M, Farde L, Halldin C. Synthesis, Biodistribution, and Radiation Dosimetry of a Novel mGluR5 Radioligand: 18F-AZD9272. ACS Chem Neurosci 2020; 11:1048-1057. [PMID: 32167745 PMCID: PMC7309225 DOI: 10.1021/acschemneuro.9b00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
![]()
The metabotropic
glutamate receptor subtype mGluR5 has been proposed
as a potential drug target for CNS disorders such as anxiety, depression,
Parkinson’s disease, and epilepsy. The AstraZeneca compound
AZD9272 has previously been labeled with carbon-11 and used as a PET
radioligand for mGluR5 receptor binding. The molecular structure of
AZD9272 allows one to label the molecule with fluorine-18 without
altering the structure. The aim of this study was to develop a fluorine-18
analogue of AZD9272 and to examine its binding distribution in the
nonhuman primate brain in vivo as well as to obtain
whole body radiation dosimetry. 18F-AZD9272 was successfully
synthesized from a nitro precursor. The radioligand was stable, with
a radiochemical purity of >99% at 2 h after formulation in a sterile
phosphate buffered solution (pH = 7.4). After injection of 18F-AZD9272 in two cynomolgus monkeys, the maximum whole brain radioactivity
concentration was 4.9–6.7% of the injected dose (n = 2) and PET images showed a pattern of regional radioactivity consistent
with that previously obtained for 11C-AZD9272. The percentage
of parent radioligand in plasma was 59 and 64% (n = 2) at 120 min after injection of 18F-AZD9272, consistent
with high metabolic stability. Two whole body PET scans were performed
in nonhuman primates for a total of 231 min after injection of 18F-AZD9272. Highest uptakes were seen in liver and small intestine,
followed by brain and kidney. The estimated effective dose was around
0.017 mSv/MBq. 18F-AZD9272 shows suitable properties as
a PET radioligand for in vivo imaging of binding
in the primate brain. 18F-labeled AZD9272 offers advantages
over 11C-AZD9272 in terms of higher image resolution, combined
with a longer half-life. Moreover, based on the distribution and the
estimated radiation burden, imaging of 18F-AZD9272 could
be used as an improved tool for quantitative assessment and characterization
of AZD9272 binding sites in the human brain by using PET.
Collapse
Affiliation(s)
- Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Mahabuba Jahan
- Department of Medicinal Chemistry, Uppsala University, Uppsala 751 05, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
- PET Science Centre, Precision Medicine, Oncology R&D, AstraZeneca, Stockholm 17176, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798
| |
Collapse
|
24
|
Lee JH, Liow JS, Paul S, Morse CL, Haskali MB, Manly L, Shcherbinin S, Ruble JC, Kant N, Collins EC, Nuthall HN, Zanotti-Fregonara P, Zoghbi SS, Pike VW, Innis RB. PET quantification of brain O-GlcNAcase with [ 18F]LSN3316612 in healthy human volunteers. EJNMMI Res 2020; 10:20. [PMID: 32172476 PMCID: PMC7072082 DOI: 10.1186/s13550-020-0616-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research. Methods Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling. Results Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150–180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 μSv/MBq, comparable to other 18F-labeled radioligands for brain imaging. Conclusions [18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA. .,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Soumen Paul
- Molecular Imaging Core, University of Virginia, Charlottesville, VA, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mohammad B Haskali
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lester Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | | | | | - Nancy Kant
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Arakawa R, Takano A, Stenkrona P, Stepanov V, Nag S, Jahan M, Grybäck P, Bolin M, Chen L, Zhang L, He P, Villalobos A, McCarthy TJ, Halldin C, Varrone A. PET imaging of beta-secretase 1 in the human brain: radiation dosimetry, quantification, and test-retest examination of [ 18F]PF-06684511. Eur J Nucl Med Mol Imaging 2020; 47:2429-2439. [PMID: 32140803 PMCID: PMC7396399 DOI: 10.1007/s00259-020-04739-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
Purpose Beta-secretase 1 (BACE1) enzyme is implicated in the pathophysiology of Alzheimer’s disease. [18F]PF-06684511 is a positron emission tomography (PET) radioligand for imaging BACE1. Despite favorable brain kinetic properties, the effective dose (ED) of [18F]PF-06684511 estimated in non-human primates was relatively high. This study was therefore designed to evaluate the whole-body distribution, dosimetry, quantification, and test-retest reliability of imaging brain BACE1 with [18F]PF-06684511 in healthy volunteers. Methods Five subjects were studied for the dosimetry study. Whole-body PET was performed for 366 min with 4 PET-CT sessions. Estimates of the absorbed radiation dose were calculated using the male adult model. Eight subjects participated in the test-retest study. Brain PET measurements were conducted for 123 min with an interval of 5 to 19 days between test and retest conditions. The total distribution volume (VT) was estimated with one-tissue (1T), two-tissue (2T), compartment model (CM), and graphical analysis. Test-retest variability (TRV) and intraclass correlation coefficient (ICC) of VT were calculated as reliability measures. Results In the dosimetry study, the highest uptake was found in the liver (25.2 ± 2.3 %ID at 0.5 h) and the largest dose was observed in the pancreas (92.9 ± 52.2 μSv/MBq). The calculated ED was 24.7 ± 0.8 μSv/MBq. In the test-retest study, 2TCM described the time-activity curves well. VT (2TCM) was the highest in the anterior cingulate cortex (6.28 ± 1.09 and 6.85 ± 0.81) and the lowest in the cerebellum (4.23 ± 0.88 and 4.20 ± 0.75). Mean TRV and ICC of VT (2TCM) were 16.5% (12.4–20.5%) and 0.496 (0.291–0.644). Conclusion The ED of [18F]PF-06684511 was similar to other 18F radioligands, allowing repeated PET measurements. 2TCM was the most appropriate quantification method. TRV of VT was similar to other radioligands without a reference region, albeit with lower ICC. These data indicated that [18F]PF-06684511 is a suitable radioligand to measure BACE1 level in the human brain. Trial registration EudraCT 2016-001110-19 (registered 2016-08-08)
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| | - Akihiro Takano
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Per Stenkrona
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Vladimir Stepanov
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Mahabuba Jahan
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Per Grybäck
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Bolin
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laigao Chen
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Lei Zhang
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Ping He
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
26
|
Lee N, Oh I, Chae SY, Jin S, Oh SJ, Lee SJ, Koglin N, Berndt M, Stephens AW, Oh JS, Moon DH. Radiation dosimetry of [ 18F]GP1 for imaging activated glycoprotein IIb/IIIa receptors with positron emission tomography in patients with acute thromboembolism. Nucl Med Biol 2019; 72-73:45-48. [PMID: 31330411 DOI: 10.1016/j.nucmedbio.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/05/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE 4-(3S)-3-[5-(2-[18F]-fluoroethoxy)pyridin-3-yl]-3-[({(3R)-1-[3-(piperidin-4-yl)propanoyl]-piperidin-3-yl}carbonyl)amino]propanoic acid ([18F]GP1) is a radiotracer developed for targeted imaging of activated platelet glycoprotein IIb/IIIa receptors with positron emission tomography/computed tomography (PET/CT) in acute thromboembolism. We evaluated here radiation dosimetry of [18F]GP1 in humans. PROCEDURES We studied 30 subjects (10 with deep vein thrombosis, 10 with pulmonary embolism, and 10 with arterial thromboembolism) who had signs or symptoms of acute thromboembolism, and were confirmed to have thromboembolic foci by imaging studies. Dynamic whole-body PET/CT images were acquired for up to 140 min after injection of 250 MBq of [18F]GP1. Radiation absorbed dose and effective dose were calculated using the OLINDA/EXM software. RESULTS [18F]GP1 PET images showed high initial uptake of the tracer in the heart, spleen, kidney, and liver. [18F]GP1 activity was cleared by hepatobiliary and urinary excretion. The organ receiving the highest radiation absorbed dose (mGy/MBq) was the urinary bladder (0.0884 ± 0.0458), followed by upper large intestine (0.0498 ± 0.0189), small intestine (0.0454 ± 0.0166), and kidneys (0.0350 ± 0.0231). The effective dose (mSv/MBq) was 0.0212 ± 0.0027 (ICRP 103). ED was not significantly different between the three disease groups (p = 0.94). A 45-minute voiding reduced the urinary bladder wall radiation dose to 0.0495 ± 0.0140 mGy/MBq, and effective dose (ICRP 103) to 0.0186 ± 0.0030. CONCLUSIONS [18F]GP1 has favorable radiation dosimetry profile for clinical PET/CT imaging. The ED is comparable to commonly used 18F PET tracers.
Collapse
Affiliation(s)
- Narae Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Inhye Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jin
- Department of Nuclear Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Norman Koglin
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Mathias Berndt
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Andrew W Stephens
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Huang YY, Chiu MJ, Yen RF, Tsai CL, Hsieh HY, Chiu CH, Wu CH, Hsin LW, Tzen KY, Cheng CY, Ma KH, Shiue CY. An one-pot two-step automated synthesis of [18F]T807 injection, its biodistribution in mice and monkeys, and a preliminary study in humans. PLoS One 2019; 14:e0217384. [PMID: 31260447 PMCID: PMC6602418 DOI: 10.1371/journal.pone.0217384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
[18F]T807 is a potent tau protein imaging agent. In order to fulfill the demand from preclinical and clinical studies, we developed an automated one-pot two-step synthesis of this potent tau imaging agent and studied its stability, and dosimetry in mice and monkeys. We also conducted a preliminary study of this imaging agent in humans. Using this one-pot two-step method, the radiochemical yield (RCY) of [18F]T807 was 20.5 ± 6.1% (n = 15) at the end of bombardment (EOB) in a synthesis time of 70±5 min. The chemical and radiochemical purities were >90% and the specific activities were 151 ± 52 GBq/μmol. The quality of [18F]T807 synthesized by this method met the U.S. Pharmacopoeia (USP) criteria. The stability test showed that the [18F]T807 injection was stable at room temperature for up to 4 h after the end of synthesis (EOS). The estimated effective dose of the [18F]T807 injection extrapolated from monkeys was 19 μSv/MBq (n = 2), while the estimated effective doses of the [18F]T807 injection extrapolated from fasted and non-fasted mice were 123 ± 27 (n = 3) and 94 ± 19 (n = 4) μSv/MBq, respectively. This one-pot two-step automated method produced the [18F]T807 injection with high reproducibility and high quality. PET imaging and radiation dosimetry evaluation in mice and Formosan rock monkeys suggested that the [18F]T807 injection synthesized by this method is suitable for use in human PET imaging studies. Thus, this method could fulfill the demand for the [18F]T807 injection in both preclinical and clinical studies of tauopathies, especially for nearby study sites without cyclotrons.
Collapse
Affiliation(s)
- Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering and Bio-informatics, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ling Tsai
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Yu Hsieh
- School of Pharmacy, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
| | - Ching-Hung Chiu
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Han Wu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ling-Wei Hsin
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
| | - Kai-Yuan Tzen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Neihu, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chyng-Yann Shiue
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Neihu, Taipei, Taiwan
| |
Collapse
|
28
|
Takano A, Chen L, Nag S, Brodney MA, Arakawa R, Chang C, Amini N, Doran SD, Dutra JK, McCarthy TJ, Nolan CE, O'Neill BT, Villalobos A, Zhang L, Halldin C. Quantitative Analysis of 18F-PF-06684511, a Novel PET Radioligand for Selective β-Secretase 1 Imaging, in Nonhuman Primate Brain. J Nucl Med 2018; 60:992-997. [PMID: 30530832 DOI: 10.2967/jnumed.118.217372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
β-secretase 1 (BACE1) is a key enzyme in the generation of β-amyloid, which is accumulated in the brain of Alzheimer disease patients. PF-06684511 was identified as a candidate PET ligand for imaging BACE1 in the brain and showed high specific binding in an initial assessment in a nonhuman primate (NHP) PET study using 18F-PF-06684511. In this effort, we aimed to quantitatively evaluate the regional brain distribution of 18F-PF-06684511 in NHPs under baseline and blocking conditions and to assess the target occupancy of BACE1 inhibitors. In addition, NHP whole-body PET measurements were performed to estimate the effective radiation dose. Methods: Initial brain PET measurements were performed at baseline and after oral administration of 5 mg/kg of LY2886721, a BACE1 inhibitor, in 2 cynomolgus monkeys. Kinetic analysis was performed with the radiometabolite-corrected plasma input function. In addition, a wide dose range of another BACE1 inhibitor, PF-06663195, was examined to investigate the relationship between the brain target occupancy and plasma concentration of the drug. Finally, the effective radiation dose of 18F-PF-06684511 was estimated on the basis of the whole-body PET measurements in NHPs. Results: Radiolabeling was accomplished successfully with an incorporation radiochemical yield of 4%-12% (decay-corrected) from 18F ion. The radiochemical purity was greater than 99%. The whole-brain uptake of 18F-PF-06684511 peaked (∼220% SUV) at approximately 20 min and decreased thereafter (∼100% SUV at 180 min). A 2-tissue-compartment model described the time-activity curves well. Pretreatment with LY2886721 reduced the total distribution volume of 18F-PF-06684511 by 48%-80% depending on the brain region, confirming its in vivo specificity. BACE1 occupancy of PF-06663195, estimated using the Lassen occupancy plot, showed a dose-dependent increase. The effective dose of 18F-PF-06684511 was 0.043 mSv/MBq for humans. Conclusion: 18F-PF-06684511 is the first successful PET radioligand for BACE1 brain imaging that demonstrates favorable in vivo binding and brain kinetics in NHPs.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Laigao Chen
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Michael A Brodney
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Cheng Chang
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Nahid Amini
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Shawn D Doran
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jason K Dutra
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Timothy J McCarthy
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Charles E Nolan
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Brian T O'Neill
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | | | - Lei Zhang
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
29
|
Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2018; 46:540-557. [PMID: 30519867 PMCID: PMC6351513 DOI: 10.1007/s00259-018-4207-9] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
These joint practice guidelines, or procedure standards, were developed collaboratively by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the working group for Response Assessment in Neurooncology with PET (PET-RANO). Brain PET imaging is being increasingly used to supplement MRI in the clinical management of glioma. The aim of these standards/guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with glioma to achieve a high-quality imaging standard for PET using FDG and the radiolabelled amino acids MET, FET and FDOPA. This will help promote the appropriate use of PET imaging and contribute to evidence-based medicine that may improve the diagnostic impact of this technique in neurooncological practice. The present document replaces a former version of the guidelines published in 2006 (Vander Borght et al. Eur J Nucl Med Mol Imaging. 33:1374–80, 2006), and supplements a recent evidence-based recommendation by the PET-RANO working group and EANO on the clinical use of PET imaging in patients with glioma (Albert et al. Neuro Oncol. 18:1199–208, 2016). The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, 9, Blegdamsvej, 2100-DK, Copenhagen Ø, Denmark.
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Javier Arbizu
- Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarre, Pamplona, Spain
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany
| | - Christian la Fougère
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany.,Department of Nuclear Medicine, RWTH University Aachen, Aachen, Germany
| | - Egesta Lopci
- Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Italy
| | - Val Lowe
- Department of Radiology, Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan McConathy
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Koole M, Schmidt ME, Hijzen A, Ravenstijn P, Vandermeulen C, Van Weehaeghe D, Serdons K, Celen S, Bormans G, Ceusters M, Zhang W, Van Nueten L, Kolb H, de Hoon J, Van Laere K. 18F-JNJ-64413739, a Novel PET Ligand for the P2X7 Ion Channel: Radiation Dosimetry, Kinetic Modeling, Test-Retest Variability, and Occupancy of the P2X7 Antagonist JNJ-54175446. J Nucl Med 2018; 60:683-690. [PMID: 30262518 DOI: 10.2967/jnumed.118.216747] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an adenosine triphosphate-gated ion channel that is predominantly expressed on microglial cells in the central nervous system. We report the clinical qualification of P2X7-specific PET ligand 18F-JNJ-64413739 in healthy volunteers, including dosimetry, kinetic modeling, test-retest variability, and blocking by the P2X7 antagonist JNJ-54175446. Methods: Whole-body dosimetry was performed in 3 healthy male subjects by consecutive whole-body PET/CT scanning, estimation of the normalized cumulated activity, and calculation of the effective dose using OLINDA (v1.1). Next, 5 healthy male subjects underwent a 120-min dynamic 18F-JNJ-64413739 PET/MRI scan with arterial blood sampling to determine the appropriate kinetic model. For this purpose, 1- and 2-tissue compartment models and Logan graphic analysis (LGA) were evaluated for estimating regional volumes of distribution (VT). PET/MRI scanning was repeated in 4 of these subjects to evaluate medium-term test-retest variability (interscan interval, 26-97 d). For the single-dose occupancy study, 8 healthy male subjects underwent baseline and postdose 18F-JNJ-64413739 PET/MRI scans 4-6 h after the administration of a single oral dose of JNJ-54175446 (dose range, 5-300 mg). P2X7 occupancies were estimated using a Lassen plot and regional baseline and postdose VT Results: The average (mean ± SD) effective dose was 22.0 ± 1.0 μSv/MBq. The 2-tissue compartment model was the most appropriate kinetic model, with LGA showing very similar results. Regional 2-tissue compartment model VT values were about 3 and were rather homogeneous across all brain regions, with slightly higher estimates for the thalamus, striatum, and brain stem. Between-subject VT variability was relatively high, with cortical VT showing an approximate 3-fold range across subjects. As for time stability, the acquisition time could be reduced to 90 min. The average regional test-retest variability values were 10.7% ± 2.2% for 2-tissue compartment model VT and 11.9% ± 2.2% for LGA VT P2X7 occupancy approached saturation for single doses of JNJ-54175446 higher than 50 mg, and no reference region could be identified. Conclusion: 18F-JNJ-64413739 is a suitable PET ligand for the quantification of P2X7R expression in the human brain. It can be used to provide insight into P2X7R expression in health and disease, to evaluate target engagement by P2X7 antagonists, and to guide dose selection.
Collapse
Affiliation(s)
- Michel Koole
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Anja Hijzen
- Janssen Research and Development, Beerse, Belgium
| | | | - Corinne Vandermeulen
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium; and
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium
| | - Kim Serdons
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Celen
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | | | - Wei Zhang
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium; and
| | - Koen Van Laere
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium .,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, Bond MR, Morse CL, Gladding RL, Frankland MP, Kant N, Slieker L, Shcherbinin S, Nuthall HN, Zanotti-Fregonara P, Hanover JA, Jesudason C, Pike VW, Innis RB. Evaluation of a PET Radioligand to Image O-GlcNAcase in Brain and Periphery of Rhesus Monkey and Knock-Out Mouse. J Nucl Med 2018; 60:129-134. [PMID: 30213846 DOI: 10.2967/jnumed.118.213231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Accumulation of hyperphosphorylated tau, a microtubule-associated protein, plays an important role in the progression of Alzheimer disease. Animal studies suggest that one strategy for treating Alzheimer disease and related tauopathies may be inhibition of O-GlcNAcase (OGA), which may subsequently decrease pathologic tau phosphorylation. Here, we report the pharmacokinetics of a novel PET radioligand, 18F-LSN3316612, which binds with high affinity and selectivity to OGA. Methods: PET imaging was performed on rhesus monkeys at baseline and after administration of either thiamet-G, a potent OGA inhibitor, or nonradioactive LSN3316612. The density of the enzyme was calculated as distribution volume using a 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. The radiation burden for future studies was based on whole-body imaging of monkeys. Oga ∆Br, a mouse brain-specific knockout of Oga, was also scanned to assess the specificity of the radioligand for its target enzyme. Results: Uptake of radioactivity in monkey brain was high (∼5 SUV) and followed by slow washout. The highest uptake was in the amygdala, followed by striatum and hippocampus. Pretreatment with thiamet-G or nonradioactive LSN3316612 reduced brain uptake to a low and uniform concentration in all regions, corresponding to an approximately 90% decrease in distribution volume. Whole-body imaging of rhesus monkeys showed high uptake in kidney, spleen, liver, and testes. In Oga ∆Br mice, brain uptake of 18F-LSN3316612 was reduced by 82% compared with control mice. Peripheral organs were unaffected in Oga ∆Br mice, consistent with loss of OGA expression exclusively in the brain. The effective dose of 18F-LSN3316612 in humans was calculated to be 22 μSv/MBq, which is typical for 18F-labeled radioligands. Conclusion: These results show that 18F-LSN3316612 is an excellent radioligand for imaging and quantifying OGA in rhesus monkeys and mice. On the basis of these data, 18F-LSN3316612 merits evaluation in humans.
Collapse
Affiliation(s)
- Soumen Paul
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Mohammad B Haskali
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jeih-San Liow
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | | | | | - Michelle R Bond
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L Morse
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Michael P Frankland
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | - John A Hanover
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | | | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Jiemy WF, Heeringa P, Kamps JA, van der Laken CJ, Slart RH, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev 2018; 17:715-726. [PMID: 29729443 DOI: 10.1016/j.autrev.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
33
|
Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, Carter R, Appel SH, Atassi N, Masdeu JC. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J Nucl Med 2018; 59:1260-1266. [DOI: 10.2967/jnumed.117.203109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
|
34
|
Choi JY, Lyoo CH, Lee JH, Cho H, Kim KM, Kim JS, Ryu YH. Human Radiation Dosimetry of [(18)F]AV-1451(T807) to Detect Tau Pathology. Mol Imaging Biol 2017; 18:479-82. [PMID: 26728162 DOI: 10.1007/s11307-015-0924-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE [(18)F]AV-1451 is a positron emission tomography (PET) radioligand for detecting paired helical filament tau. Our aim was to estimate the radiation dose of [(18)F]AV-1451 in humans. PROCEDURES Whole-body PET scans were acquired for six healthy volunteers (three male, three female) for 128 min after injection of [(18)F]AV-1451 (268 ± 31 MBq). Radiation doses were estimated using the OLINDA/EXM software. RESULTS The estimated organ doses ranged from 7.81 to 81.2 μSv/MBq. The critical organ for radiation burden was the liver. Radiation doses to the reproductive and blood-forming organs were 14.15, 8.43, and 18.35 μSv/MBq for the ovaries, testes, and red marrow, respectively. The mean effective dose was 22.47 ± 3.59 μSv/MBq. CONCLUSIONS A standard single injection of 185 MBq (5 mCi) results in an effective dose of 4.7 mSv in a healthy subject. Therefore, [(18)F]AV-1451 could be used in multiple PET scans of the same subject per year.
Collapse
Affiliation(s)
- Jae Yong Choi
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
35
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE [18F]Mefway is a positron emission tomography (PET) radioligand for quantification of the brain serotonin 1A (5-HT1A) receptor density. The purpose of this study was to evaluate the radiation safety of [18F]Mefway in humans. PROCEDURES Six healthy volunteers (three males and three females) were whole-body PET scanned for 114 min after injection of [18F]Mefway (226 ± 35 MBq). Estimated radiation doses were determined by the OLINDA/EXM software. RESULTS [18F]Mefway was safe and well tolerated by all subjects. Residence time ranges from 0 (gallbladder) to 0.822 h (urinary bladder wall). While the estimated radiation doses in the reproductive and blood-forming organs were below 13.35-22.87 μSv/MBq, radiation dose in the urinary bladder wall was 471 μSv/MBq. The mean effective dose was 40.23 ± 6.63 μSv/MBq. CONCLUSION For a typical single injection of 185 MBq (5 mCi), the dose will result in 87.1 mSv for the urinary bladder wall. To reduce radiation burden, the bladder voiding can be used before [18F]Mefway PET scan.
Collapse
|
37
|
Takano A, Varrone A, Gulyás B, Salvadori P, Gee A, Windhorst A, Vercouillie J, Bormans G, Lammertsma AA, Halldin C. Guidelines to PET measurements of the target occupancy in the brain for drug development. Eur J Nucl Med Mol Imaging 2016; 43:2255-2262. [PMID: 27514528 PMCID: PMC5047931 DOI: 10.1007/s00259-016-3476-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
This guideline summarizes the current view of the European Association of Nuclear Medicine Drug Development Committee. The purpose of this guideline is to guarantee a high standard of PET studies that are aimed at measuring target occupancy in the brain within the framework of development programs of drugs that act within the central nervous system (CNS drugs). This guideline is intended to present information specifically adapted to European practice. The information provided should be applied within the context of local conditions and regulations.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Antony Gee
- Department of Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK
| | - Albert Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Guy Bormans
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Comparison of dosimetry between PET/CT and PET alone using 11C-ITMM. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:177-86. [DOI: 10.1007/s13246-015-0419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
|
39
|
Zanotti-Fregonara P, Xu R, Zoghbi SS, Liow JS, Fujita M, Veronese M, Gladding RL, Rallis-Frutos D, Hong J, Pike VW, Innis RB. The PET Radioligand 18F-FIMX Images and Quantifies Metabotropic Glutamate Receptor 1 in Proportion to the Regional Density of Its Gene Transcript in Human Brain. J Nucl Med 2015; 57:242-7. [PMID: 26514176 DOI: 10.2967/jnumed.115.162461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED A recent study from our laboratory found that (18)F-FIMX is an excellent PET radioligand for quantifying metabotropic glutamate receptor 1 (mGluR1) in monkey brain. This study evaluated the ability of (18)F-FIMX to quantify mGluR1 in humans. A second goal was to use the relative density of mGluR1 gene transcripts in brain regions to estimate specific uptake and nondisplaceable uptake (VND) in each brain region. METHODS After injection of 189 ± 3 MBq of (18)F-FIMX, 12 healthy volunteers underwent a dynamic PET scan over 120 min. For 6 volunteers, images were acquired until 210 min. A metabolite-corrected arterial input function was measured from the radial artery. Four other subjects underwent whole-body scanning to estimate radiation exposure. RESULTS (18)F-FIMX uptake into the human brain was high (SUV = 4-6 in the cerebellum), peaked at about 10 min, and washed out rapidly. An unconstrained 2-tissue-compartment model fitted the data well, and distribution volume (VT) (mL⋅cm(-3)) values ranged from 1.5 in the caudate to 11 in the cerebellum. A 120-min scan provided stable VT values in all regions except the cerebellum, for which an acquisition time of at least 170 min was necessary. VT values in brain regions correlated well with mGluR1 transcript density, and the correlation suggested that VND of (18)F-FIMX was quite low (0.5 mL⋅cm(-3)). This measure of VND in humans was similar to that from a receptor blocking study in monkeys, after correcting for differences in plasma protein binding. Similar to other (18)F-labeled ligands, the effective dose was about 23 μSv/MBq. CONCLUSION (18)F-FIMX can quantify mGluR1 in the human brain with a 120- to 170-min scan. Correlation of brain uptake with the relative density of mGluR1 transcript allows specific receptor binding of a radioligand to be quantified without injecting pharmacologic doses of a blocking agent.
Collapse
Affiliation(s)
- Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland INCIA UMR-CNRS 5287, University of Bordeaux, Bordeaux, France; and
| | - Rong Xu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Denise Rallis-Frutos
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|
40
|
Bretin F, Bahri MA, Luxen A, Phillips C, Plenevaux A, Seret A. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using gate. Med Phys 2015; 42:5711-9. [DOI: 10.1118/1.4930056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Honer M, Gobbi L, Martarello L, Comley RA. Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov Today 2014; 19:1936-44. [DOI: 10.1016/j.drudis.2014.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/24/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022]
|
42
|
Sattler B, Kranz M, Starke A, Wilke S, Donat CK, Deuther-Conrad W, Patt M, Schildan A, Patt J, Smits R, Hoepping A, Schoenknecht P, Steinbach J, Brust P, Sabri O. Internal dose assessment of (-)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med 2014; 55:1885-92. [PMID: 25286922 DOI: 10.2967/jnumed.114.137059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (-)-(18)F-flubatine is a promising tracer for neuroimaging of nicotinic acetylcholine receptors (nAChRs), subtype α4β2, using PET. Radiation doses after intravenous administration of the tracer in mice and piglets were assessed to determine the organ doses (ODs) and the effective dose (ED) to humans. The results were compared with subsequent clinical investigations in human volunteers. METHODS Twenty-seven female CD1 mice (weight ± SD, 28.2 ± 2.1 g) received intravenous injection of 0.75 ± 0.33 MBq of (-)-(18)F-flubatine. Up to 240 min after injection, 3 animals per time point were sacrificed and the organs harvested, weighed, and counted in a γ counter to determine mass and activity, respectively. Furthermore, whole-body PET scans of 5 female piglets (age ± SD, 44 ± 3 d; weight ± SD, 13.7 ± 1.7 kg) and 3 humans (2 men and 1 woman; age ± SD, 59.6 ± 3.9 y; weight ± SD, 74.3 ± 3.1 kg) were obtained up to 236 min (piglets) and 355 min (humans) after injection of 186.6 ± 7.4 and 353.7 ± 10.2 MBq of (-)-(18)F-flubatine, respectively, using a PET/CT scanner. The CT was used for delineation of the organs. Exponential curves were fitted to the time-activity-data, and time and mass scales were adapted to the human anatomy. The ODs were calculated using OLINDA/EXM (version 1.0); EDs were calculated with the tissue-weighting factors of ICRP103. RESULTS After the injection of (-)-(18)F-flubatine, there were no adverse or clinically detectable pharmacologic effects in any of the subjects. The highest activities after injection were found in the kidneys, urinary bladder, and liver. The urinary bladder receives the highest OD in all investigated species, followed by the kidneys and the liver for animals and humans, respectively. On the basis of mouse, piglet, and human kinetic data, the projected human ED of (-)-(18)F-flubatine was estimated to be 12.5 μSv/MBq in mice, 14.7 ± 0.7 μSv/MBq in piglets, and 23.4 ± 0.4 μSv/MBq in humans. CONCLUSION As has been demonstrated for other PET radiotracers, preclinical (i.e., animal-derived) dosimetry underestimates the ED to humans, in the current case of (-)-(18)F-flubatine by 34%-44%.
Collapse
Affiliation(s)
- Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Mathias Kranz
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Dresden/Leipzig, Germany
| | - Alexander Starke
- Department of Nuclear Medicine, Diaconal Hospital Henriettenstiftung Hannover, Hannover, Germany
| | - Stephan Wilke
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Cornelius K Donat
- Department of Nuclear Medicine, Diaconal Hospital Henriettenstiftung Hannover, Hannover, Germany
| | - Winnie Deuther-Conrad
- Department of Nuclear Medicine, Diaconal Hospital Henriettenstiftung Hannover, Hannover, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Jörg Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - René Smits
- ABX Advanced Biochemical Compounds Ltd., Radeberg, Germany
| | | | - Peter Schoenknecht
- Department of Psychiatry, University Hospital Leipzig, Leipzig, Germany; and
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Peter Brust
- Department of Nuclear Medicine, Diaconal Hospital Henriettenstiftung Hannover, Hannover, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Saleem A, Murphy P, Plisson C, Lahn M. Why are we failing to implement imaging studies with radiolabelled new molecular entities in early oncology drug development? ScientificWorldJournal 2014; 2014:269605. [PMID: 25202719 PMCID: PMC4151371 DOI: 10.1155/2014/269605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
In early drug development advanced imaging techniques can help with progressing new molecular entities (NME) to subsequent phases of drug development and thus reduce attrition. However, several organizational, operational, and regulatory hurdles pose a significant barrier, potentially limiting the impact these techniques can have on modern drug development. Positron emission tomography (PET) of radiolabelled NME is arguably the best example of a complex technique with a potential to deliver unique decision-making data in small cohorts of subjects. However, to realise this potential the impediments to timely inclusion of PET into the drug development process must be overcome. In the present paper, we discuss the value of PET imaging with radiolabelled NME during early anticancer drug development, as exemplified with one such NME. We outline the multiple hurdles and propose options on how to streamline the organizational steps for future studies.
Collapse
Affiliation(s)
- Azeem Saleem
- Imanova Ltd., Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Philip Murphy
- GlaxoSmithKline Global Imaging Unit, Stockley Park West, 1-3 Ironbridge Road, Uxbridge, Middlesex UB11 1BT, UK
| | - Christophe Plisson
- Imanova Ltd., Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Michael Lahn
- Early Phase Oncology Clinical Investigation, Eli Lilly Corporate Center, Building 31/4, 893 S. Delaware Street, Indianapolis, IN 46285, USA
| |
Collapse
|
44
|
Finnema SJ, Stepanov V, Nakao R, Sromek AW, Zhang T, Neumeyer JL, George SR, Seeman P, Stabin MG, Jonsson C, Farde L, Halldin C. (18)F-MCL-524, an (18)F-Labeled Dopamine D2 and D3 Receptor Agonist Sensitive to Dopamine: A Preliminary PET Study. J Nucl Med 2014; 55:1164-70. [PMID: 24790219 DOI: 10.2967/jnumed.113.133876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/17/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED PET has been used to examine changes in neurotransmitter concentrations in the living brain. Pioneering PET studies on the dopamine system have used D2 and D3 receptor (D2/D3) antagonists such as (11)C-raclopride. However, more recently developed agonist radioligands have shown enhanced sensitivity to endogenous dopamine. A limitation of available agonist radioligands is that they incorporate the short-lived radioisotope (11)C. In the current study, we developed the (18)F-labeled D2/D3 receptor agonist (R)-(-)-2-(18)F-fluoroethoxy-N-n-propylnorapomorphine ((18)F-MCL-524). METHODS In total, 10 PET measurements were conducted on 5 cynomolgus monkeys. Initially, the binding of (18)F-MCL-524 was compared with that of (11)C-MNPA in 3 monkeys. Second, the specificity of (18)F-MCL-524 binding was examined in pretreatment studies using raclopride (1.0 mg/kg) and d-amphetamine (1.0 mg/kg). Third, a preliminary kinetic analysis was performed using the radiometabolite-corrected arterial input function of the baseline studies. Finally, 2 whole-body PET measurements were conducted to evaluate biodistribution and radiation dosimetry after intravenous injection of (18)F-MCL-524. RESULTS (18)F-MCL-524 entered the brain and provided striatum-to-cerebellum ratios suitable for reliable quantification of receptor binding using the multilinear reference tissue model. Mean striatal nondisplaceable binding potential (BPND) values were 2.0 after injection of (18)F-MCL-524 and 1.4 after (11)C-MNPA. The ratio of the BPND values of (18)F-MCL-524 and (11)C-MNPA was 1.5 across striatal subregions. After administration of raclopride and d-amphetamine, the (18)F-MCL-524 BPND values were reduced by 89% and 56%, respectively. Preliminary kinetic analysis demonstrated that BPND values obtained with the 1-tissue- and 2-tissue-compartment models were similar to values obtained with the multilinear reference tissue model. Estimated radiation doses were highest for gallbladder (0.27 mSv/MBq), upper large intestine (0.19 mSv/MBq), and small intestine (0.17 mSv/MBq). The estimated effective dose was 0.035 mSv/MBq. CONCLUSION The (18)F-labeled agonist (18)F-MCL-524 appears suitable for quantification of D2/D3 receptor binding in vivo, and the results encourage extension to human studies. The longer half-life of (18)F makes (18)F-MCL-524 attractive for studies on modulation of the dopamine concentration-for example, in combination with simultaneous measurement of changes in blood-oxygen-level-dependent signal using bimodal PET/functional MRI.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden
| | - Vladimir Stepanov
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden
| | - Ryuji Nakao
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden
| | - Anna W Sromek
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Tangzhi Zhang
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - John L Neumeyer
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | | | - Michael G Stabin
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Cathrine Jonsson
- Department of Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; and
| | - Lars Farde
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden AstraZeneca, Translational Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden
| |
Collapse
|