1
|
Qin Q, Xia X, Qu J, Guan Z, Yin Y, Chang J, Yu C, Zhang T, Tang Y. Blood biomarkers of amyloid and tau pathologies, brain degeneration, inflammation, and oxidative stress in early- and late-onset Alzheimer's disease. J Alzheimers Dis 2025:13872877251340955. [PMID: 40336292 DOI: 10.1177/13872877251340955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BackgroundNumerous blood biomarkers have emerged as promising biomarkers for Alzheimer's disease (AD) and cognitive decline, but limited knowledge exists concerning the difference of blood biomarkers between early-onset and late-onset cases.ObjectiveInvestigate blood biomarkers associated with amyloid and tau pathologies, brain degeneration, inflammation, and oxidative stress in individuals afflicted with both early-onset and late-onset AD, as well as in age-matched healthy controls.MethodsA total of 125 participants were enrolled. We assessed levels of 18 distinct blood biomarkers and their associations with cerebrospinal fluid biomarkers, neuropsychological test scores, APOE ε4 carrier status, and neuroimaging markers. The diagnostic potential of blood biomarkers was investigated.ResultsIn early-onset AD patients, levels of blood Interleukin (IL)-4, IL-6, and Tumor necrosis factor-alpha (TNF-α) were notably lower comparing to late-onset patients. AD patients exhibited higher blood levels of phosphorylated-tau181 (p-tau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP), as well as lower levels of amyloid-β (Aβ)42 and IL-12p70. Oxidative stress markers, including malondialdehyde, total antioxidant capacity, and superoxide dismutase, exhibited a progressive trend across the continuum of AD. Inflammatory markers demonstrating correlations with neuroimaging markers. Blood levels of Aβ42, p-tau181, NfL, and GFAP associated with neuropsychological scores and effectively discriminated AD, with GFAP exhibiting particular relevance in early-onset cases.ConclusionsInflammatory markers exhibited differences between patients with early- and late-onset AD, associated with alterations in brain structure and function. With the progression of disease continuum, a decrement in antioxidant capacity was observed. Blood Aβ42, p-tau181, NfL, and GFAP showed promise in detecting cognitive decline and AD.
Collapse
Affiliation(s)
- Qi Qin
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinyi Xia
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhongtian Guan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chaoji Yu
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tongtong Zhang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
2
|
Shi W, Chen M, Wang R, Wen C, Huang L, Wang Q. Causal effect of three autoimmune diseases on brain functional networks and cerebrospinal fluid metabolites to underlie the pathogenesis of autoimmune psychosis: a two-sample mendelian randomization analysis. J Transl Med 2025; 23:440. [PMID: 40229769 PMCID: PMC11998268 DOI: 10.1186/s12967-025-06113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/08/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Autoimmune diseases such as Systemic Lupus Erythematosus (SLE), Sjögren's Syndrome (SS), and Hashimoto's Thyroiditis (HT) frequently exhibit neuropsychiatric manifestations, including cognitive impairment, depression, anxiety, and so on, yet the exact pathogenesis underlying this association remain incompletely understood. Dysfunction of brain resting-state functional networks and cerebrospinal fluid (CSF) metabolite disturbances have been widely reported in psychiatric disorders. However, the application of resting-state functional magnetic resonance imaging (rsfMRI) and CSF metabolomics in the diagnosis and monitoring of autoimmune psychosis is still limited. METHODS A two-sample Mendelian randomization (MR) analysis was performed to investigate the causal relationships between three autoimmune diseases (SLE, SS, and HT, n = 14,267 to 402,090 individuals) and 191 rsfMRI phenotypes (n = 47,276 individuals), as well as 338 CSF metabolites. The genome-wide association study (GWAS) of three autoimmune diseases was used as the exposure, whereas rsfMRI phenotypes and 338 CSF metabolites were treated as the outcome. Inverse variance weighted (IVW) with P value < 0.05 was regarded as the primary approach for calculating causal estimates. Additionally, the false discovery rate (FDR)-adjusted P value (PFDR) < 0.05 was utilized to account for multiple testing. MR Egger method, weighted median method, simple mode method and weighted mode method were used for sensitive analysis. RESULTS Our analyses identified 5 causal relationships between SLE and the 191 rsfMRI phenotypes, 48 between SS and the 191 rsfMRI phenotypes, and 4 between HT and the 191 rsfMRI phenotypes. Additionally, we found 8 causal relationships between HT and CSF metabolites. Furthermore, all three diseases were significantly associated with the temporal lobe and triple networks (default mode network (DMN), salience network (SN), and central executive network (CEN)), which are the core brain regions and functional networks for cognition. Following FDR correction, 6 causal relationships between SS and the 191 rsfMRI phenotypes were further validated. CONCLUSIONS Our study pinpoints important brain functional networks and CSF metabolites potentially implicated in the pathogenesis of psychiatric disorders associated with autoimmune diseases and highlights critical brain regions for the development of novel therapeutics.
Collapse
Affiliation(s)
- Weiman Shi
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Min Chen
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Rongai Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chengping Wen
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lin Huang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Qiao Wang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
3
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Exploring the brain metabolic correlates of process-specific CSF biomarkers in patients with MCI due to Alzheimer's disease: preliminary data. Neurobiol Aging 2022; 117:212-221. [DOI: 10.1016/j.neurobiolaging.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
|
5
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
6
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
7
|
Palomar-Bonet M, Atienza M, Hernández-Ledesma B, Cantero JL. Associations of salivary total antioxidant capacity with cortical amyloid beta burden, cortical glucose uptake and cognitive function in normal aging. J Gerontol A Biol Sci Med Sci 2021; 76:1839-1845. [PMID: 33522564 DOI: 10.1093/gerona/glab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recognizing vulnerability to Alzheimer's disease (AD) requires from non-invasive, simple, and inexpensive markers that can be easily obtained in primary care settings. While saliva meets all these requirements, there is lack of evidence linking salivary constituents to in vivo AD pathology in aging. METHODS We examined the potential of salivary total antioxidant capacity (TAC) for identifying global cortical amyloid-beta (Aβ) burden, deficits in regional glucose uptake, and poorer cognition in 71 cognitively normal older adults. We further assessed whether salivary TAC-related cognitive performance was associated with higher Aβ load and lower cortical glucose consumption. RESULTS Linear regression analyses adjusted by age, sex, years of education, and ApoE4 status showed that salivary TAC was associated with slower processing speed and poorer sustained attention, as well as with higher Aβ load and lower glucose metabolism in cortical regions vulnerable to cognitive aging and AD. Results also revealed that lower scores in processing speed and sustained attention were associated with greater Aβ burden and lower regional glucose consumption, respectively. CONCLUSIONS Together, these findings support the use of salivary TAC for preventive screening and detection of cerebral vulnerability to AD. Further research is needed to evaluate the utility of salivary TAC as a clinical marker.
Collapse
Affiliation(s)
- Miriam Palomar-Bonet
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
8
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
9
|
Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci 2020; 12:231. [PMID: 32848710 PMCID: PMC7397955 DOI: 10.3389/fnagi.2020.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively damaged molecules, and/or a combination of these factors. Scientific literature is scarce for the markers of OS-specific for detecting AD at an early stage. The first aim of the current review is to provide an overview of the potential OS markers in the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early diagnosis of human AD. The reason for exploring OS markers is that the proposed antioxidant therapies against AD appear to start too late to be effective. The second aim is to evaluate the evidence for natural antioxidants currently proposed to prevent or treat AD symptoms. To address these two aims, we critically evaluated the studies on humans in which various OS markers for detecting AD at an early stage were presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI) and AD at an early stage in humans with greater specificity and sensitivity are primarily related to lipid peroxidation. However, a combination of OS markers, family history, and other biochemical tests are needed to detect the disease early on. We also report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in green tea) seem justified for ameliorating AD symptoms. Future research on humans is warranted to justify the use of natural antioxidants.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Humaira Qureshi
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| |
Collapse
|
10
|
Kim JW, Byun MS, Yi D, Lee JH, Jeon SY, Ko K, Jung G, Lee HN, Lee JY, Sohn CH, Lee YS, Shin SA, Kim YK, Lee DY. Serum Uric Acid, Alzheimer-Related Brain Changes, and Cognitive Impairment. Front Aging Neurosci 2020; 12:160. [PMID: 32581770 PMCID: PMC7291838 DOI: 10.3389/fnagi.2020.00160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/08/2020] [Indexed: 12/27/2022] Open
Abstract
Background Despite known associations of lower serum uric acid (UA) with Alzheimer’s disease (AD) dementia or AD-related cognitive impairment, little is known regarding the underlying patho-mechanisms. We aimed to examine the relationships of serum UA with in vivo AD pathologies including cerebral beta-amyloid (Aβ) and tau deposition, AD-signature region cerebral glucose metabolism (AD-CM), and white matter hyperintensities (WMH). We also investigated the association between serum UA and cognitive performance, and then assessed whether such an association is mediated by the brain pathologies. Methods A total of 430 non-demented older adults underwent comprehensive clinical assessments, measurement of serum UA level, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging scans. Mini-Mental State Examination (MMSE) and word list recall (WLR) test scores were used to measure cognitive performance. Results Serum UA level was significantly associated with AD-CM, but not with Aβ deposition, tau deposition, or WMH volume. Serum UA levels also had significant association with WLR and marginal association with MMSE; such associations disappeared when AD-CM was controlled as a covariate, indicating that AD-CM has a mediating effect. Conclusion The findings of the present study indicate that there is an association of low serum UA with AD-related cerebral hypometabolism, and whether this represents a causal relationship remains to be determined.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Chungnam National University Hospital, Daejeon, South Korea
| | - Kang Ko
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Han Na Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
11
|
Giovacchini G, Giovannini E, Borsò E, Lazzeri P, Riondato M, Leoncini R, Duce V, Mansi L, Ciarmiello A. The brain cognitive reserve hypothesis: A review with emphasis on the contribution of nuclear medicine neuroimaging techniques. J Cell Physiol 2019; 234:14865-14872. [PMID: 30784080 DOI: 10.1002/jcp.28308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/09/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Neuropathological and clinical evidence indicates that the clinical expression of Alzheimer's disease (AD) occurs as neuropathology exceeds the brain reserve capacity. The brain or cognitive reserve (BCR) hypothesis states that high premorbid intelligence, education, and an active and stimulating lifestyle provide reserve capacity, which acts as a buffer against the cognitive deficits due to accumulating neuropathology. Neuroimaging studies that assessed the BCR hypothesis are critically reviewed with emphasis on study design and statistical analysis. Many studies were performed in the last two decades owing to the increasing availability of positron emission tomography (PET) and PET/computed tomography scanners and to the synthesis of new radiopharmaceuticals, including tracers for amyloid and tau proteins. Studies with different tracers provided complementary consistent results supporting the BCR hypothesis. Many studies were appropriately designed with a measure of reserve, a measure of brain anatomy/function/neuropathology, and a measure of cognitive functions that are necessary. Most of the early studies were performed with PET and [ 18 F]fluorodeoxyglucose, and occasionally with [ 15 O]water, reporting a significant association between higher occupation/education and lower glucose metabolism (blood flow) in associative temporo-parietal cortex in patients with AD and also in patients with MCI, after correcting for the degree in the cognitive impairment. On the contrary, performances on several neuropsychological tests increased with increasing education for participants with elevated [ 11 C]PiB uptake. Studies with the tracers specific for tau protein showed that patients with AD with elevated tau deposits had higher cognitive performances compared with patients with similar levels of tau deposits. BCR in AD is also associated with a preserved cholinergic function. The BCR hypothesis has been validated with methodologically sound study designs and sophisticated neuroimaging techniques using different radiotracers and providing an explanation for neuropathological and clinical observations on patients with AD.
Collapse
Affiliation(s)
| | | | - Elisa Borsò
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Patrizia Lazzeri
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Mattia Riondato
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Rossella Leoncini
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Valerio Duce
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Luigi Mansi
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Andrea Ciarmiello
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| |
Collapse
|
12
|
Boccardi V, Westman E, Pelini L, Lindberg O, Muehlboeck JS, Simmons A, Tarducci R, Floridi P, Chiarini P, Soininen H, Kloszewska I, Tsolaki M, Vellas B, Spenger C, Wahlund LO, Lovestone S, Mecocci P. Differential Associations of IL-4 With Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2019; 10:439. [PMID: 30705627 PMCID: PMC6344381 DOI: 10.3389/fnagi.2018.00439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Background/Aims: We aimed to assess the association between in volumetric measures of hippocampal sub-regions - in healthy older controls (HC), subjects with mild cognitive impairment (MCI) and AD- with circulating levels of IL-4. Methods: From AddNeuroMed Project 113 HC, 101 stable MCI (sMCI), 22 converter MCI (cMCI) and 119 AD were included. Hippocampal subfield volumes were analyzed using Freesurfer 6.0.0 on high-resolution sagittal 3D-T1W MP-RAGE acquisitions. Plasmatic IL-4 was measured using ELISA assay. Results: IL-4 was found to be (a) positively associate with left subiculum volume (β = 0.226, p = 0.037) in sMCI and (b) negatively associate with left subiculum volume (β = -0.253, p = 0.011) and left presubiculum volume (β = -0.257, p = 0.011) in AD. Conclusion: Our results indicate a potential neuroprotective effect of IL-4 on the areas of the hippocampus more vulnerable to aging and neurodegeneration.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Luca Pelini
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Olof Lindberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Roberto Tarducci
- Division of Medical Physics, Perugia University Hospital, Perugia, Italy
| | - Piero Floridi
- Division of Neuroradiology, Perugia University Hospital, Perugia, Italy
| | - Pietro Chiarini
- Division of Neuroradiology, Perugia University Hospital, Perugia, Italy
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland - Kuopio University Hospital, Kuopio, Finland
| | - Iwona Kloszewska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bruno Vellas
- University of Toulouse, INSERM 1027, Gérontopôle, Toulouse, France
| | - Christian Spenger
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Franciotti R, Falasca NW, Arnaldi D, Famà F, Babiloni C, Onofrj M, Nobili FM, Bonanni L. Cortical Network Topology in Prodromal and Mild Dementia Due to Alzheimer's Disease: Graph Theory Applied to Resting State EEG. Brain Topogr 2019; 32:127-141. [PMID: 30145728 PMCID: PMC6326972 DOI: 10.1007/s10548-018-0674-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Graph theory analysis on resting state electroencephalographic rhythms disclosed topological properties of cerebral network. In Alzheimer's disease (AD) patients, this approach showed mixed results. Granger causality matrices were used as input to the graph theory allowing to estimate the strength and the direction of information transfer between electrode pairs. The number of edges (degree), the number of inward edges (in-degree), of outgoing edges (out-degree) were statistically compared among healthy controls, patients with mild cognitive impairment due to AD (AD-MCI) and AD patients with mild dementia (ADD) to evaluate if degree abnormality could involve low and/or high degree vertices, the so called hubs, in both prodromal and over dementia stage. Clustering coefficient and local efficiency were evaluated as measures of network segregation, path length and global efficiency as measures of integration, the assortativity coefficient as a measure of resilience. Degree, in-degree and out-degree values were lower in AD-MCI and ADD than the control group for non-hubs and hubs vertices. The number of edges was preserved for frontal electrodes, where patients' groups showed an additional hub in F3. Clustering coefficient was lower in ADD compared with AD-MCI in the right occipital electrode, and it was positively correlated with mini mental state examination. Local and global efficiency values were lower in patients' than control groups. Our results show that the topology of the network is altered in AD patients also in its prodromal stage, begins with the reduction of the number of edges and the loss of the local and global efficiency.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
| | - Nicola Walter Falasca
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
- BIND - Behavioral Imaging and Neural Dynamics Center, "G. d'Annunzio" University, Chieti, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
- IRCCS S. Raffaele Pisana, Rome, Italy
- IRCCS S. Raffaele Cassino, Cassino, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
| | - Flavio Mariano Nobili
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy.
| |
Collapse
|
14
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu Q, Ni J, Shen L. Selenium positively affects the proteome of 3 × Tg-AD mice cortex by altering the expression of various key proteins: unveiling the mechanistic role of selenium in AD prevention. J Neurosci Res 2018; 96:1798-1815. [DOI: 10.1002/jnr.24309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Na Jin
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| |
Collapse
|
15
|
Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer's disease. Eur J Nucl Med Mol Imaging 2018; 45:1487-1496. [PMID: 29756163 DOI: 10.1007/s00259-018-4032-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the clinical utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of early signs of neurodegeneration in conditions of increased risk for Alzheimer's disease (AD) as defined by: subjective cognitive decline (SCD), evidence of cerebral amyloid-pathology, apolipoprotein E (APOE) ε4-positive genotype, or autosomal dominant forms of AD (ADAD) in asymptomatic stages. METHODS A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on three different diagnostic scenarios. RESULTS The level of empirical study evidence for the use of FDG-PET to detect meaningful early signs of neurodegeneration was considered to be poor for ADAD and lacking for SCD and asymptomatic persons at risk, based on APOE ε4-positive genotype or cerebral amyloid pathology. Consequently, and consistent with current diagnostic criteria, panelists decided not to recommend routine clinical use of FDG-PET in these situations and to currently mainly reserve it for research purposes. CONCLUSION Currently, there is limited evidence on which to base recommendations regarding the clinical routine use of FDG-PET to detect diagnostically meaningful early signs of neurodegeneration in asymptomatic subjects with ADAD, with APOE ε4-positive genotype, or with cerebral amyloid pathology, and in subjects with SCD. Future prospective studies are warranted and in part already ongoing, aiming to assess the added value of FDG-PET in this context beyond research applications.
Collapse
|
16
|
Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, Baroni M. A Long Journey into Aging, Brain Aging, and Alzheimer's Disease Following the Oxidative Stress Tracks. J Alzheimers Dis 2018; 62:1319-1335. [PMID: 29562533 PMCID: PMC5870006 DOI: 10.3233/jad-170732] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The Editors of the Journal of Alzheimer's Disease invited Professor Patrizia Mecocci to contribute a review article focused on the importance and implications of her research on aging, brain aging, and senile dementias over the last years. This invitation was based on an assessment that she was one of the journal's top authors and a strong supporter of the concept that oxidative stress is a major contributor to several alterations observed in age-related conditions (sarcopenia, osteoporosis) and, more significantly, in brain aging suggesting a pivotal role in the pathogenesis and progression of one of the most dramatic age-related diseases, Alzheimer's disease (AD). Her first pioneering research was on the discovery of high level of 8-hydroxy-2'-deoxyguanosine (OH8dG), a marker of oxidation in nucleic acids, in mitochondrial DNA isolated from cerebral cortex. This molecule increases progressively with aging and more in AD brain, supporting the hypothesis that oxidative stress, a condition of unbalance between the production of reactive oxygen species and antioxidants, gives a strong contribution to the high incidence of AD in old age subjects. OH8dG also increases in peripheral lymphocyte from AD subjects, suggesting that AD is not only a cerebral but also a systemic disease. The role of antioxidants, particularly vitamin E and zinc, were also studied in longevity and in cognitive decline and dementia. This review shows the main findings from Mecocci's laboratory related to oxidative stress in aging, brain aging, and AD and discusses the importance and implications of some of the major achievements in this field of research.
Collapse
Affiliation(s)
- Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Patrizia Bastiani
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Michela Scamosci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging 2017; 44:2042-2052. [PMID: 28664464 DOI: 10.1007/s00259-017-3761-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/13/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer's disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not. METHODS FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy. RESULTS The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients. CONCLUSION In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.
Collapse
Affiliation(s)
- Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Via Palestro 32, 00185, Rome, Italy. .,Department of Nuclear Medicine, Karolinska Hospital Stockholm, Stockholm, Sweden.
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, Department of Health Science (DISSAL), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Johanna Öberg
- Department of Hospital Physics, Karolinska Hospital, Stockholm, Sweden
| | - Nicola Girtler
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy.,Clinical Psychology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Andrea Brugnolo
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Agnese Picco
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Matteo Bauckneht
- Department of Nuclear Medicine, Department of Health Science (DISSAL), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Roberta Piva
- Department of Nuclear Medicine, Department of Health Science (DISSAL), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa section, Genoa, Italy
| | - Gianmario Sambuceti
- Department of Nuclear Medicine, Department of Health Science (DISSAL), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Cathrine Jonsson
- Medical Radiation Physics and Nuclear Medicine, Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fabrizio De Carli
- Institute of Molecular Bioimaging and Physiology, CNR - Genoa Unit, AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
18
|
Cichoń N, Bijak M, Miller E, Saluk J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 2017; 38:386-396. [DOI: 10.1002/bem.22055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia Cichoń
- Department of General Biochemistry; University of Lodz; Lodz Poland
| | - Michał Bijak
- Department of General Biochemistry; University of Lodz; Lodz Poland
| | - Elżbieta Miller
- Department of Physical Medicine; Medical University of Lodz; Lodz Poland
- Neurorehabilitation Ward; III General Hospital in Lodz; Lodz Poland
| | - Joanna Saluk
- Department of General Biochemistry; University of Lodz; Lodz Poland
| |
Collapse
|
19
|
Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-FDG PET Data. J Nucl Med 2017; 58:1132-1139. [PMID: 28280223 DOI: 10.2967/jnumed.116.184309] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials.
Collapse
Affiliation(s)
- Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy .,Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Johanna Öberg
- Department of Hospital Physics, Karolinska Hospital, Stockholm, Sweden
| | | | - Silvia Morbelli
- Departments of Nuclear Medicine and Health Science, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Nicola Girtler
- Clinical Neurology, Department of Neuroscience, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy.,Clinical Psychology, IRCCS AOU San Martino-IST, Genoa, Italy; and
| | - Dario Arnaldi
- Clinical Neurology, Department of Neuroscience, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Jennifer Accardo
- Clinical Neurology, Department of Neuroscience, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Matteo Bauckneht
- Departments of Nuclear Medicine and Health Science, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Bongioanni
- Departments of Nuclear Medicine and Health Science, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Gianmario Sambuceti
- Departments of Nuclear Medicine and Health Science, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Cathrine Jonsson
- Department of Hospital Physics, Karolinska Hospital, Stockholm, Sweden
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
20
|
Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 2017; 373:295-302. [DOI: 10.1016/j.jns.2017.01.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 11/23/2022]
|
21
|
Pagani M, Giuliani A, Öberg J, Chincarini A, Morbelli S, Brugnolo A, Arnaldi D, Picco A, Bauckneht M, Buschiazzo A, Sambuceti G, Nobili F. Predicting the transition from normal aging to Alzheimer's disease: A statistical mechanistic evaluation of FDG-PET data. Neuroimage 2016; 141:282-290. [PMID: 27453158 DOI: 10.1016/j.neuroimage.2016.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
|
22
|
Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism. Eur J Med Chem 2016; 121:774-784. [DOI: 10.1016/j.ejmech.2016.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/21/2016] [Accepted: 03/26/2016] [Indexed: 12/27/2022]
|
23
|
Boccardi V, Baroni M, Mangialasche F, Mecocci P. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:182-191. [PMID: 29067305 PMCID: PMC5651353 DOI: 10.1016/j.trci.2016.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Vitamin E family, composed by tocopherols and tocotrienols, is a group of compounds with neuroprotective properties. The exact role in the pathogenesis and the benefit of vitamin E as treatment for Alzheimer's disease (AD) are still under debate. Methods A literature search in PubMed, Medline, and Cochrane databases has been carried out. All types of studies, from bench and animal models to clinical, were included. Results High plasma vitamin E levels are associated with better cognitive performance, even if clear evidence of their ability to prevent or delay cognitive decline in AD is still lacking. Each vitamin E form is functionally unique and shows specific biological functions. Tocotrienols seem to have superior antioxidant and anti-inflammatory properties compared with tocopherols. Discussion The benefit of vitamin E as a treatment for AD is still under debate, mainly because of the inconsistent findings from observational studies and the methodological limitations of clinical trials.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | | | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Chincarini A, Sensi F, Rei L, Gemme G, Squarcia S, Longo R, Brun F, Tangaro S, Bellotti R, Amoroso N, Bocchetta M, Redolfi A, Bosco P, Boccardi M, Frisoni GB, Nobili F. Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease. Neuroimage 2016; 125:834-847. [DOI: 10.1016/j.neuroimage.2015.10.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/18/2023] Open
|
25
|
Bauckneht M, Picco A, Nobili F, Morbelli S. Amyloid positron emission tomography and cognitive reserve. World J Radiol 2015; 7:475-483. [PMID: 26753062 PMCID: PMC4697121 DOI: 10.4329/wjr.v7.i12.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by a non-linear progressive course and several aspects influence the relationship between cerebral amount of AD pathology and the clinical expression of the disease. Brain cognitive reserve (CR) refers to the hypothesized capacity of an adult brain to cope with brain damage in order to minimize symptomatology. CR phenomenon contributed to explain the disjunction between the degree of neurodegeneration and the clinical phenotype of AD. The possibility to track brain amyloidosis (Aβ) in vivo has huge relevance for AD diagnosis and new therapeutic approaches. The clinical repercussions of positron emission tomography (PET)-assessed Aβ load are certainly mediated by CR thus potentially hampering the prognostic meaning of amyloid PET in selected groups of patients. Similarly, amyloid PET and cerebrospinal fluid amyloidosis biomarkers have recently provided new evidence for CR. The present review discusses the concept of CR in the framework of available neuroimaging studies and specifically deals with the reciprocal influences between amyloid PET and CR in AD patients and with the potential consequent interventional strategies for AD.
Collapse
|
26
|
Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015; 7:1213-28. [DOI: 10.1039/c5mt00075k] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review of selenium's essential role in normal brain function and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| |
Collapse
|