1
|
Yu D, Liu M, Ding Q, Wu Y, Wang T, Song L, Li X, Qian K, Cheng Z, Gu M, Li Z. Molecular imaging-guided diagnosis and treatment integration for brain diseases. Biomaterials 2025; 316:123021. [PMID: 39705925 DOI: 10.1016/j.biomaterials.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In practical clinical scenarios, improved diagnostic methods have been developed for the precise visualization of molecular targets using molecular imaging in brain diseases. Recently, the introduction of innovative molecular imaging modalities across both macroscopic and mesoscopic dimensions, with remarkable specificity and spatial resolution, has expanded the scope of applications beyond diagnostic testing, with the potential to guide therapeutic interventions, offering real-time feedback in the context of brain therapy. The molecular imaging-guided integration of diagnosis and treatment holds the potential to revolutionize disease management by enabling the real-time monitoring of treatment responses and therapy adjustments. Given the vibrant and ever-evolving nature of this field, this review provides an integrated picture on molecular image-guided diagnosis and treatment integration for brain diseases involving the basic concepts, significant breakthroughs, and recent trends. In addition, based on the current achievements, some critical challenges are also discussed.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Menghao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Youxian Wu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianqing Wang
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Litong Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoyu Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Meijia Gu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Strobel J, Yousefzadeh-Nowshahr E, Deininger K, Bohn KP, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Glatting G, Riepe MW, Higuchi M, Beer AJ, Ludolph A, Winter G. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer's Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024; 12:1460. [PMID: 39062033 PMCID: PMC11274645 DOI: 10.3390/biomedicines12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Deininger
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Halle University, 06120 Halle, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Dörte Polivka
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Patrick Fissler
- Psychiatric Services Thurgau (Academic Teaching Hospital of the University of Konstanz), 8596 Münsterlingen, Switzerland
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, 89075 Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Cselényi Z, Wallin J, Tjerkaski J, Bloth B, Svensson S, Nennesmo I, Sunnemark D, Jelic V, Farde L, Svenningsson P. [ 11 C]PBB3 binding in Aβ(-) or Aβ(+) corticobasal syndrome. Synapse 2023; 77:e22269. [PMID: 36951466 DOI: 10.1002/syn.22269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Corticobasal syndrome (CBS) is associated with 4-repeat tauopathy and/or Alzheimer's disease pathologies. To examine tau and amyloid-β (Aβ) deposits in CBS patients using positron emission tomography (PET). Eight CBS patients and three healthy individuals lacking amyloid pathology underwent PET with [11 C]PBB3 for tau imaging, and [11 C]AZD2184 for Aβ. Subcortical and cortical binding of [11 C]PBB3 was compared between Aβ(-) and Aβ(+) CBS patients and reference group. Postmortem analysis was done in one CBS patient. Three CBS patients were considered Aβ(+). Total binding was higher in all patients compared to the reference group. Similar regional binding profiles of [11 C]PBB3 in Aβ(+) and Aβ(-) CBS patients were found. Elevated [11 C]PBB3 binding in pallidum was observed in all CBS patients. Cortical [11 C]PBB3 binding was higher in Aβ(+) compared to Aβ(-) patients. Postmortem analysis of a CBS patient revealed corticobasal degeneration neuropathology and [11 C]PBB3 autofluorescence in some tau-positive structures. [11 C]PBB3 is elevated in CBS patients with binding in relevant areas capturing some, but not all, 4-repeat tauopathy in CBS.
Collapse
Affiliation(s)
- Zsolt Cselényi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Johan Wallin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Tjerkaski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Björn Bloth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dan Sunnemark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
5
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
6
|
Dilcher R, Malpas CB, Walterfang M, Velakoulis D, O’Brien TJ, Vivash L. Sodium selenate as a therapeutic for tauopathies: A hypothesis paper. Front Aging Neurosci 2022; 14:915460. [PMID: 35992608 PMCID: PMC9389397 DOI: 10.3389/fnagi.2022.915460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
In a large proportion of individuals with fronto-temporal lobar degeneration (FTLD), the underlying pathology is associated with the misfolding and aggregation of the microtubule associated protein tau (FTLD-tau). With disease progression, widespread protein accumulation throughout cortical and subcortical brain regions may be responsible for neurodegeneration. One of the syndromes of FTLD is the behavioral variant of frontotemporal dementia (bvFTD), in which the underlying pathology is heterogenous, with half of the cases being related to FTLD-tau. Currently, there are no approved disease-modifying treatments for FTLD-tau, therefore representing a major unmet therapeutic need. These descriptive, preliminary findings of the phase 1 open-label trial provide data to support the potential of sodium selenate to halt the cognitive and behavioral decline, as well as to reduce tau levels in a small group of participants with bvFTD (N = 11). All participants were treated with sodium selenate over a period of 52 weeks. Cognition was assessed with the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG, total scores), social cognition with the Revised Self-Monitoring Scale (RSMS, total scores), behavior with the Cambridge Behavioral Inventory (CBI), and carer burden with the Caregiver Buden Scale (CBS). Fluid biomarker measures include cerebrospinal fluid of total tau (t-tau), phosphorylated tau (p-tau181), NfL, p-tau181/t-tau, t-tau/Aβ1-42, and p-tau181/Aβ1-42 levels. After treatment at follow-up, cognition and behavior showed further negative change (based on a reliable change criterion cut-off of annual NUCOG decline) in the "progressors," but not in the "non-progressors." "Non-progressors" also showed elevated baseline CSF tau levels and no increase after treatment, indicating underlying tau pathology and a positive response to sodium selenate treatment. Significant changes in MRI were not observed. The findings provide useful information for future clinical trials to systematically assess the disease-modifying treatment effects of sodium selenate in randomized controlled designs for bvFTD and FTLD-tau pathologies.
Collapse
Affiliation(s)
- Roxane Dilcher
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Charles B. Malpas
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Dennis Velakoulis
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
8
|
Yousefzadeh-Nowshahr E, Winter G, Bohn P, Kneer K, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Strobel J, Kletting P, Riepe MW, Higuchi M, Glatting G, Ludolph A, Beer AJ. Quantitative analysis of regional distribution of tau pathology with 11C-PBB3-PET in a clinical setting. PLoS One 2022; 17:e0266906. [PMID: 35404966 PMCID: PMC9045369 DOI: 10.1371/journal.pone.0266906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The recent developments of tau-positron emission tomography (tau-PET) enable in vivo assessment of neuropathological tau aggregates. Among the tau-specific tracers, the application of 11C-pyridinyl-butadienyl-benzothiazole 3 (11C-PBB3) in PET shows high sensitivity to Alzheimer disease (AD)-related tau deposition. The current study investigates the regional tau load in patients within the AD continuum, biomarker-negative individuals (BN) and patients with suspected non-AD pathophysiology (SNAP) using 11C-PBB3-PET. MATERIALS AND METHODS A total of 23 memory clinic outpatients with recent decline of episodic memory were examined using 11C-PBB3-PET. Pittsburg compound B (11C-PIB) PET was available for 17, 18F-flurodeoxyglucose (18F-FDG) PET for 16, and cerebrospinal fluid (CSF) protein levels for 11 patients. CSF biomarkers were considered abnormal based on Aβ42 (< 600 ng/L) and t-tau (> 450 ng/L). The PET biomarkers were classified as positive or negative using statistical parametric mapping (SPM) analysis and visual assessment. Using the amyloid/tau/neurodegeneration (A/T/N) scheme, patients were grouped as within the AD continuum, SNAP, and BN based on amyloid and neurodegeneration status. The 11C-PBB3 load detected by PET was compared among the groups using both atlas-based and voxel-wise analyses. RESULTS Seven patients were identified as within the AD continuum, 10 SNAP and 6 BN. In voxel-wise analysis, significantly higher 11C-PBB3 binding was observed in the AD continuum group compared to the BN patients in the cingulate gyrus, tempo-parieto-occipital junction and frontal lobe. Compared to the SNAP group, patients within the AD continuum had a considerably increased 11C-PBB3 uptake in the posterior cingulate cortex. There was no significant difference between SNAP and BN groups. The atlas-based analysis supported the outcome of the voxel-wise quantification analysis. CONCLUSION Our results suggest that 11C-PBB3-PET can effectively analyze regional tau load and has the potential to differentiate patients in the AD continuum group from the BN and SNAP group.
Collapse
Affiliation(s)
- Elham Yousefzadeh-Nowshahr
- Department of Nuclear Medicine, Medical Radiation Physics, Ulm
University, Ulm, Germany
- Department of Nuclear Medicine, Medical Center—University of Freiburg,
Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | - Peter Bohn
- Department of Nuclear Medicine, Inselspital Bern—University of Bern,
Bern, Switzerland
| | - Katharina Kneer
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | - Christine A. F. von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen,
Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle (Saale), Halle,
Germany
| | | | | | - Dörte Polivka
- Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Fissler
- Department of Neurology, Ulm University, Ulm, Germany
- Psychiatric Services of Thurgovia (Academic Teaching Hospital of Medical
University Salzburg), Münsterlingen, Switzerland
| | - Joachim Strobel
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | - Peter Kletting
- Department of Nuclear Medicine, Medical Radiation Physics, Ulm
University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, Ulm,
Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba,
Japan
| | - Gerhard Glatting
- Department of Nuclear Medicine, Medical Radiation Physics, Ulm
University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegerative Diseases (DZNE), Ulm,
Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University, Ulm,
Germany
| | | |
Collapse
|
9
|
Disclosing tau tangles using PET imaging: a pharmacological review of the radiotracers available in 2021. Acta Neurol Belg 2022; 122:263-272. [PMID: 34713414 DOI: 10.1007/s13760-021-01797-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Neurological symptoms depend on the topography of the lesions in the nervous system, hence the importance of brain imaging for neurologists. Neurological treatment, however, depends on the biological nature of the lesions. The development of radiotracers specific for the proteinopathies observed in neurodegenerative disorders is, therefore, crucially important for better understanding the relationships between the pathology and the clinical symptoms, as well as the efficacy of therapeutical interventions. The tau protein is involved in several neurodegenerative disorders, that can be distinguished both biologically and clinically as the type of tau isoforms and filaments observed in brain aggregates, and the brain regions affected differ between tauopathies. Over the past few years, several tracers have been developed for imaging tauopathies with positron emission tomography. The present review aims to compare the binding properties of these tracers, with a specific focus on how these properties might be relevant for neurologists using these biomarkers to characterize the pathology of patients presenting with clinical symptoms suspect of a neurodegenerative disorder.
Collapse
|
10
|
Prem Kumar A, Singh N, Nair D, Justin A. Neuronal PET tracers for Alzheimer's disease. Biochem Biophys Res Commun 2022; 587:58-62. [PMID: 34864547 DOI: 10.1016/j.bbrc.2021.11.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/02/2022]
Abstract
Advancements in brain imaging techniques have emerged as a significant tool in detecting Alzheimer's disease (AD) progression. The complicated cascade of AD progression can be detected using radio imaging, especially with Positron emission tomography (PET). The review focus on recently introduced investigational PET tracers targeting neurofibrillary tau aggregates found typically in AD. Herein, we also address the use of different PET tracers and the clinical implementation of established and newer generation tracers. This review also intends to discuss the importance of several PET radiotracers and challenges in PET imaging.
Collapse
Affiliation(s)
- Ashwini Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Nilgiris, Tamilnadu, India
| | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Nilgiris, Tamilnadu, India.
| |
Collapse
|
11
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
12
|
Application of PET Imaging in the Brain Regions of the Emotional Control Loop in Patients with Generalized Anxiety Disorder. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4505227. [PMID: 34336151 PMCID: PMC8321712 DOI: 10.1155/2021/4505227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Objective This study uses PET imaging to observe the uptake and metabolism of 18F-fluorodeoxyglucose (18F-FDG) in the multibrain areas of the emotional control loop in patients with generalized anxiety disorder (GAD) and investigate the brain of GAD patient's functional abnormality mechanism. Methods The thesis clinically collected 20 GAD patients and 20 healthy subjects. Dynamic PET-CT scans were used. At the same time, 18F-FDG whole-brain uptake and metabolism data were collected. Image fusion and semiquantitative analysis were used to measure emotional control loops. The maximum standard uptake value (SUVmax) and dynamic uptake and metabolic changes of 11 time points in the brain area at 150 min were measured. Results Compared with the healthy control group, the peak uptake of the bilateral prefrontal cortex and the average uptake rate before the peak in GAD patients were significantly reduced (P < 0.05), and the average metabolic rate after the peak was significantly increased (P < 0.05). The peak uptake of the left striatum and the left hippocampus, the average uptake rate before the peak, and the average metabolic rate after the peak were all significantly reduced (P < 0.05); There were no obvious changes in the three indexes of the right striatum and the right hippocampus. Conclusion There are 18F-FDG uptake and metabolic disorders in multiple brain areas of the affective control loop of GAD patients. The abnormal peak and rate of uptake may be related to the pathogenesis of GAD.
Collapse
|
13
|
Narbutas J, Chylinski D, Van Egroo M, Bahri MA, Koshmanova E, Besson G, Muto V, Schmidt C, Luxen A, Balteau E, Phillips C, Maquet P, Salmon E, Vandewalle G, Bastin C, Collette F. Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status. Front Aging Neurosci 2021; 13:666181. [PMID: 34122044 PMCID: PMC8194490 DOI: 10.3389/fnagi.2021.666181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Studies exploring the simultaneous influence of several physiological and environmental factors on domain-specific cognition in late middle-age remain scarce. Therefore, our objective was to determine the respective contribution of modifiable risk/protective factors (cognitive reserve and allostatic load) on specific cognitive domains (episodic memory, executive functions, and attention), taking into account non-modifiable factors [sex, age, and genetic risk for Alzheimer's disease (AD)] and AD-related biomarker amount (amyloid-beta and tau/neuroinflammation) in a healthy late-middle-aged population. One hundred and one healthy participants (59.4 ± 5 years; 68 women) were evaluated for episodic memory, executive and attentional functioning via neuropsychological test battery. Cognitive reserve was determined by the National Adult Reading Test. The allostatic load consisted of measures of lipid metabolism and sympathetic nervous system functioning. The amyloid-beta level was assessed using positron emission tomography in all participants, whereas tau/neuroinflammation positron emission tomography scans and apolipoprotein E genotype were available for 58 participants. Higher cognitive reserve was the main correlate of better cognitive performance across all domains. Moreover, age was negatively associated with attentional functioning, whereas sex was a significant predictor for episodic memory, with women having better performance than men. Finally, our results did not show clear significant associations between performance over any cognitive domain and apolipoprotein E genotype and AD biomarkers. This suggests that domain-specific cognition in late healthy midlife is mainly determined by a combination of modifiable (cognitive reserve) and non-modifiable factors (sex and age) rather than by AD biomarkers and genetic risk for AD.
Collapse
Affiliation(s)
- Justinas Narbutas
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gabriel Besson
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Eric Salmon
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Palleis C, Brendel M, Finze A, Weidinger E, Bötzel K, Danek A, Beyer L, Nitschmann A, Kern M, Biechele G, Rauchmann BS, Häckert J, Höllerhage M, Stephens AW, Drzezga A, van Eimeren T, Villemagne VL, Schildan A, Barthel H, Patt M, Sabri O, Bartenstein P, Perneczky R, Haass C, Levin J, Höglinger GU. Cortical [ 18 F]PI-2620 Binding Differentiates Corticobasal Syndrome Subtypes. Mov Disord 2021; 36:2104-2115. [PMID: 33951244 DOI: 10.1002/mds.28624] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Corticobasal syndrome is associated with cerebral protein aggregates composed of 4-repeat (~50% of cases) or mixed 3-repeat/4-repeat tau isoforms (~25% of cases) or nontauopathies (~25% of cases). OBJECTIVES The aim of this single-center study was to investigate the diagnostic value of the tau PET-ligand [18 F]PI-2620 in patients with corticobasal syndrome. METHODS Forty-five patients (71.5 ± 7.6 years) with corticobasal syndrome and 14 age-matched healthy controls underwent [18 F]PI-2620-PET. Beta-amyloid status was determined by cerebral β-amyloid PET and/or CSF analysis. Subcortical and cortical [18 F]PI-2620 binding was quantitatively and visually compared between β-amyloid-positive and -negative patients and controls. Regional [18 F]PI-2620 binding was correlated with clinical and demographic data. RESULTS Twenty-four percent (11 of 45) were β-amyloid-positive. Significantly elevated [18 F]PI-2620 distribution volume ratios were observed in both β-amyloid-positive and β-amyloid-negative patients versus controls in the dorsolateral prefrontal cortex and basal ganglia. Cortical [18 F]PI-2620 PET positivity was distinctly higher in β-amyloid-positive compared with β-amyloid-negative patients with pronounced involvement of the dorsolateral prefrontal cortex. Semiquantitative analysis of [18 F]PI-2620 PET revealed a sensitivity of 91% for β-amyloid-positive and of 65% for β-amyloid-negative cases, which is in excellent agreement with prior clinicopathological data. Regardless of β-amyloid status, hemispheric lateralization of [18 F]PI-2620 signal reflected contralateral predominance of clinical disease severity. CONCLUSIONS Our data indicate a value of [18 F]PI-2620 for evaluating corticobasal syndrome, providing quantitatively and regionally distinct signals in β-amyloid-positive as well as β-amyloid-negative corticobasal syndrome. In corticobasal syndrome, [18 F]PI-2620 may potentially serve for a differential diagnosis and for monitoring disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Maike Kern
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Julich, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Victor L Villemagne
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Terada T, Therriault J, Kang MSP, Savard M, Pascoal TA, Lussier F, Tissot C, Wang YT, Benedet A, Matsudaira T, Bunai T, Obi T, Tsukada H, Ouchi Y, Rosa-Neto P. Mitochondrial complex I abnormalities is associated with tau and clinical symptoms in mild Alzheimer's disease. Mol Neurodegener 2021; 16:28. [PMID: 33902654 PMCID: PMC8074456 DOI: 10.1186/s13024-021-00448-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial electron transport chain abnormalities have been reported in postmortem pathological specimens of Alzheimer’s disease (AD). However, it remains unclear how amyloid and tau are associated with mitochondrial dysfunction in vivo. The purpose of this study is to assess the local relationships between mitochondrial dysfunction and AD pathophysiology in mild AD using the novel mitochondrial complex I PET imaging agent [18F]BCPP-EF. Methods Thirty-two amyloid and tau positive mild stage AD dementia patients (mean age ± SD: 71.1 ± 8.3 years) underwent a series of PET measurements with [18F]BCPP-EF mitochondrial function, [11C]PBB3 for tau deposition, and [11C] PiB for amyloid deposition. Age-matched normal control subjects were also recruited. Inter and intrasubject comparisons of levels of mitochondrial complex I activity, amyloid and tau deposition were performed. Results The [18F]BCPP-EF uptake was significantly lower in the medial temporal area, highlighting the importance of the mitochondrial involvement in AD pathology. [11C]PBB3 uptake was greater in the temporo-parietal regions in AD. Region of interest analysis in the Braak stage I-II region showed significant negative correlation between [18F]BCPP-EF SUVR and [11C]PBB3 BPND (R = 0.2679, p = 0.04), but not [11C] PiB SUVR. Conclusions Our results indicated that mitochondrial complex I is closely associated with tau load evaluated by [11C]PBB3, which might suffer in the presence of its off-target binding. The absence of association between mitochondrial complex I dysfunction with amyloid load suggests that mitochondrial dysfunction in the trans-entorhinal and entorhinal region is a reflection of neuronal injury occurring in the brain of mild AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00448-1.
Collapse
Affiliation(s)
- Tatsuhiro Terada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada.,Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.,Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Min Su Peter Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Tharick Ali Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Andrea Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Takashi Matsudaira
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.,Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tomokazu Obi
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-0041, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan. .,Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-0041, Japan.
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada.
| |
Collapse
|
16
|
Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2086-2096. [PMID: 33723628 PMCID: PMC8175292 DOI: 10.1007/s00259-021-05277-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer's disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. METHODS A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. RESULTS PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand's diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. CONCLUSION Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.
Collapse
|
17
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Van Egroo M, Chylinski D, Narbutas J, Besson G, Muto V, Schmidt C, Marzoli D, Cardone P, Vandeleene N, Grignard M, Luxen A, Salmon E, Lambert C, Bastin C, Collette F, Phillips C, Maquet P, Bahri MA, Balteau E, Vandewalle G. Early brainstem [18F]THK5351 uptake is linked to cortical hyperexcitability in healthy aging. JCI Insight 2021; 6:142514. [PMID: 33290274 PMCID: PMC7934880 DOI: 10.1172/jci.insight.142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neuronal hyperexcitability characterizes the early stages of Alzheimer’s disease (AD). In animals, early misfolded tau and amyloid-β (Aβ) protein accumulation — both central to AD neuropathology — promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aβ aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau — and its associated neuroinflammation — and cortical Aβ aggregations remains unknown. METHODS We probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late-middle–aged individuals (50–69 years; 45 women and 19 men). We assessed whole-brain [18F]THK5351 PET uptake as a proxy measure of tau/neuroinflammation, and we assessed whole-brain Aβ burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers. RESULTS We found that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment was associated with increased cortical excitability (r = 0.29, P = 0.02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (P value corrected for family-wise error [PFWE-corrected] < 0.001), was not significantly associated with cortical excitability (r = 0.14, P = 0.25). Importantly, no significant association was found between early Aβ cortical deposits and cortical excitability (r = –0.20, P = 0.11). CONCLUSION These findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans. TRIAL REGISTRATION EudraCT 2016-001436-35. FUNDING F.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund.
Collapse
Affiliation(s)
| | | | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Christina Schmidt
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | | | | | | | | | - André Luxen
- GIGA-Cyclotron Research Centre-In Vivo Imaging and
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,GIGA-In Silico Medicine, ULiège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
19
|
Rizzolo L, Narbutas J, Van Egroo M, Chylinski D, Besson G, Baillet M, Ali Bahri M, Salmon E, Maquet P, Vandewalle G, Bastin C, Collette F. Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain Cogn 2021; 148:105680. [PMID: 33418512 DOI: 10.1016/j.bandc.2020.105680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023]
Abstract
The presence of brain biomarkers can be observed decades before the first clinical symptoms of Alzheimer's disease (AD). We aimed to determine whether associations between biomarkers and episodic memory performance already exist in a healthy late middle-aged population or only in participants over 60 years old. Performance at the Free and Cued Selective Reminding Test [FCSRT], the Logical Memory test and the Mnemonic Similarity Task [MST] was determined in sixty healthy participants (50-70 y.) with a negative status for amyloid-beta (Aβ) biomarker. We assessed Aβ cortical level and tau/neuroinflammation burden using PET scanner, and hippocampal atrophy with MRI scanner. Generalized linear mixed models showed that MST scores (recognition and pattern separation) were positively associated with hippocampal volume in participants over 60 years. No association between memory performance and Aβ and tau/neuroinflammation burden was found in the older or in the younger age group. This suggests that visual recognition memory and discrimination of lures may constitute early cognitive markers of memory decline in an older population.
Collapse
Affiliation(s)
- Lou Rizzolo
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Justinas Narbutas
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Daphne Chylinski
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Gabriel Besson
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Marion Baillet
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Eric Salmon
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium; Department of Neurology, CHU Liège, 4000 Liège, Belgium
| | - Pierre Maquet
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Department of Neurology, CHU Liège, 4000 Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Christine Bastin
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium
| | - Fabienne Collette
- GIGA-Institute, Cyclotron Research Centre/In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
20
|
Vermeiren Y, Van Dam D, de Vries M, De Deyn PP. Psychiatric Disorders in Dementia. PET AND SPECT IN PSYCHIATRY 2021:317-385. [DOI: 10.1007/978-3-030-57231-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
The Imaging Features and Clinical Associations of a Novel Tau PET Tracer-18F-APN1607 in Alzheimer Disease. Clin Nucl Med 2020; 45:747-756. [PMID: 32701794 DOI: 10.1097/rlu.0000000000003164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF THE REPORT In vivo tau PET imaging could help clarify the spatial distribution of tau deposition in Alzheimer disease (AD) and aid in the differential diagnosis of tauopathies. To date, there have been no in vivo F-APN1607 tau PET studies in patients with AD. METHODS We applied tau tracer in 12 normal controls (NCs) and 10 patients in the mild to moderate stage of probable AD. Detailed clinical information, cognitive measurements, and disease severity were documented. Regional SUV ratios (SUVRs) from F-AV-45 (florbetapir), F-APN1607 PET images, and regional gray matter (GM) atrophic ratios were calculated for further analysis. RESULTS Quantitative analyses showed significantly elevated SUVRs in the frontal, temporal, parietal, occipital lobes, anterior and posterior cingulate gyri, precuneus, and parahippocampal region (all P's < 0.01) with medium to large effect sizes (0.44-0.75). The SUVRs from F-APN1607 PET imaging showed significant correlations with the Alzheimer's Disease Assessment Scale (ADAS-cog) scores (all P's < 0.01) and strong correlation coefficients (R ranged from 0.54 to 0.68), even adjusted for age and sex effects. Finally, the SUVRs from F-APN1607 PET imaging of the parahippocampal region showed rapid saturation as the ADAS-cog scores increased, and the SUVRs of the posterior cingulate gyrus and the temporal, frontal, parietal, and occipital regions slowly increased. The combined SUVRs from amyloid, tau PET, and regional GM atrophic ratio showed regional specific patterns as the ADAS-cog scores increased. CONCLUSIONS Our findings suggest that the F-APN1607 tau tracer correlated well with cognitive changes and demonstrated the spatial pattern of amyloid, tau deposition, and GM atrophy in the progression of AD.
Collapse
|
22
|
Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer's disease cases. Eur J Nucl Med Mol Imaging 2020; 48:1093-1102. [PMID: 32970217 PMCID: PMC8041708 DOI: 10.1007/s00259-020-05035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Purpose MK6240 is a second-generation tau PET tracer designed to detect the neurofibrillary tangles in the brains of patients with Alzheimer’s disease (AD). The aim of the study was to characterize 3H-MK6240 in AD and control brain tissue and to compare its binding properties with those of first-generation tau PET tracers. Methods Saturation binding assays with 3H-MK6240 were carried out in the temporal and parietal cortices of AD brains to determine the maximum number of binding sites (Bmax) and the dissociation constants (Kd) at these sites. Competitive binding assays were carried out between 3H-MK6240 and unlabelled MK6240, AV-1451 (aka T807, flortaucipir) and THK5117, and between 3H-THK5351 and unlabelled MK6240. Regional binding studies with 3H-MK6240 were carried out in homogenates from six AD and seven control brains and, using autoradiography, on large frozen sections from two AD brains and one control brain. Results The saturation binding assays gave Bmax and Kd values of 59.2 fmol/mg and 0.32 nM in the temporal cortex and 154.7 fmol/mg and 0.15 nM in the parietal cortex. The competitive binding assays revealed two binding sites with affinities in the picomolar and nanomolar range shared by 3H-MK6240 and all the tested unlabelled compounds. There were no binding sites in common between 3H-THK5351 and unlabelled MK6240. Regional binding of 3H-MK6240 was significantly higher in AD brain tissue than in controls. Binding in brain tissue from AD patients with early-onset AD was significantly higher than in brain tissue from patients with late-onset AD. Binding of 3H-MK6240 was not observed in off-target regions. Autoradiography showed high regional cortical binding in the two AD brains and very low binding in the control brain. Conclusions 3H-MK6240 has a high binding affinity for tau deposits in AD brain tissue but also has different binding characteristics from those of the first-generation tau tracers. This confirms the complexity of tau tracer binding on tau deposits with different binding affinities for different binding sites. Electronic supplementary material The online version of this article (10.1007/s00259-020-05035-y) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Dalton RM, Krishnan HS, Parker VS, Catanese MC, Hooker JM. Coevolution of Atomic Resolution and Whole-Brain Imaging for Tau Neurofibrillary Tangles. ACS Chem Neurosci 2020; 11:2513-2522. [PMID: 32786315 DOI: 10.1021/acschemneuro.0c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurofibrillary tangle (NFT) imaging methods at the distinct scales of atomic and whole-brain resolutions have coevolved rapidly. Linking these two areas of research provides insight into how and why certain tau radiotracers, using positron emission tomography (PET), bind selectively to certain morphological forms of the NFT fibril. In this Review, a brief history and background for each research area is presented leading to a summary of the current state of knowledge, with a synopsis of PET NFT radiotracers and an outlook for near-term research efforts. The continued integration of information provided at the level of each of these scales of resolution will catalyze the next generation of clinical imaging technique development and enhance our interpretations of them.
Collapse
Affiliation(s)
- Raeann M. Dalton
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Hema S. Krishnan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Victoria S. Parker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Mary C. Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
24
|
Lu J, Bao W, Li M, Li L, Zhang Z, Alberts I, Brendel M, Cumming P, Lu H, Xiao Z, Zuo C, Guan Y, Zhao Q, Rominger A. Associations of [ 18F]-APN-1607 Tau PET Binding in the Brain of Alzheimer's Disease Patients With Cognition and Glucose Metabolism. Front Neurosci 2020; 14:604. [PMID: 32694971 PMCID: PMC7338611 DOI: 10.3389/fnins.2020.00604] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular imaging of tauopathies is complicated by the differing specificities and off-target binding properties of available radioligands for positron emission tomography (PET). [18F]-APN-1607 ([18F]-PM-PBB3) is a newly developed PET tracer with promising properties for tau imaging. We aimed to characterize the cerebral binding of [18F]-APN-1607 in Alzheimer's disease (AD) patients compared to normal control (NC) subjects. Therefore, we obtained static late frame PET recordings with [18F]-APN-1607 and [18F]-FDG in patients with a clinical diagnosis of AD group, along with an age-matched NC group ([18F]-APN-1607 only). Using statistical parametric mapping (SPM) and volume of interest (VOI) analyses of the reference region normalized standardized uptake value ratio maps, we then tested for group differences and relationships between both PET biomarkers, as well as their associations with clinical general cognition. In the AD group, [18F]-APN-1607 binding was elevated in widespread cortical regions (P < 0.001 for VOI analysis, familywise error-corrected P < 0.01 for SPM analysis). The regional uptake in AD patients correlated negatively with Mini-Mental State Examination score (frontal lobe: R = -0.632, P = 0.004; temporal lobe: R = -0.593, P = 0.008; parietal lobe: R = -0.552, P = 0.014; insula: R = -0.650, P = 0.003; cingulum: R = -0.665, P = 0.002) except occipital lobe (R = -0.417, P = 0.076). The hypometabolism to [18F]-FDG PET in AD patients also showed negative correlations with regional [18F]-APN-1607 binding in some signature areas of AD (temporal lobe: R = -0.530, P = 0.020; parietal lobe: R = -0.637, P = 0.003; occipital lobe: R = -0.567, P = 0.011). In conclusion, our results suggested that [18F]-APN-1607 PET sensitively detected tau deposition in AD and that individual tauopathy correlated with impaired cerebral glucose metabolism and cognitive function.
Collapse
Affiliation(s)
- Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ian Alberts
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
- Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Huimeng Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
25
|
Early-phase [ 18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur J Nucl Med Mol Imaging 2020; 47:2911-2922. [PMID: 32318783 PMCID: PMC7567714 DOI: 10.1007/s00259-020-04788-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
Purpose Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several β-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). Methods Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer’s disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson’s disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG-PET (30–50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. Results Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5–2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. Conclusion Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury. Electronic supplementary material The online version of this article (10.1007/s00259-020-04788-w) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer's disease and mild cognitive impairment. Hum Brain Mapp 2019; 40:5424-5442. [PMID: 31520513 PMCID: PMC6864887 DOI: 10.1002/hbm.24782] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease for which there is no cure. Mild cognitive impairment (MCI) is considered a prodromal stage of the disease. Molecular imaging with positron emission tomography (PET) allows for the in vivo visualisation and tracking of pathophysiological changes in AD and MCI. PET is a very promising methodology for differential diagnosis and novel targets of PET imaging might also serve as biomarkers for disease-modifying therapeutic interventions. This review provides an overview of the current status and applications of in vivo molecular imaging of AD pathology, specifically amyloid, tau, and microglial activation. PET imaging studies were included and evaluated as potential biomarkers and for monitoring disease progression. Although the majority of radiotracers showed the ability to discriminate AD and MCI patients from healthy controls, they had various limitations that prevent the recommendation of a single technique or tracer as an optimal biomarker. Newer research examining amyloid, tau, and microglial PET imaging in combination suggest an alternative approach in studying the disease process.
Collapse
Affiliation(s)
- Avinash Chandra
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Polytimi-Eleni Valkimadi
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Oliver Cousins
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - George Dervenoulas
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| |
Collapse
|
27
|
Abstract
Purpose of Review Abnormal accumulation of tau protein is the main hallmark of tauopathies and is closely associated with neurodegeneration and cognitive impairment, whereas the advance in PET imaging provides a non-invasive detection of tau inclusions in the brain. In this review, we discuss the potential of PET imaging as a biomarker in tauopathies, the latest development of novel tau tracers with new clinical information that has been disclosed, and the opportunities for improving diagnosis and designing clinical trials in the future. Recent Findings In recent years, several first-generation tau PET tracers including [11C]PBB3, [18F]THK-5117, [18F]THK-5351 and [18F]AV-1451 have been developed and succeeded in imaging neurofibrillary pathology in vivo. Due to the common off-target binding and subcortical white matter uptake seen in the first-generation tracers, several research institutes and pharmaceutical companies have been working on developing second-generation tau PET tracers which exhibit higher binding affinity and selectivity. Summary Tau PET imaging is promising to serve as a biomarker to support differential diagnosis and monitor disease progression in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Ting Wang
- Neurology Imaging Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paul Edison
- Neurology Imaging Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK. .,Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
28
|
Terada T, Yokokura M, Obi T, Bunai T, Yoshikawa E, Ando I, Shimada H, Suhara T, Higuchi M, Ouchi Y. In vivo direct relation of tau pathology with neuroinflammation in early Alzheimer's disease. J Neurol 2019; 266:2186-2196. [PMID: 31139959 DOI: 10.1007/s00415-019-09400-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Neuronal damage and neuroinflammation are important events occurring in the brain of Alzheimer's disease (AD). The purpose of this study was to clarify in vivo mutual relationships among abnormal tau deposition, neuroinflammation and cognitive impairment in patients with early AD using positron emission tomography (PET) with [11C]PBB3 and [11C]DPA713. METHODS Twenty patients with early AD and 20 age-matched normal control (NC) subjects underwent a series of PET measurements with [11C]PBB3 for tau aggregation and [11C]DPA713 for microglial activation (neuroinflammation). Inter- and intrasubject comparisons were performed regarding the levels of [11C]PBB3 binding potential (BPND) and [11C]DPA713 BPND in the light of cognitive functions using statistical parametric mapping (SPM) and regions of interest (ROIs) method. RESULTS The [11C]PBB3 BPND was greater in the temporo-parietal regions of AD patents than NC subjects, and a similar increasing pattern of [11C]DPA713 BPND was observed in the same patients. Correlation analyses within the AD group showed a positive direct correlation between [11C]PBB3 BPND and [11C]DPA713 BPND in the parahippocampus. Pass analysis revealed that cognitive impairment was more likely linked to the level of the parahippocampal [11C]PBB3 BPND than that of [11C]DPA713 BPND. CONCLUSIONS The pattern of abnormal tau deposition was very similar to that of neuroinflammation in patients with early-stage AD. Specifically, the direct positive correlation of tau pathology with neuroinflammation in the parahippocampus suggests that neuronal damage in this region is closely associated with microglial activation. Consistently, tau aggregation in this region matters more than neuroinflammation regarding the cognitive deterioration in AD.
Collapse
Affiliation(s)
- Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tomokazu Obi
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 4434-0041, Japan
| | - Ichiro Ando
- Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, Hirakuchi, Hamakita-ku, Hamamatsu, 434-0041, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
29
|
Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging. Eur J Nucl Med Mol Imaging 2019; 46:1369-1382. [PMID: 30919054 PMCID: PMC6486902 DOI: 10.1007/s00259-019-04305-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Purpose Several tracers have been designed for tracking the abnormal accumulation of tau pathology in vivo. Recently, concerns have been raised about the sources of off-target binding for these tracers; inconclusive data propose binding for some tracers to monoamine oxidase B (MAO-B). Methods Molecular docking and dynamics simulations were used to estimate the affinity and free energy for the binding of several tau tracers (FDDNP, THK523, THK5105, THK5317, THK5351, T807 [aka AV-1451, flortaucipir], T808, PBB3, RO-948, MK-6240, JNJ-311 and PI-2620) to MAO-B. These values were then compared with those for safinamide (MAO-B inhibitor). PET imaging was used with the tau tracer [18F]THK5317 and the MAO-B tracer [11C]DED in five patients with Alzheimer’s disease to investigate the MAO-B binding component of this first generation tau tracer in vivo. Results The computational modelling studies identified a binding site for all the tau tracers on MAO-B; this was the same site as that for safinamide. The binding affinity and free energy of binding for the tau tracers to MAO-B was substantial and in a similar range to those for safinamide. The most recently developed tau tracers MK-6240, JNJ-311 and PI-2620 appeared, in silico, to have the lowest relative affinity for MAO-B. The in vivo investigations found that the regional distribution of binding for [18F]THK5317 was different from that for [11C]DED, although areas of suspected off-target [18F]THK5317 binding were detected. The binding relationship between [18F]THK5317 and [11C]DED depended on the availability of the MAO-B enzyme. Conclusions The developed tau tracers show in silico and in vivo evidence of cross-interaction with MAO-B; the MAO-B component of the tracer binding was dependent on the regional concentration of the enzyme. Electronic supplementary material The online version of this article (10.1007/s00259-019-04305-8) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry 2019; 24:1112-1134. [PMID: 30635637 PMCID: PMC6756230 DOI: 10.1038/s41380-018-0342-8] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first- (e.g., [18F]THK5317, [18F]THK5351, [18F]AV1451, and [11C]PBB3) and second-generation compounds [namely [18F]MK-6240, [18F]RO-948 (previously referred to as [18F]RO69558948), [18F]PI-2620, [18F]GTP1, [18F]PM-PBB3, and [18F]JNJ64349311 ([18F]JNJ311) and its derivative [18F]JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-β and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.
Collapse
Affiliation(s)
- Antoine Leuzy
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cTheme Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Laetitia Lemoine
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0004 1936 9377grid.10548.38Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W. Biomarkers for tau pathology. Mol Cell Neurosci 2018; 97:18-33. [PMID: 30529601 PMCID: PMC6584358 DOI: 10.1016/j.mcn.2018.12.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions. Tau proteins have also been measured in blood, but the importance of tau-related changes in blood is still unclear. The recent addition of positron emission tomography ligands to visualize, map and quantify tau pathology has further contributed with information about the temporal and spatial characteristics of tau accumulation in the living brain. Together, the measurement of tau with fluid biomarkers and positron emission tomography constitutes the basis for a highly active field of research. This review describes the current state of biomarkers for tau biomarkers derived from neuroimaging and from the analysis of bodily fluids and their roles in the detection, diagnosis and prognosis of tau-associated neurodegenerative disorders, as well as their associations with neuropathological findings, and aims to provide a perspective on how these biomarkers might be employed prospectively in research and clinical settings. Biomarkers for tau pathology are now essential to the research framework in the diagnosis of Alzheimer's disease (AD) Measurement of t- and p-tau has been possible in cerebrospinal fluid (CSF) for some time, the recent development of positron emission tomography (PET) ligands binding to tau has added the possibility to map and quantify tau in the living brain First-generation tau PET ligands bind predominantly to AD-typical 3R/4R tau isoforms and exhibit off-target binding that can limit accurate ligand uptake quantification Second-generation tau PET ligands appear to bind to comparable binding sites but exhibit fewer issues with brain off-target binding Biomarkers for tau derived from CSF analysis and PET could provide complementary information about disease state and stage At this time, T-tau, but not p-tau, can be reliably measured in plasma using ultra-sensitive immunoassays.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
32
|
Tau PET imaging evidence in patients with cognitive impairment: preparing for clinical use. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Zhu L, Shu H, Liu D, Guo Q, Wang Z, Zhang Z. Apolipoprotein E ε4 Specifically Modulates the Hippocampus Functional Connectivity Network in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2018; 10:289. [PMID: 30319395 PMCID: PMC6170627 DOI: 10.3389/fnagi.2018.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of both apolipoprotein E (APOE) ε4 allele and amnestic mild cognitive impairment (aMCI) are considered to be risk factors for Alzheimer’s disease (AD). Numerous neuroimaging studies have suggested that the modulation of APOE ε4 affects intrinsic functional brain networks, both in healthy populations and in AD patients. However, it remains largely unclear whether and how ε4 allele modulates the brain’s functional network architecture in subjects with aMCI. Using resting-state functional magnetic resonance imaging (fMRI) and graph-theory approaches-functional connectivity strength (FCS), we investigate the topological organization of the whole-brain functional network in 28 aMCI ε4 carriers and 38 aMCI ε3ε3 carriers. In the present study, we first observe that ε4-related FCS increases in the right hippocampus/parahippocampal gyrus (HIP/PHG). Subsequent seed-based resting-state functional connectivity (RSFC) analysis revealed that, compared with the ε3ε3 carriers, the ε4 carriers had lower or higher RSFCs between the right HIP/PHG seed and the bilateral medial prefrontal cortex (MPFC) or the occipital cortex, respectively. Further correlation analyses have revealed that the FCS values in the right HIP/PHG and lower HIP/PHG-RSFCs with the bilateral MPFC were significantly correlated with the impairment of episodic memory and executive function in the aMCI ε4 carriers. Importantly, the logistic regression analysis showed that the HIP/PHG-RSFC with the bilateral MPFC predicted aMCI-conversion to AD. These findings suggest that the APOE ε4 allele may modulate the large-scale brain network in aMCI subjects, facilitating our understanding of how the entire assembly of the brain network reorganizes in response to APOE variants in aMCI. Further longitudinal studies need to be conducted, in order to examine whether these network measures could serve as primary predictors of conversion from aMCI ε4 carriers to AD.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Leuzy A, Heurling K, Ashton NJ, Schöll M, Zimmer ER. In vivo Detection of Alzheimer's Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:291-300. [PMID: 30258316 PMCID: PMC6153625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent revisions to the diagnostic criteria for Alzheimer's disease (AD) incorporated conceptual advances in the field. Specifically, AD is now recognized to encompass a continuum, spanning from preclinical (accruing brain pathology in the absence of symptoms) through symptomatic predementia (prodromal AD, mild cognitive impairment) and dementia phases. The role of biological markers (biomarkers) of both the underlying molecular pathologies and related neurodegenerative changes has also been acknowledged. In this abridged review, we provide an overview of fluid (cerebrospinal fluid and blood) and molecular imaging-based biomarkers used within the field and discuss the potential role of computer driven artificial intelligence approaches for both the early and accurate identification of AD and as a tool for population enrichment in clinical trials testing candidate disease modifying therapies.
Collapse
Affiliation(s)
- Antoine Leuzy
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Kerstin Heurling
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Nicholas J. Ashton
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden,Clinical Memory Research Unit, Lund University, Sweden
| | - Eduardo R. Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil,Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil,To whom all correspondence should be addressed: Eduardo R. Zimmer, PhD, Department of Pharmacology, Federal University of Rio Grande do Sul, 500 Sarmento Leite Street, 90050-170, Porto Alegre, RS, Brazil; Tel: +55 51 33085558,
| |
Collapse
|
35
|
Okamura N, Harada R, Ishiki A, Kikuchi A, Nakamura T, Kudo Y. The development and validation of tau PET tracers: current status and future directions. Clin Transl Imaging 2018; 6:305-316. [PMID: 30148121 PMCID: PMC6096533 DOI: 10.1007/s40336-018-0290-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
Purpose To provide an overview on positron emission tomography (PET) imaging of tau pathology in Alzheimer’s disease (AD) and other neurodegenerative disorders. Results Different classes of tau tracers such as flortaucipir, THK5317, and PBB3 have been developed and utilized in previous clinical studies. In AD, the topographical distribution of tracer binding follows the known distribution of neurofibrillary tangles and is closely associated with neurodegeneration as well as the clinical phenotype of dementia. Significant retention of tracers has also been observed in the frequent site of the 4-repeat (4R) tau isoform deposits in non-AD tauopathies, such as in progressive supranuclear palsy. However, in vitro binding studies indicate that most tau tracers are less sensitive to straight tau filaments, in contrast to their high binding affinity to paired helical filaments of tau (PHF-tau). The first-generation of tau tracers shows off-target binding in the basal ganglia, midbrain, thalamus, choroid plexus, and venous sinus. Off-target binding of THK5351 to monoamine oxidase B (MAO-B) has been observed in disease-associated brain regions linked to neurodegeneration and is associated with astrogliosis in areas of misfolded protein accumulation. The second generation of tau tracers, such as [18F]MK-6240, is highly selective to PHF-tau with little off-target binding and have enabled the reliable assessment of PHF-tau burden in aging and AD. Conclusions Tau PET tracers have enabled in vivo quantification of PHF-tau burden in human brains. Tau PET can help in understanding the underlying cause of dementia symptoms, and in patient selection for clinical trials of anti-dementia therapies.
Collapse
Affiliation(s)
- Nobuyuki Okamura
- 1Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,3Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuichi Harada
- 2Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Aiko Ishiki
- 3Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akio Kikuchi
- 4Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Tadaho Nakamura
- 1Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yukitsuka Kudo
- 3Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|