1
|
Korb M, Efetürk H, Jedamzik T, Hartrampf PE, Kosmala A, Serfling SE, Dirk R, Michalski K, Buck AK, Werner RA, Schlötelburg W, Ankenbrand MJ. Detection of Local Prostate Cancer Recurrence from PET/CT Scans Using Deep Learning. Cancers (Basel) 2025; 17:1575. [PMID: 40361501 PMCID: PMC12071661 DOI: 10.3390/cancers17091575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. PSMA-directed positron emission tomography (PET) has shown promising results in detecting recurrent PC and metastasis, improving the accuracy of diagnosis and treatment planning. To evaluate an artificial intelligence (AI) model based on [18F]-prostate specific membrane antigen (PSMA)-1007 PET datasets for the detection of local recurrence in patients with prostate cancer. Methods: We retrospectively analyzed 1404 [18F]-PSMA-1007 PET/CTs from patients with histologically confirmed prostate cancer. Artificial neural networks were trained to recognize the presence of local recurrence based on the PET data. First, the hyperparameters were optimized for an initial model (model A). Subsequently, the bladder was localized using an already published model and a model (model B) was trained only on a 20 cm cube around the bladder. Finally, two separate models were trained on the same section depending on the prostatectomy status (model C (post-prostatectomy) and model D (non-operated)). Results: Model A achieved an accuracy of 56% on the validation data. By restricting the region to the area around the bladder, Model B achieved a validation accuracy of 71%. When validating the specialized models according to prostatectomy status, model C achieved an accuracy of 77% and model D an accuracy of 77%. All models achieved accuracies of almost 100% on the training data, indicating overfitting. Conclusions: For the presented task, 1404 examinations were insufficient to reach an accuracy of over 90% even when employing data augmentation, including additional metadata and performing automated hyperparameter optimization. The low F1-score and AUC values indicate that none of the presented models produce reliable results. However, we will facilitate future research and the development of better models by openly sharing our source code and all pre-trained models for transfer learning.
Collapse
Affiliation(s)
- Marko Korb
- Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Hülya Efetürk
- Department of Nuclear Medicine, Dr. Burhan Nalbantoglu State Hospital, Nicosia 99010, Cyprus;
| | - Tim Jedamzik
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Philipp E. Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Sebastian E. Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Robin Dirk
- Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Kerstin Michalski
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 80539 München, Germany
| | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany (A.K.B.)
| | - Markus J. Ankenbrand
- Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Department of Bioinformatics, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
2
|
Lopes L, Lopez-Montes A, Chen Y, Koller P, Rathod N, Blomgren A, Caobelli F, Rominger A, Shi K, Seifert R. The Evolution of Artificial Intelligence in Nuclear Medicine. Semin Nucl Med 2025; 55:313-327. [PMID: 39934005 DOI: 10.1053/j.semnuclmed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Nuclear medicine has continuously evolved since its beginnings, constantly improving the diagnosis and treatment of various diseases. The integration of artificial intelligence (AI) is one of the latest revolutionizing chapters, promising significant advancements in diagnosis, prognosis, segmentation, image quality enhancement, and theranostics. Early AI applications in nuclear medicine focused on improving diagnostic accuracy, leveraging machine learning algorithms for disease classification and outcome prediction. Advances in deep learning, including convolutional and more recently transformer-based neural networks, have further enabled more precise diagnosis and image segmentation as well as low-dose imaging, and patient-specific dosimetry for personalized treatment. Generative AI, driven by large language models and diffusion techniques, is now allowing the process, interpretation, and generation of complex medical language and images. Despite these achievements, challenges such as data scarcity, heterogeneity, and ethical concerns remain barriers to clinical translation. Addressing these issues through interdisciplinary collaboration will pave the way for a broader adoption of AI in nuclear medicine, potentially enhancing patient care and optimizing diagnosis and therapeutic outcomes.
Collapse
Affiliation(s)
- Leonor Lopes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Alejandro Lopez-Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pia Koller
- Department of Computer Science, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - August Blomgren
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Sung C, Oh JS, Park BS, Kim SS, Song SY, Lee JJ. Diagnostic performance of a deep-learning model using 18F-FDG PET/CT for evaluating recurrence after radiation therapy in patients with lung cancer. Ann Nucl Med 2024; 38:516-524. [PMID: 38589677 DOI: 10.1007/s12149-024-01925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE We developed a deep learning model for distinguishing radiation therapy (RT)-related changes and tumour recurrence in patients with lung cancer who underwent RT, and evaluated its performance. METHODS We retrospectively recruited 308 patients with lung cancer with RT-related changes observed on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) performed after RT. Patients were labelled as positive or negative for tumour recurrence through histologic diagnosis or clinical follow-up after 18F-FDG PET/CT. A two-dimensional (2D) slice-based convolutional neural network (CNN) model was created with a total of 3329 slices as input, and performance was evaluated with five independent test sets. RESULTS For the five independent test sets, the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity, and specificity were in the range of 0.98-0.99, 95-98%, and 87-95%, respectively. The region determined by the model was confirmed as an actual recurred tumour through the explainable artificial intelligence (AI) using gradient-weighted class activation mapping (Grad-CAM). CONCLUSION The 2D slice-based CNN model using 18F-FDG PET imaging was able to distinguish well between RT-related changes and tumour recurrence in patients with lung cancer.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Byung Soo Park
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Su Ssan Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Jin Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
| |
Collapse
|
4
|
Jafari E, Zarei A, Dadgar H, Keshavarz A, Manafi-Farid R, Rostami H, Assadi M. A convolutional neural network-based system for fully automatic segmentation of whole-body [ 68Ga]Ga-PSMA PET images in prostate cancer. Eur J Nucl Med Mol Imaging 2024; 51:1476-1487. [PMID: 38095671 DOI: 10.1007/s00259-023-06555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE The aim of this study was development and evaluation of a fully automated tool for the detection and segmentation of mPCa lesions in whole-body [68Ga]Ga-PSMA-11 PET scans by using a nnU-Net framework. METHODS In this multicenter study, a cohort of 412 patients from three different center with all indication of PCa who underwent [68Ga]Ga-PSMA-11 PET/CT were enrolled. Two hundred cases of center 1 dataset were used for training the model. A fully 3D convolutional neural network (CNN) is proposed which is based on the self-configuring nnU-Net framework. A subset of center 1 dataset and cases of center 2 and center 3 were used for testing of model. The performance of the segmentation pipeline that was developed was evaluated by comparing the fully automatic segmentation mask with the manual segmentation of the corresponding internal and external test sets in three levels including patient-level scan classification, lesion-level detection, and voxel-level segmentation. In addition, for comparison of PET-derived quantitative biomarkers between automated and manual segmentation, whole-body PSMA tumor volume (PSMA-TV) and total lesions PSMA uptake (TL-PSMA) were calculated. RESULTS In terms of patient-level classification, the model achieved an accuracy of 83%, sensitivity of 92%, PPV of 77%, and NPV of 91% for the internal testing set. For lesion-level detection, the model achieved an accuracy of 87-94%, sensitivity of 88-95%, PPV of 98-100%, and F1-score of 93-97% for all testing sets. For voxel-level segmentation, the automated method achieved average values of 65-70% for DSC, 72-79% for PPV, 53-58% for IoU, and 62-73% for sensitivity in all testing sets. In the evaluation of volumetric parameters, there was a strong correlation between the manual and automated measurements of PSMA-TV and TL-PSMA for all centers. CONCLUSIONS The deep learning networks presented here offer promising solutions for automatically segmenting malignant lesions in prostate cancer patients using [68Ga]Ga-PSMA PET. These networks achieve a high level of accuracy in whole-body segmentation, as measured by the DSC and PPV at the voxel level. The resulting segmentations can be used for extraction of PET-derived quantitative biomarkers and utilized for treatment response assessment and radiomic studies.
Collapse
Affiliation(s)
- Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Nuclear Medicine, Molecular Imaging, and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amin Zarei
- IoT and Signal Processing Research Group, ICT Research Institute, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, Iran
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ahmad Keshavarz
- IoT and Signal Processing Research Group, ICT Research Institute, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Rostami
- Computer Engineering Department, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Nuclear Medicine, Molecular Imaging, and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Tapper W, Carneiro G, Mikropoulos C, Thomas SA, Evans PM, Boussios S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J Pers Med 2024; 14:287. [PMID: 38541029 PMCID: PMC10971024 DOI: 10.3390/jpm14030287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Molecular imaging is a key tool in the diagnosis and treatment of prostate cancer (PCa). Magnetic Resonance (MR) plays a major role in this respect with nuclear medicine imaging, particularly, Prostate-Specific Membrane Antigen-based, (PSMA-based) positron emission tomography with computed tomography (PET/CT) also playing a major role of rapidly increasing importance. Another key technology finding growing application across medicine and specifically in molecular imaging is the use of machine learning (ML) and artificial intelligence (AI). Several authoritative reviews are available of the role of MR-based molecular imaging with a sparsity of reviews of the role of PET/CT. This review will focus on the use of AI for molecular imaging for PCa. It will aim to achieve two goals: firstly, to give the reader an introduction to the AI technologies available, and secondly, to provide an overview of AI applied to PET/CT in PCa. The clinical applications include diagnosis, staging, target volume definition for treatment planning, outcome prediction and outcome monitoring. ML and AL techniques discussed include radiomics, convolutional neural networks (CNN), generative adversarial networks (GAN) and training methods: supervised, unsupervised and semi-supervised learning.
Collapse
Affiliation(s)
- William Tapper
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Gustavo Carneiro
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Christos Mikropoulos
- Clinical Oncology, Royal Surrey NHS Foundation Trust, Egerton Road, Surrey, Guildford GU2 7XX, UK;
| | - Spencer A. Thomas
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Philip M. Evans
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- AELIA Organisation, 9th km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Eisazadeh R, Shahbazi-Akbari M, Mirshahvalad SA, Pirich C, Beheshti M. Application of Artificial Intelligence in Oncologic Molecular PET-Imaging: A Narrative Review on Beyond [ 18F]F-FDG Tracers Part II. [ 18F]F-FLT, [ 18F]F-FET, [ 11C]C-MET and Other Less-Commonly Used Radiotracers. Semin Nucl Med 2024; 54:293-301. [PMID: 38331629 DOI: 10.1053/j.semnuclmed.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Following the previous part of the narrative review on artificial intelligence (AI) applications in positron emission tomography (PET) using tracers rather than 18F-fluorodeoxyglucose ([18F]F-FDG), in this part we review the impact of PET-derived radiomics data on the diagnostic performance of other PET radiotracers, 18F-O-(2-fluoroethyl)-L-tyrosine ([18F]F-FET), 18F-Fluorothymidine ([18F]F-FLT) and 11C-Methionine ([11C]C-MET). [18F]F-FET-PET, using an artificial amino acid taken up into upregulated tumoral cells, showed potential in lesion detection and tumor characterization, especially with its ability to reflect glioma heterogeneity. [18F]F-FET-PET-derived textural features appeared to have the potential to reveal considerable information for accurate delineation for guiding biopsy and treatment, differentiate between low-grade and high-grade glioma and related wild-type genotypes, and distinguish pseudoprogression from true progression. In addition, models built using clinical parameters and [18F]F-FET-PET-derived radiomics features showed acceptable results for survival stratification of glioblastoma patients. [18F]F-FLT-PET-based characteristics also showed potential in evaluating glioma patients, correlating with Ki-67 and patient prognosis. AI-based PET-volumetry using this radiotracer as a proliferation marker also revealed promising preliminary results in terms of guide-targeting bone marrow-preserving adaptive radiation therapy. Similar to [18F]F-FET, the other amino acid tracer which reflects cellular proliferation, [11C]C-MET, has also shown acceptable performance in predicting tumor grade, distinguishing brain tumor recurrence from radiation necrosis, and treatment monitoring by PET-derived radiomics models. In addition, PET-derived radiomics features of various radiotracers such as [18F]F-DOPA, [18F]F-FACBC, [18F]F-NaF, [68Ga]Ga-CXCR-4 and [18F]F-FMISO may also provide useful information for tumor characterization and predict of disease outcome. In conclusion, AI using tracers beyond [18F]F-FDG could improve the diagnostic performance of PET-imaging for specific indications and help clinicians in their daily routine by providing features that are often not detectable by the naked eye.
Collapse
Affiliation(s)
- Roya Eisazadeh
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Malihe Shahbazi-Akbari
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research center for Nuclear Medicine, Department of Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research center for Nuclear Medicine, Department of Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran; Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, Ontario, Canada
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
7
|
Efstathiou JA, Morgans AK, Bland CS, Shore ND. Novel hormone therapy and coordination of care in high-risk biochemically recurrent prostate cancer. Cancer Treat Rev 2024; 122:102630. [PMID: 38035646 DOI: 10.1016/j.ctrv.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023]
Abstract
Biochemical recurrence (BCR) occurs in 20-50% of patients with prostate cancer (PCa) undergoing primary definitive treatment. Patients with high-risk BCR have an increased risk of metastatic progression and subsequent PCa-specific mortality, and thus could benefit from treatment intensification. Given the increasing complexity of diagnostic and therapeutic modalities, multidisciplinary care (MDC) can play a crucial role in the individualized management of this patient population. This review explores the role for MDC when evaluating the clinical evidence for the evolving definition of high-risk BCR and the emerging therapeutic strategies, especially with novel hormone therapies (NHTs), for patients with either high-risk BCR or oligometastatic PCa. Clinical studies have used different characteristics to define high-risk BCR and there is no consensus regarding the definition of high-risk BCR nor for management strategies. Next-generation imaging and multigene panels offer potential enhanced patient identification and precision-based decision-making, respectively. Treatment intensification with NHTs, either alone or combined with radiotherapy or metastasis-directed therapy, has been promising in clinical trials in patients with high-risk BCR or oligometastases. As novel risk-stratification and treatment options as well as evidence-based literature evolve, it is important to involve a multidisciplinary team to identify patients with high-risk features at an earlier stage, and make informed decisions on the treatments that could optimize their care and long-term outcomes. Nevertheless, MDC data are scarce in the BCR or oligometastatic setting. Efforts to integrate MDC into the standard management of this patient population are needed, and will likely improve outcomes across this heterogeneous PCa patient population.
Collapse
Affiliation(s)
- Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Alicia K Morgans
- Dana-Farber Cancer Institute, 850 Brookline Ave, Dana 09-930, Boston, MA 02215, USA.
| | - Christopher S Bland
- US Oncology Medical Affairs, Pfizer Inc., 66 Hudson Boulevard, Hudson Yards, Manhattan, New York, NY 10001, USA.
| | - Neal D Shore
- Carolina Urologic Research Center, GenesisCare US, 823 82nd Pkwy, Myrtle Beach, SC, USA.
| |
Collapse
|
8
|
Son HJ, Kim SJ, Pak S, Lee SH. ChatGPT-assisted deep learning for diagnosing bone metastasis in bone scans: Bridging the AI Gap for Clinicians. Heliyon 2023; 9:e22409. [PMID: 38076046 PMCID: PMC10709387 DOI: 10.1016/j.heliyon.2023.e22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Bone scans are often used to identify bone metastases, but their low specificity may necessitate further studies. Deep learning models may improve diagnostic accuracy but require both medical and programming expertise. Therefore, we investigated the feasibility of constructing a deep learning model employing ChatGPT for the diagnosis of bone metastasis in bone scans and to evaluate its diagnostic performance. METHOD We examined 4626 consecutive cancer patients (age, 65.1 ± 11.3 years; 2334 female) who had bone scans for metastasis assessment. A nuclear medicine physician developed a deep learning model using ChatGPT 3.5 (OpenAI). We employed ResNet50 as the backbone network and compared the diagnostic performance of four strategies (original training set, original training set with 1:10 class weight, 10-fold data augmentation for positive images only, and 10-fold data augmentation for all images) to address the class imbalance. We used a class activation map algorithm for visualization. RESULTS Among the four strategies, the deep learning model with 10-fold data augmentation for positive cases only, using a batch size of 16 and an epoch size of 150, achieved the area under curve of 0.8156, the sensitivity of 56.0 %, and specificity of 88.7 %. The class activation map indicated that the model focused on disseminated bone metastases within the spine but might confuse them with benign spinal lesions or intense urinary activity. CONCLUSIONS Our study illustrates that a clinical physician with rudimentary programming skills can develop a deep learning model for medical image analysis, such as diagnosing bone metastasis in bone scans using ChatGPT. Model visualization may offer guidance in enhancing deep learning model development, including preprocessing, and potentially support clinical decision-making processes.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Cheonan, Chungnam, Republic of Korea
| | - Soo-Jong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sehyun Pak
- Department of Medicine, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Leung VWS, Ng CKC, Lam SK, Wong PT, Ng KY, Tam CH, Lee TC, Chow KC, Chow YK, Tam VCW, Lee SWY, Lim FMY, Wu JQ, Cai J. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J Pers Med 2023; 13:1643. [PMID: 38138870 PMCID: PMC10744672 DOI: 10.3390/jpm13121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
Collapse
Affiliation(s)
- Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Po-Tsz Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Ka-Yan Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Cheuk-Hong Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Tsz-Ching Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Kin-Chun Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Yan-Kate Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Fiona M. Y. Lim
- Department of Oncology, Princess Margaret Hospital, Hong Kong SAR, China;
| | - Jackie Q. Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA;
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| |
Collapse
|
10
|
Stanzione A, Ponsiglione A, Alessandrino F, Brembilla G, Imbriaco M. Beyond diagnosis: is there a role for radiomics in prostate cancer management? Eur Radiol Exp 2023; 7:13. [PMID: 36907973 PMCID: PMC10008761 DOI: 10.1186/s41747-023-00321-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 03/13/2023] Open
Abstract
The role of imaging in pretreatment staging and management of prostate cancer (PCa) is constantly evolving. In the last decade, there has been an ever-growing interest in radiomics as an image analysis approach able to extract objective quantitative features that are missed by human eye. However, most of PCa radiomics studies have been focused on cancer detection and characterisation. With this narrative review we aimed to provide a synopsis of the recently proposed potential applications of radiomics for PCa with a management-based approach, focusing on primary treatments with curative intent and active surveillance as well as highlighting on recurrent disease after primary treatment. Current evidence is encouraging, with radiomics and artificial intelligence appearing as feasible tools to aid physicians in planning PCa management. However, the lack of external independent datasets for validation and prospectively designed studies casts a shadow on the reliability and generalisability of radiomics models, delaying their translation into clinical practice.Key points• Artificial intelligence solutions have been proposed to streamline prostate cancer radiotherapy planning.• Radiomics models could improve risk assessment for radical prostatectomy patient selection.• Delta-radiomics appears promising for the management of patients under active surveillance.• Radiomics might outperform current nomograms for prostate cancer recurrence risk assessment.• Reproducibility of results, methodological and ethical issues must still be faced before clinical implementation.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | | | - Giorgio Brembilla
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Fowler GE, Blencowe NS, Hardacre C, Callaway MP, Smart NJ, Macefield R. Artificial intelligence as a diagnostic aid in cross-sectional radiological imaging of surgical pathology in the abdominopelvic cavity: a systematic review. BMJ Open 2023; 13:e064739. [PMID: 36878659 PMCID: PMC9990659 DOI: 10.1136/bmjopen-2022-064739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES There is emerging use of artificial intelligence (AI) models to aid diagnostic imaging. This review examined and critically appraised the application of AI models to identify surgical pathology from radiological images of the abdominopelvic cavity, to identify current limitations and inform future research. DESIGN Systematic review. DATA SOURCES Systematic database searches (Medline, EMBASE, Cochrane Central Register of Controlled Trials) were performed. Date limitations (January 2012 to July 2021) were applied. ELIGIBILITY CRITERIA Primary research studies were considered for eligibility using the PIRT (participants, index test(s), reference standard and target condition) framework. Only publications in the English language were eligible for inclusion in the review. DATA EXTRACTION AND SYNTHESIS Study characteristics, descriptions of AI models and outcomes assessing diagnostic performance were extracted by independent reviewers. A narrative synthesis was performed in accordance with the Synthesis Without Meta-analysis guidelines. Risk of bias was assessed (Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)). RESULTS Fifteen retrospective studies were included. Studies were diverse in surgical specialty, the intention of the AI applications and the models used. AI training and test sets comprised a median of 130 (range: 5-2440) and 37 (range: 10-1045) patients, respectively. Diagnostic performance of models varied (range: 70%-95% sensitivity, 53%-98% specificity). Only four studies compared the AI model with human performance. Reporting of studies was unstandardised and often lacking in detail. Most studies (n=14) were judged as having overall high risk of bias with concerns regarding applicability. CONCLUSIONS AI application in this field is diverse. Adherence to reporting guidelines is warranted. With finite healthcare resources, future endeavours may benefit from targeting areas where radiological expertise is in high demand to provide greater efficiency in clinical care. Translation to clinical practice and adoption of a multidisciplinary approach should be of high priority. PROSPERO REGISTRATION NUMBER CRD42021237249.
Collapse
Affiliation(s)
- George E Fowler
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| | - Natalie S Blencowe
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| | - Conor Hardacre
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Mark P Callaway
- Department of Clinical Radiology, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Neil J Smart
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Rhiannon Macefield
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Ouyang ML, Zheng RX, Wang YR, Zuo ZY, Gu LD, Tian YQ, Wei YG, Huang XY, Tang K, Wang LX. Deep Learning Analysis Using 18F-FDG PET/CT to Predict Occult Lymph Node Metastasis in Patients With Clinical N0 Lung Adenocarcinoma. Front Oncol 2022; 12:915871. [PMID: 35875089 PMCID: PMC9301998 DOI: 10.3389/fonc.2022.915871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The aim of this work was to determine the feasibility of using a deep learning approach to predict occult lymph node metastasis (OLM) based on preoperative FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma. Materials and Methods Dataset 1 (for training and internal validation) included 376 consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012 and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0 lung adenocarcinoma from June 2021 to February 2022 at the same center. Three deep learning models: PET alone, CT alone, and combined model, were developed for the prediction of OLM. The performance of the models was evaluated on internal validation and prospective test in terms of accuracy, sensitivity, specificity, and areas under the receiver operating characteristic curve (AUCs). Results The combined model incorporating PET and CT showed the best performance, achieved an AUC of 0.81 [95% confidence interval (CI): 0.61, 1.00] in the prediction of OLM in internal validation set (n = 60) and an AUC of 0.87 (95% CI: 0.75, 0.99) in the prospective test set (n = 58). The model achieved 87.50% sensitivity, 80.00% specificity, and 81.00% accuracy in the internal validation set and achieved 75.00% sensitivity, 88.46% specificity, and 86.60% accuracy in the prospective test set. Conclusion This study presented a deep learning approach to enable the prediction of occult nodal involvement based on the PET/CT images before surgery in cN0 lung adenocarcinoma, which would help clinicians select patients who would be suitable for sublobar resection.
Collapse
Affiliation(s)
- Ming-li Ouyang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-xuan Zheng
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-ran Wang
- Department of Medical Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-yi Zuo
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu-dan Gu
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-qian Tian
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-guo Wei
- Precision Health Institution, General Electric (GE) Healthcare, Hangzhou, China
| | - Xiao-ying Huang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| | - Kun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| | - Liang-xing Wang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang-xing Wang, ; Kun Tang, ; Xiao-ying Huang,
| |
Collapse
|
13
|
Liberini V, Laudicella R, Balma M, Nicolotti DG, Buschiazzo A, Grimaldi S, Lorenzon L, Bianchi A, Peano S, Bartolotta TV, Farsad M, Baldari S, Burger IA, Huellner MW, Papaleo A, Deandreis D. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics. Eur Radiol Exp 2022; 6:27. [PMID: 35701671 PMCID: PMC9198151 DOI: 10.1186/s41747-022-00282-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients’ risk-stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall efficiency and accuracy of using these “big data” in both the diagnostic and theragnostic field: from technical aspects (such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI and radiomics applied to molecular imaging of prostate cancer.
Collapse
Affiliation(s)
- Virginia Liberini
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy. .,Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy.
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland.,Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98125, Messina, Italy.,Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Ct.da Pietrapollastra Pisciotto, Cefalù, Palermo, Italy
| | - Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Serena Grimaldi
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy
| | - Leda Lorenzon
- Medical Physics Department, Central Bolzano Hospital, 39100, Bolzano, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | | | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100, Bolzano, Italy
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98125, Messina, Italy
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland.,Department of Nuclear Medicine, Kantonsspital Baden, 5004, Baden, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Désirée Deandreis
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy
| |
Collapse
|
14
|
Beinecke JM, Anders P, Schurrat T, Heider D, Luster M, Librizzi D, Hauschild AC. Evaluation of machine learning strategies for imaging confirmed prostate cancer recurrence prediction on electronic health records. Comput Biol Med 2022; 143:105263. [PMID: 35131608 DOI: 10.1016/j.compbiomed.2022.105263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The main screening parameter to monitor prostate cancer recurrence (PCR) after primary treatment is the serum concentration of prostate-specific antigen (PSA). In recent years, Ga-68-PSMA PET/CT has become an important method for additional diagnostics in patients with biochemical recurrence. PURPOSE While Ga-68-PSMA PET/CT performs better, it is an expensive, invasive, and time-consuming examination. Therefore, in this study, we aim to employ modern multivariate Machine Learning (ML) methods on electronic health records (EHR) of prostate cancer patients to improve the prediction of imaging confirmed PCR (IPCR). METHODS We retrospectively analyzed the clinical information of 272 patients, who were examined using Ga-68-PSMA PET/CT. The PSA values ranged from 0 ng/mL to 2270.38 ng/mL with a median PSA level at 1.79 ng/mL. We performed a descriptive analysis using Logistic Regression. Additionally, we evaluated the predictive performance of Logistic Regression, Support Vector Machine, Gradient Boosting, and Random Forest. Finally, we assessed the importance of all features using Ensemble Feature Selection (EFS). RESULTS The descriptive analysis found significant associations between IPCR and logarithmic PSA values as well as between IPCR and performed hormonal therapy. Our models were able to predict IPCR with an AUC score of 0.78 ± 0.13 (mean ± standard deviation) and a sensitivity of 0.997 ± 0.01. Features such as PSA, PSA doubling time, PSA velocity, hormonal therapy, radiation treatment, and injected activity show high importance for IPCR prediction using EFS. CONCLUSION This study demonstrates the potential of employing a multitude of parameters into multivariate ML models to improve identification of non-recurring patients compared to the current focus on the main screening parameter (PSA). We showed that ML models are able to predict IPCR, detectable by Ga-68-PSMA PET/CT, and thereby pave the way for optimized early imaging and treatment.
Collapse
Affiliation(s)
- Jacqueline Michelle Beinecke
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany; Institute for Medical Informatics at the University Medical Center Göttingen, Göttingen, Germany.
| | - Patrick Anders
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Tino Schurrat
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany
| | - Markus Luster
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Damiano Librizzi
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Anne-Christin Hauschild
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany; Institute for Medical Informatics at the University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Ma K, Harmon SA, Klyuzhin IS, Rahmim A, Turkbey B. Clinical Application of Artificial Intelligence in Positron Emission Tomography: Imaging of Prostate Cancer. PET Clin 2021; 17:137-143. [PMID: 34809863 DOI: 10.1016/j.cpet.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PET imaging with targeted novel tracers has been commonly used in the clinical management of prostate cancer. The use of artificial intelligence (AI) in PET imaging is a relatively new approach and in this review article, we will review the current trends and categorize the currently available research into the quantification of tumor burden within the organ, evaluation of metastatic disease, and translational/supplemental research which aims to improve other AI research efforts.
Collapse
Affiliation(s)
- Kevin Ma
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Ivan S Klyuzhin
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Yousefirizi F, Pierre Decazes, Amyar A, Ruan S, Saboury B, Rahmim A. AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging:: Towards Radiophenomics. PET Clin 2021; 17:183-212. [PMID: 34809866 DOI: 10.1016/j.cpet.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Pierre Decazes
- Department of Nuclear Medicine, Henri Becquerel Centre, Rue d'Amiens - CS 11516 - 76038 Rouen Cedex 1, France; QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Amine Amyar
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France; General Electric Healthcare, Buc, France
| | - Su Ruan
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Kendrick J, Francis R, Hassan GM, Rowshanfarzad P, Jeraj R, Kasisi C, Rusanov B, Ebert M. Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front Oncol 2021; 11:771787. [PMID: 34790581 PMCID: PMC8591174 DOI: 10.3389/fonc.2021.771787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic Prostate Cancer (mPCa) is associated with a poor patient prognosis. mPCa spreads throughout the body, often to bones, with spatial and temporal variations that make the clinical management of the disease difficult. The evolution of the disease leads to spatial heterogeneity that is extremely difficult to characterise with solid biopsies. Imaging provides the opportunity to quantify disease spread. Advanced image analytics methods, including radiomics, offer the opportunity to characterise heterogeneity beyond what can be achieved with simple assessment. Radiomics analysis has the potential to yield useful quantitative imaging biomarkers that can improve the early detection of mPCa, predict disease progression, assess response, and potentially inform the choice of treatment procedures. Traditional radiomics analysis involves modelling with hand-crafted features designed using significant domain knowledge. On the other hand, artificial intelligence techniques such as deep learning can facilitate end-to-end automated feature extraction and model generation with minimal human intervention. Radiomics models have the potential to become vital pieces in the oncology workflow, however, the current limitations of the field, such as limited reproducibility, are impeding their translation into clinical practice. This review provides an overview of the radiomics methodology, detailing critical aspects affecting the reproducibility of features, and providing examples of how artificial intelligence techniques can be incorporated into the workflow. The current landscape of publications utilising radiomics methods in the assessment and treatment of mPCa are surveyed and reviewed. Associated studies have incorporated information from multiple imaging modalities, including bone scintigraphy, CT, PET with varying tracers, multiparametric MRI together with clinical covariates, spanning the prediction of progression through to overall survival in varying cohorts. The methodological quality of each study is quantified using the radiomics quality score. Multiple deficits were identified, with the lack of prospective design and external validation highlighted as major impediments to clinical translation. These results inform some recommendations for future directions of the field.
Collapse
Affiliation(s)
- Jake Kendrick
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Roslyn Francis
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Collin Kasisi
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Branimir Rusanov
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| |
Collapse
|
18
|
Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer. Eur J Nucl Med Mol Imaging 2021; 49:585-595. [PMID: 34363089 DOI: 10.1007/s00259-021-05481-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE We evaluated the performance of deep learning classifiers for bone scans of prostate cancer patients. METHODS A total of 9113 consecutive bone scans (5342 prostate cancer patients) were initially evaluated. Bone scans were labeled as positive/negative for bone metastasis using clinical reports and image review for ground truth diagnosis. Two different 2D convolutional neural network (CNN) architectures were proposed: (1) whole body-based (WB) and (2) tandem architectures integrating whole body and local patches, here named as "global-local unified emphasis" (GLUE). Both models were trained using abundant (72%:8%:20% for training:validation:test sets) and limited training data (10%:40%:50%). The allocation of test sets was rotated across all images: therefore, fivefold and twofold cross-validation test results were available for abundant and limited settings, respectively. RESULTS A total of 2991 positive and 6142 negative bone scans were used as input. For the abundant training setting, the receiver operating characteristics curves of both the GLUE and WB models indicated excellent diagnostic ability in terms of the area under the curve (GLUE: 0.936-0.955, WB: 0.933-0.957, P > 0.05 in four of the fivefold tests). The overall accuracies of the GLUE and WB models were 0.900 and 0.889, respectively. With the limited training setting, the GLUE models showed significantly higher AUCs than the WB models (0.894-0.908 vs. 0.870-0.877, P < 0.0001). CONCLUSION Our 2D-CNN models accurately classified bone scans of prostate cancer patients. While both showed excellent performance with the abundant dataset, the GLUE model showed higher performance than the WB model in the limited data setting.
Collapse
|
19
|
Deep learning in Nuclear Medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00411-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zaharchuk G, Davidzon G. Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Semin Nucl Med 2020; 51:134-142. [PMID: 33509370 DOI: 10.1053/j.semnuclmed.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Artificial intelligence (AI) has recently attracted much attention for its potential use in healthcare applications. The use of AI to improve and extract more information out of medical images, given their parallels with natural images and the immense progress in the area of computer vision, has been at the forefront of these advances. This is due to a convergence of factors, including the increasing numbers of scans performed, the availability of open source AI tools, and decreases in the costs of hardware required to implement these technologies. In this article, we review the progress in the use of AI toward optimizing PET/CT and PET/MRI studies. These two methods, which combine molecular information with structural and (in the case of MRI) functional imaging, are extremely valuable for a wide range of clinical indications. They are also tremendously data-rich modalities and as such are highly amenable to data-driven technologies such as AI. The first half of the article will focus on methods to improve PET reconstruction and image quality, which has multiple benefits including faster image acquisition, image reconstruction, and lower or even "zero" radiation dose imaging. It will also address the value of AI-driven methods to perform MR-based attenuation correction. The second half will address how some of these advances can be used to perform to optimize diagnosis from the acquired images, with examples given for whole-body oncology, cardiology, and neurology indications. Overall, it is likely that the use of AI will markedly improve both the quality and safety of PET/CT and PET/MRI as well as enhance our ability to interpret the scans and follow lesions over time. This will hopefully lead to expanded clinical use cases for these valuable technologies leading to better patient care.
Collapse
Affiliation(s)
- Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA.
| | - Guido Davidzon
- Division of Nuclear Medicine & Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA
| |
Collapse
|