1
|
Olfati N, Akhoundi FH, Litvan I. Atypical Parkinsonian Disorders. Neurol Clin 2025; 43:249-277. [PMID: 40185521 DOI: 10.1016/j.ncl.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Atypical parkinsonian disorders (APD) include progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy. Identifying APD is important because they have different pathogenesis, disease course, and prognosis than Parkinson's disease (PD), and require different treatments. Therefore, when encountering patients with parkinsonism, it is of crucial importance to look for "red flags" or signs, such as impairments in higher cortical function, visuomotor system, cerebellar and other motor abnormalities including dystonia, myoclonus, and apraxia that help differentiate them from PD. Although disease-modifying therapies are not yet available, treatments targeting specific symptoms may improve the quality of life in these patients.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Fahimeh H Akhoundi
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Nasrallah IM, Kuo PH, Nordberg A, Bohnen NI, Ponisio MR. The Impact of Amyloid and Tau PET on Alzheimer Disease Diagnostics: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025. [PMID: 40237426 DOI: 10.2214/ajr.24.32325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amyloid and tau PET have contributed significantly to understanding the biology of Alzheimer disease (AD), aided development of biomarker-driven AD diagnostic criteria, and facilitated approval of the first disease-modifying drugs for AD. As opportunities to use amyloid and tau PET in the clinic have expanded, several factors will impact their application and real-world impact in patients with AD. First, quantification of amyloid and tau PET interpretations, supported by appropriate visual confirmation, will be needed for monitoring therapy response. Also, amyloid and tau PET will need to be balanced with emerging biofluid assays from CSF and blood. Blood-based biomarkers, although still requiring validation, have particular potential to complement PET utilization; nonetheless, the topographic information uniquely provided by tau PET will remain important in clinical practice. Additionally, the proper use of amyloid and tau PET for clinical management will require an understanding and consideration of mixed pathology, as is usually present in AD, along with continued advances in imaging technology to better address copathology. Further research and investment in this evolving field will improve diagnostic accuracy and therapeutic approaches, ultimately benefiting outcomes in patients with AD.
Collapse
Affiliation(s)
- Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip H Kuo
- Division of Nuclear Medicine, City of Hope® Cancer Center Duarte, Duarte, CA, USA
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden
| | - Nicolaas I Bohnen
- Departments of Radiology and Neurology, University of Michigan, and Neurology service and Geriatric Research, Education, and Clinical Center, Ann Arbor VA Medical Center, Ann Arbor, MI, USA
| | - Maria R Ponisio
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Liu MN, Chang HI, Huang SH, Huang CW, Hsu SW, Lin KJ, Ho TY, Huang KL, Cheng CM, Chang CC. Development and validation of global tau severity score in Alzheimer's disease using Florzolotau (18F) PET. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111343. [PMID: 40147808 DOI: 10.1016/j.pnpbp.2025.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Tau-specific positron emission tomography (tau-PET) is valuable for assessing Alzheimer's disease (AD) severity, with phenotypic differences between young-onset AD (YOAD) and late-onset AD (LOAD) likely driven by distinct relationships between tau pathology and cognition. OBJECTIVE This study developed a global tau severity (gTS) scale using Florzolotau (18F) PET and compared it with the CenTauR score for standardizing tau burden quantification. METHODS A total of 186 participants were enrolled, including a pilot group (15 cognitive unimpaired controls [CTL], 15 AD patients) and a validation group (27 CTL, 67 YOAD, and 62 LOAD patients). In the validation group, cutoffs for diagnosing YOAD and LOAD using the gTS or CenTauR score were calculated. RESULTS The white matter region was identified as the most suitable reference for Florzolotau (18F). The gTS cutoff values of 24.1 for both AD and YOAD and 34.1 for LOAD demonstrated the highest diagnostic accuracy, as indicated by the area under the curve (AUC). The gTS score showed a higher AUC compared to CenTauR in YOAD versus CTL or LOAD versus CTL. The gTS scores significantly predicted total scores and subdomains on cognitive ability screening instruments. Cognitive-gTS curve features were found to have quadratic and linear relationships with YOAD and LOAD, respectively, illustrating different relationships between gTS scores and cognition. CONCLUSION The gTS score, derived from Florzolotau (18F) PET scans, provides significant predictions regarding tau burden and cognitive measurements. The higher AUC of gTS compared to the CenTauR universal scores indicates that gTS scores offer a robust method for differentiating AD from CTL.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear medicine, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Ying Ho
- Department of Nuclear medicine, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Wongso H, Harada R, Furumoto S. Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers. ACS Chem Neurosci 2025; 16:111-127. [PMID: 39762194 DOI: 10.1021/acschemneuro.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [18F]FDDNP, [11C]PBB3, [18F]flortaucipir, and the [18F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [18F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick's disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Ryuichi Harada
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Shozo Furumoto
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
5
|
Kang JM, Manjavong M, Jin C, Diaz A, Ashford MT, Eichenbaum J, Thorp E, Wragg E, Zavitz KH, Cormack F, Aaronson A, Mackin RS, Tank R, Landavazo B, Cavallone E, Truran D, Farias ST, Weiner MW, Nosheny RL. Subjective cognitive decline predicts longitudinal neuropsychological test performance in an unsupervised online setting in the Brain Health Registry. Alzheimers Res Ther 2025; 17:10. [PMID: 39773247 PMCID: PMC11706033 DOI: 10.1186/s13195-024-01641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUNDS Digital, online assessments are efficient means to detect early cognitive decline, but few studies have investigated the relationship between remotely collected subjective cognitive change and cognitive decline. We hypothesized that the Everyday Cognition Scale (ECog), a subjective change measure, predicts longitudinal change in cognition in the Brain Health Registry (BHR), an online registry for neuroscience research. METHODS This study included BHR participants aged 55 + who completed both the baseline ECog and repeated administrations of the CANTAB® Paired Associates Learning (PAL) visual learning and memory test. Both self-reported ECog (Self-ECog) and study partner-reported ECog (SP-ECog), and two PAL scores (first attempt memory score [FAMS] and total errors adjusted [TEA]) were assessed. We estimated associations between multiple ECog scoring outputs (ECog positive [same or above cut-off score], ECog consistent [report of consistent decline in any item], and total score) and longitudinal change in PAL. Additionally we assessed the ability of ECog to identify 'decliners', who exhibited the worst PAL progression slopes corresponding to the fifth percentile and below. RESULTS Participants (n = 16,683) had an average age of 69.07 ± 7.34, 72.04% were female, and had an average of 16.66 ± 2.26 years of education. They were followed for an average of 2.52 ± 1.63 visits over a period of 11.49 ± 11.53 months. Both Self-ECog positive (estimate = -0.01, p < 0.001, R²m = 0.56) and Self-ECog consistent (estimate=-0.01, p = 0.002, R²m = 0.56) were associated with longitudinal change in PAL FAMS after adjusting demographics and clinical confounders. Those who were Self-ECog total (Odds ratio [95% confidence interval] = 1.390 [1.121-1.708]) and SP-ECog consistent (2.417 [1.591-3.655]) had higher probability of being decliners based on PAL FAMS. CONCLUSION In the BHR's unsupervised online setting, baseline subjective change was feasible in predicting longitudinal decline in neuropsychological tests. Online, self-administered measures of subjective cognitive change might have a potential to predict objective subjective change and identify individuals with cognitive impairments.
Collapse
Affiliation(s)
- Jae Myeong Kang
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Manchumad Manjavong
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Division of Geriatric Medicine, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chengshi Jin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Adam Diaz
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Miriam T Ashford
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
| | - Joseph Eichenbaum
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Francesca Cormack
- Cambridge Cognition, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Anna Aaronson
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
| | - Rachana Tank
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, WC1E 6BT, UK
| | - Bernard Landavazo
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Erika Cavallone
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Diana Truran
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael W Weiner
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Nosheny
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- VA Advanced Imaging Research Center, San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA.
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Sagar S, Khan D, Kumar R. PET-Computed Tomography-MR Imaging in Central Nervous System Disorders with Cognitive and Motor Impairment. PET Clin 2025; 20:101-111. [PMID: 39477721 DOI: 10.1016/j.cpet.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Neuroimaging, particularly positron emission tomography (PET), plays a crucial role in diagnosing and managing brain disorders by providing insights into diverse neuropathologies such as vascular issues, infections, inflammation, degenerative diseases, and tumors. In dementia, [18F]FDG-PET helps predict Alzheimer's disease (AD) development from mild cognitive impairment, revealing metabolic reductions in specific brain regions. PET's evolution with novel radiotracers and advanced imaging techniques addresses diagnostic challenges and enhances disease monitoring. Despite limitations like off-target binding, PET remains indispensable in clinical neurology, offering noninvasive insights into brain functions, disease progression, and treatment responses.
Collapse
Affiliation(s)
- Sambit Sagar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dikhra Khan
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India.
| |
Collapse
|
7
|
Hunter TR, Santos LE, Tovar-Moll F, De Felice FG. Alzheimer's disease biomarkers and their current use in clinical research and practice. Mol Psychiatry 2025; 30:272-284. [PMID: 39232196 DOI: 10.1038/s41380-024-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.
Collapse
Affiliation(s)
- Tai R Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luis E Santos
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
| | | | - Fernanda G De Felice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Costoya-Sánchez A, Moscoso A, Sobrino T, Ruibal Á, Grothe MJ, Schöll M, Silva-Rodríguez J, Aguiar P. Partial volume correction in longitudinal tau PET studies: is it really needed? Neuroimage 2024; 289:120537. [PMID: 38367651 DOI: 10.1016/j.neuroimage.2024.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND [18F]flortaucipir (FTP) tau PET quantification is known to be affected by non-specific binding in off-target regions. Although partial volume correction (PVC) techniques partially account for this effect, their inclusion may also introduce noise and variability into the quantification process. While the impact of these effects has been studied in cross-sectional designs, the benefits and drawbacks of PVC on longitudinal FTP studies is still under scrutiny. The aim of this work was to study the performance of the most common PVC techniques for longitudinal FTP imaging. METHODS A cohort of 247 individuals from the Alzheimer's Disease Neuroimaging Initiative with concurrent baseline FTP-PET, amyloid-beta (Aβ) PET and structural MRI, as well as with follow-up FTP-PET and MRI were included in the study. FTP-PET scans were corrected for partial volume effects using Meltzer's, a simple and popular analytical PVC, and both the region-based voxel-wise (RBV) and the iterative Yang (iY) corrections. FTP SUVR values and their longitudinal rates of change were calculated for regions of interest (ROI) corresponding to Braak Areas I-VI, for a temporal meta-ROI and for regions typically displaying off-target FTP binding (caudate, putamen, pallidum, thalamus, choroid plexus, hemispheric white matter, cerebellar white matter, and cerebrospinal fluid). The longitudinal correlation between binding in off-target and target ROIs was analysed for the different PVCs. Additionally, group differences in longitudinal FTP SUVR rates of change between Aβ-negative (A-) and Aβ-positive (A+), and between cognitively unimpaired (CU) and cognitively impaired (CI) individuals, were studied. Finally, we compared the ability of different partial-volume-corrected baseline FTP SUVRs to predict longitudinal brain atrophy and cognitive decline. RESULTS Among off-target ROIs, hemispheric white matter showed the highest correlation with longitudinal FTP SUVR rates from cortical target ROIs (R2=0.28-0.82), with CSF coming in second (R2=0.28-0.42). Application of voxel-wise PVC techniques minimized this correlation, with RBV performing best (R2=0.00-0.07 for hemispheric white matter). PVC also increased group differences between CU and CI individuals in FTP SUVR rates of change across all target regions, with RBV again performing best (No PVC: Cohen's d = 0.26-0.66; RBV: Cohen's d = 0.43-0.74). These improvements were not observed for differentiating A- from A+ groups. Additionally, voxel-wise PVC techniques strengthened the correlation between baseline FTP SUVR and longitudinal grey matter atrophy and cognitive decline. CONCLUSION Quantification of longitudinal FTP SUVR rates of change is affected by signal from off-target regions, especially the hemispheric white matter and the CSF. Voxel-wise PVC techniques significantly reduce this effect. PVC provided a significant but modest benefit for tasks involving the measurement of group-level longitudinal differences. These findings are particularly relevant for the estimations of sample sizes and analysis methodologies of longitudinal group studies.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Ruibal
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Reina Sofía Alzheimer's Centre, CIEN Foundation, ISCIII, Madrid, 28031, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden; Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Reina Sofía Alzheimer's Centre, CIEN Foundation, ISCIII, Madrid, 28031, Spain.
| | - Pablo Aguiar
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Frisoni GB, Festari C, Massa F, Cotta Ramusino M, Orini S, Aarsland D, Agosta F, Babiloni C, Borroni B, Cappa SF, Frederiksen KS, Froelich L, Garibotto V, Haliassos A, Jessen F, Kamondi A, Kessels RP, Morbelli SD, O'Brien JT, Otto M, Perret-Liaudet A, Pizzini FB, Vandenbulcke M, Vanninen R, Verhey F, Vernooij MW, Yousry T, Boada Rovira M, Dubois B, Georges J, Hansson O, Ritchie CW, Scheltens P, van der Flier WM, Nobili F. European intersocietal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Lancet Neurol 2024; 23:302-312. [PMID: 38365381 DOI: 10.1016/s1474-4422(23)00447-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
The recent commercialisation of the first disease-modifying drugs for Alzheimer's disease emphasises the need for consensus recommendations on the rational use of biomarkers to diagnose people with suspected neurocognitive disorders in memory clinics. Most available recommendations and guidelines are either disease-centred or biomarker-centred. A European multidisciplinary taskforce consisting of 22 experts from 11 European scientific societies set out to define the first patient-centred diagnostic workflow that aims to prioritise testing for available biomarkers in individuals attending memory clinics. After an extensive literature review, we used a Delphi consensus procedure to identify 11 clinical syndromes, based on clinical history and examination, neuropsychology, blood tests, structural imaging, and, in some cases, EEG. We recommend first-line and, if needed, second-line testing for biomarkers according to the patient's clinical profile and the results of previous biomarker findings. This diagnostic workflow will promote consistency in the diagnosis of neurocognitive disorders across European countries.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland; Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland.
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Dementia Research Center (DRC), IRCCS Mondino Foundation, Pavia, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; UK Dementia Research Institute, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele of Cassino, Cassino, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, ASST Spedali Civili, Brescia, Italy
| | - Stefano F Cappa
- Centro Ricerca sulle Demenze, IRCCS Mondino Foundation, Pavia, Italy; University Institute for Advanced Studies (IUSS), Pavia, Italy
| | - Kristian S Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | | | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary; Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Roy Pc Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Radboud UMC Alzheimer Center and Department of Medical Psychology, Radboud University Medical Center, Nijmegen, Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Silvia D Morbelli
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Markus Otto
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | | | - Francesca B Pizzini
- Department of Diagnostic and Public Health, Verona University Hospital, Verona University, Verona, Italy
| | - Mathieu Vandenbulcke
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Geriatric Psychiatry, University Psychiatric Centre KU Leuven, Leuven-Kortenberg, Belgium
| | - Ritva Vanninen
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology-Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Meike W Vernooij
- Department of Epidemiology and Department of Radiology and Nuclear Medicine Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tarek Yousry
- Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Mercè Boada Rovira
- Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Bruno Dubois
- Institut de La Mémoire et de La Maladie d'Alzheimer, Neurology Department, Salpêtrière Hospital, Assistance Publique-Hôpital de Paris, Paris, France; Sorbonne University, Paris, France
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK; Brain Health Scotland, Edinburgh, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands; Amsterdam Neuroscience-Neurodegeneration, Amsterdam, Netherlands; Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Darvesh S, Banfield S, Dufour M, Forrestall KL, Maillet H, Reid GA, Sands D, Pottie IR. A method for the efficient evaluation of substrate-based cholinesterase imaging probes for Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2225797. [PMID: 38061987 PMCID: PMC10294744 DOI: 10.1080/14756366.2023.2225797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 08/16/2023] Open
Abstract
Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine & Neurology), Halifax, Nova Scotia, Canada
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
| | - Scott Banfield
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maeve Dufour
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katrina L. Forrestall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G. Andrew Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dane Sands
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian R. Pottie
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Saint Mary’s University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Theis H, Bischof GN, Brüggemann N, Dargvainiene J, Drzezga A, Grüter T, Lewerenz J, Leypoldt F, Neumaier B, Wandinger KP, Ayzenberg I, van Eimeren T. In Vivo Measurement of Tau Depositions in Anti-IgLON5 Disease Using [18F]PI-2620 PET. Neurology 2023; 101:e2325-e2330. [PMID: 37879939 PMCID: PMC10727210 DOI: 10.1212/wnl.0000000000207870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Anti-IgLON5 disease is a recently discovered neurologic disorder combining autoimmunity and neurodegeneration. Core manifestations include sleep disorders, bulbar symptoms, gait abnormalities, and cognitive dysfunction, but other presentations have been reported. Hallmarks are autoantibodies targeting the neuronal surface protein IgLON5, a strong human leukocyte antigen system Class II association, and brainstem and hypothalamus-dominant tau deposits. The purpose of this cohort study was to visualize tau deposition in vivo with the second-generation tau-PET tracer. METHODS A cohort of 4 patients with anti-IgLON5 disease underwent a dynamic PET scan with [18F]PI-2620. One patient received a follow-up scan. Z-deviation maps and a 2-sample t test in comparison with healthy controls (n = 10) were performed. Antibody titers, neurofilament light chain, and disease duration were correlated with brainstem binding potentials. RESULTS Patients demonstrated increased [18F]PI2620 tau binding potentials in the pons, dorsal medulla, and cerebellum. The longitudinal scan after 28 months showed an increase of tracer uptake in the medulla despite immunotherapy. Higher antibody titers and neurofilament light chain correlated with higher tracer retention. DISCUSSION The results indicate that tau depositions in anti-IgLON5 disease can be visualized with [18F]PI-2620 and might correlate with the extent of disease. For validation, a larger longitudinal study is necessary.
Collapse
Affiliation(s)
- Hendrik Theis
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Gérard N Bischof
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Norbert Brüggemann
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Justina Dargvainiene
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Drzezga
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Thomas Grüter
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jan Lewerenz
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Frank Leypoldt
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Bernd Neumaier
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Klaus-Peter Wandinger
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Ilya Ayzenberg
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Thilo van Eimeren
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
| |
Collapse
|
12
|
Wagatsuma K, Miwa K, Akamatsu G, Yamao T, Kamitaka Y, Sakurai M, Fujita N, Hanaoka K, Matsuda H, Ishii K. Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 2023; 37:494-503. [PMID: 37243882 DOI: 10.1007/s12149-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments. METHODS The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise. RESULTS Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2-4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise. CONCLUSIONS The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Minoru Sakurai
- Clinical Imaging Center for Healthcare, Nippon Medical School, 1-12-15, Sendagi, Bunkyo-Ku, Tokyo, 113-0022, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-115, Yatsuyamada, Koriyama, 963-8052, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
13
|
O'Connor A, Cash DM, Poole T, Markiewicz PJ, Fraser MR, Malone IB, Jiao J, Weston PSJ, Flores S, Hornbeck R, McDade E, Schöll M, Gordon BA, Bateman RJ, Benzinger TLS, Fox NC. Tau accumulation in autosomal dominant Alzheimer's disease: a longitudinal [ 18F]flortaucipir study. Alzheimers Res Ther 2023; 15:99. [PMID: 37231491 PMCID: PMC10210376 DOI: 10.1186/s13195-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK. Antoinette.o'
- UK Dementia Research Institute at UCL, London, UK. Antoinette.o'
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maggie R Fraser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jieqing Jiao
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Shaney Flores
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Schöll
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
14
|
Ozsahin I, Onakpojeruo EP, Uzun B, Uzun Ozsahin D, Butler TA. A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics 2023; 15:1304. [PMID: 37111789 PMCID: PMC10147085 DOI: 10.3390/pharmaceutics15041304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The accumulation of pathologically misfolded tau is a feature shared by a group of neurodegenerative disorders collectively referred to as tauopathies. Alzheimer's disease (AD) is the most prevalent of these tauopathies. Immunohistochemical evaluation allows neuropathologists to visualize paired-helical filaments (PHFs)-tau pathological lesions, but this is possible only after death and only shows tau in the portion of brain sampled. Positron emission tomography (PET) imaging allows both the quantitative and qualitative analysis of pathology over the whole brain of a living subject. The ability to detect and quantify tau pathology in vivo using PET can aid in the early diagnosis of AD, provide a way to monitor disease progression, and determine the effectiveness of therapeutic interventions aimed at reducing tau pathology. Several tau-specific PET radiotracers are now available for research purposes, and one is approved for clinical use. This study aims to analyze, compare, and rank currently available tau PET radiotracers using the fuzzy preference ranking organization method for enrichment of evaluations (PROMETHEE), which is a multi-criteria decision-making (MCDM) tool. The evaluation is based on relatively weighted criteria, such as specificity, target binding affinity, brain uptake, brain penetration, and rates of adverse reactions. Based on the selected criteria and assigned weights, this study shows that a second-generation tau tracer, [18F]RO-948, may be the most favorable. This flexible method can be extended and updated to include new tracers, additional criteria, and modified weights to help researchers and clinicians select the optimal tau PET tracer for specific purposes. Additional work is needed to confirm these results, including a systematic approach to defining and weighting criteria and clinical validation of tracers in different diseases and patient populations.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
| | | | - Berna Uzun
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Department of Statistics, Carlos III University of Madrid, Getafe, 28903 Madrid, Spain
| | - Dilber Uzun Ozsahin
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Medical Diagnostic Imaging Department, College of Health Sciences & Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Tracy A. Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
15
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
16
|
Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis. Eur Arch Psychiatry Clin Neurosci 2023; 273:243-252. [PMID: 35710952 DOI: 10.1007/s00406-022-01439-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study aimed at determining the cost-effectiveness of amyloid-positron emission tomography (PET) compared to Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (amyloid-β42, total-Tau and phosphorylated-Tau) for the diagnosis of AD in patients with early-onset cognitive impairment. A decision tree model using a national health care perspective was developed to compare the costs and effectiveness associated with Amyloid-PET and AD CSF biomarkers. Available evidence from the literature and primary data from Hospital Clínic de Barcelona were used to inform the model and calculate the efficiency of these diagnostic alternatives. Medical visits and diagnostic procedures were considered and reported in €2020. We calculated the incremental cost-effectiveness ratio to measure the cost per % of correct diagnoses detected and we perform one-way deterministic and probabilistic sensitivity analyses to assess the uncertainty of these results. Compared with AD CSF biomarkers, Amyloid-PET resulted in 7.40% more correctly diagnosed cases of AD, with an incremental total mean cost of €146,854.80 per 100 cases. We found a 50% of probability that Amyloid-PET was cost-effective for a willingness to pay (WTP) of €19,840.39 per correct case detected. Using a WTP of €75,000, the probability that it is cost-effective reached a maximum of 76.9%, thus leading to a conclusion that Amyloid-PET is not a cost-effective technique compared to AD CSF biomarkers, unless the funder is willing to pay a minimum of €19,840.39 to detect one more correct case. Furthermore, obtaining CSF provides simultaneous information on amyloid β and tau biomarkers and allows other biomarkers to be analyzed at a relatively low cost.
Collapse
|
17
|
Abstract
Imaging of mild traumatic brain injury (TBI) using conventional techniques such as CT or MRI often results in no specific imaging correlation that would explain cognitive and clinical symptoms. Molecular imaging of mild TBI suggests that secondary events after injury can be detected using PET. However, no single specific pattern emerges that can aid in diagnosing the injury or determining the prognosis of the long-term behavioral profiles, indicating the heterogeneous and diffuse nature of TBI. Chronic traumatic encephalopathy, a primary tauopathy, has been shown to be strongly associated with repetitive TBI. In vivo data on the available tau PET tracers, however, have produced mixed results and overall low retention profiles in athletes with a history of repetitive mild TBI. Here, we emphasize that the lack of a mechanistic understanding of chronic TBI has posed a challenge when interpreting the results of molecular imaging biomarkers. We advocate for better target identification, improved analysis techniques such as machine learning or artificial intelligence, and novel tracer development.
Collapse
Affiliation(s)
- Gérard N. Bischof
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany;,Institute for Neuroscience and Medicine II–Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany; and
| | - Donna J. Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
19
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
20
|
Cummings J, Kinney J. Biomarkers for Alzheimer's Disease: Context of Use, Qualification, and Roadmap for Clinical Implementation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:952. [PMID: 35888671 PMCID: PMC9318582 DOI: 10.3390/medicina58070952] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022]
Abstract
Background and Objectives: The US Food and Drug Administration (FDA) defines a biomarker as a characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention. Biomarkers may be used in clinical care or as drug development tools (DDTs) in clinical trials. The goal of this review and perspective is to provide insight into the regulatory guidance for the use of biomarkers in clinical trials and clinical care. Materials and Methods: We reviewed FDA guidances relevant to biomarker use in clinical trials and their transition to use in clinical care. We identified instructive examples of these biomarkers in Alzheimer's disease (AD) drug development and their application in clinical practice. Results: For use in clinical trials, biomarkers must have a defined context of use (COU) as a risk/susceptibility, diagnostic, monitoring, predictive, prognostic, pharmacodynamic, or safety biomarker. A four-stage process defines the pathway to establish the regulatory acceptance of the COU for a biomarker including submission of a letter of intent, description of the qualification plan, submission of a full qualification package, and acceptance through a qualification recommendation. Biomarkers used in clinical care may be companion biomarkers, in vitro diagnostic devices (IVDs), or laboratory developed tests (LDTs). A five-phase biomarker development process has been proposed to structure the biomarker development process. Conclusions: Biomarkers are increasingly important in drug development and clinical care. Adherence to regulatory guidance for biomarkers used in clinical trials and patient care is required to advance these important drug development and clinical tools.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Pam Quirk Brain Health and Biomarker Laboratory, Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
21
|
Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R. Tau PET Imaging in Neurodegenerative Disorders. J Nucl Med 2022; 63:20S-26S. [PMID: 35649647 DOI: 10.2967/jnumed.121.263196] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The advent of PET ligands that bind tau pathology has enabled the quantification and visualization of tau pathology in aging and in Alzheimer disease (AD). There is strong evidence from neuropathologic studies that the most widely used tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-RO948, and 18F-PI2620) bind tau aggregates formed in AD in the more advanced (i.e., ≥IV) Braak stages. However, tracer binding in most non-AD tauopathies is weaker and overlaps to a large extent with known off-target binding regions, limiting the quantification and visualization of non-AD tau pathology in vivo. Off-target binding is generally present in the substantia nigra, basal ganglia, pituitary, choroid plexus, longitudinal sinuses, meninges, or skull in a tracer-specific manner. Most cross-sectional studies use the inferior aspect of the cerebellar gray matter as a reference region, whereas for longitudinal analyses, an eroded white matter reference region is sometimes selected. No consensus has yet been reached on whether to use partial-volume correction of tau PET data. Although an increased neocortical tau PET signal is rare in cognitively unimpaired individuals, even in amyloid-β-positive cases, such a signal holds important prognostic information because preliminary data suggest that an elevated tau PET signal predicts cognitive decline over time. Also, in symptomatic stages of AD (i.e., mild cognitive impairment or AD dementia), tau PET shows great potential as a prognostic marker because an elevated baseline tau PET retention forecasts future cognitive decline and brain atrophy. For differential diagnostic use, the primary utility of tau PET is to differentiate AD dementia from other neurodegenerative diseases, as is in line with the conditions for the approval of 18F-flortaucipir by the U.S. Food and Drug Administration for clinical use. The differential diagnostic performance drops substantially at the mild-cognitive-impairment stage of AD, and there is no sufficient evidence for detection of sporadic non-AD primary tauopathies at the individual level for any of the currently available tau PET tracers. In conclusion, while the field is currently addressing outstanding methodologic issues, tau PET is gradually moving toward clinical application as a diagnostic and possibly prognostic marker in dementia expert centers and as a tool for selecting participants, assessing target engagement, and monitoring treatment effects in clinical trials.
Collapse
Affiliation(s)
- Colin Groot
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada; and
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden; .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article reviews tau PET imaging with an emphasis on first-generation and second-generation tau radiotracers and their application in neurodegenerative disorders, including Alzheimer's disease and non-Alzheimer's disease tauopathies. RECENT FINDINGS Tau is a critical protein, abundant in neurons within the central nervous system, which plays an important role in maintaining microtubules by binding to tubulin in axons. In its abnormal hyperphosphorylated form, accumulation of tau has been linked to a variety of neurodegenerative disorders, collectively referred to as tauopathies, which include Alzheimer's disease and non-Alzheimer's disease tauopathies [e.g., corticobasal degeneration (CBD), argyrophilic grain disease, progressive supranuclear palsy (PSP), and Pick's disease]. A number of first-generation and second-generation tau PET radiotracers have been developed, including the first FDA-approved agent [18F]-flortaucipir, which allow for in-vivo molecular imaging of underlying histopathology antemortem, ultimately guiding disease staging and development of disease-modifying therapeutics. SUMMARY Tau PET is an emerging imaging modality in the diagnosis and staging of tauopathies.
Collapse
Affiliation(s)
| | - Michelle Roytman
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Gloria C. Chiang
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Yi Li
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Marc L. Gordon
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset
| | - Ana M. Franceschi
- Neuroradiology Division, Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York, USA
| |
Collapse
|
23
|
Gallucci M, Cenesi L, White C, Antuono P, Quaglio G, Bonanni L. Lights and Shadows of Cerebrospinal Fluid Biomarkers in the Current Alzheimer's Disease Framework. J Alzheimers Dis 2022; 86:1061-1072. [PMID: 35180122 PMCID: PMC9108561 DOI: 10.3233/jad-215432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The most significant biomarkers that are included in the Alzheimer's disease (AD) research framework are amyloid-β plaques deposition, p-tau, t-tau, and neurodegeneration.Although cerebrospinal fluid (CSF) biomarkers are included in the most recent AD research criteria, their use is increasing in the routine clinical practice and is applied also to the preclinical phases of AD, including mild cognitive impairment. The role of these biomarkers is still unclear concerning the preclinical stage of AD diagnosis, the CSF methodology, and the costs-benefits of the biomarkers' tests. The controversies regarding the use of biomarkers in the clinical practice are related to the concepts of analytical validity, clinical validity, and clinical utility and to the question of whether they are able to diagnose AD without the support of AD clinical phenotypes. OBJECTIVE The objective of the present work is to expose the strengths and weaknesses of the use of CSF biomarkers in the diagnosis of AD in a clinical context. METHODS We used PubMed as main source for articles published and the final reference list was generated on the basis of relevance to the topics covered in this work. RESULTS The use of CSF biomarkers for AD diagnosis is certainly important but its indication in routine clinical practice, especially for prodromal conditions, needs to be regulated and also contextualized considering the variety of possible clinical AD phenotypes. CONCLUSION We suggest that the diagnosis of AD should be understood both as clinical and pathological.
Collapse
Affiliation(s)
- Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy.,Associazione Alzheimer Treviso Onlus, Treviso, Italy
| | - Leandro Cenesi
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy
| | - Céline White
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy
| | - Piero Antuono
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gianluca Quaglio
- Scientific Foresight Unit (STOA), European Parliamentary Research Service, European Parliament, Brussels, Belgium
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
24
|
Filippi L, Schillaci O, Palumbo B. Neuroimaging with PET/CT in chronic traumatic encephalopathy: what nuclear medicine can do to move the field forward. Expert Rev Mol Diagn 2022; 22:149-156. [PMID: 35086415 DOI: 10.1080/14737159.2022.2035723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative syndrome, caused by single or repeated traumatic brain injuries. Since a few years ago, post mortem examination represented the only effective method to diagnose CTE through the detection of its peculiar neuropathological features (i.e. tau protein aggregates) at a macroscopic and microscopic level. Several efforts have been made to develop radiopharmaceuticals characterized by high affinity for tau aggregates, suitable for imaging through Positron Emission Computed Tomography (Tau-PET). AREAS COVERED : The various radiopharmaceuticals utilized for the molecular imaging of CTE through Tau-PET are covered, with specific reference to their applications in clinical practice. Furthermore, PET probes binding to the translocator protein (TSPO), a marker of brain injury and repair, are reviewed as potential tools for the imaging of neuroinflammatory cascade associated with CTE. EXPERT OPINION molecular neuroimaging of CTE with Tau-PET is an intriguing, although still not completely explored, tool for the in vivo detection and monitoring of neuropathological hallmarks associated with CTE. Furthermore, some novel tracers, such as TSPO-ligands, hold the promise to get an insight into the complex physiopathological mechanisms leading from brain injury to symptomatic CTE.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
25
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Achard V, Ceyzériat K, Tournier BB, Frisoni GB, Garibotto V, Zilli T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer's Disease and Neurodegeneration: Old Drugs, New Concerns. Front Oncol 2022; 11:734881. [PMID: 34970480 PMCID: PMC8712866 DOI: 10.3389/fonc.2021.734881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer patients, routinely used in the palliative or in the curative setting in association with radiotherapy. Among the systemic long-term side effects of ADT, growing data suggest a potentially increased risk of dementia/Alzheimer’s disease in prostate cancer patients treated with hormonal manipulation. While pre-clinical data suggest that androgen ablation may have neurotoxic effects due to Aβ accumulation and increased tau phosphorylation in small animal brains, clinical studies have measured the impact of ADT on long-term cognitive function, with conflicting results, and studies on biological changes after ADT are still lacking. The aim of this review is to report on the current evidence on the association between the ADT use and the risk of cognitive impairment in prostate cancer patients. We will focus on the contribution of Alzheimer’s disease biomarkers, namely through imaging, to investigate potential ADT-induced brain modifications. The evidence from these preliminary studies shows brain changes in gray matter volume, cortical activation and metabolism associated with ADT, however with a large variability in biomarker selection, ADT duration and cognitive outcome. Importantly, no study investigated yet biomarkers of Alzheimer’s disease pathology, namely amyloid and tau. These preliminary data emphasize the need for larger targeted investigations.
Collapse
Affiliation(s)
- Vérane Achard
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
27
|
Ossenkoppele R, Singleton EH, Groot C, Dijkstra AA, Eikelboom WS, Seeley WW, Miller B, Laforce RJ, Scheltens P, Papma JM, Rabinovici GD, Pijnenburg YAL. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurol 2021; 79:48-60. [PMID: 34870696 PMCID: PMC8649917 DOI: 10.1001/jamaneurol.2021.4417] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The behavioral variant of Alzheimer disease (bvAD) is characterized by early and predominant behavioral deficits caused by AD pathology. This AD phenotype is insufficiently understood and lacks standardized clinical criteria, limiting reliability and reproducibility of diagnosis and scientific reporting. Objective To perform a systematic review and meta-analysis of the bvAD literature and use the outcomes to propose research criteria for this syndrome. Data Sources A systematic literature search in PubMed/MEDLINE and Web of Science databases (from inception through April 7, 2021) was performed in duplicate. Study Selection Studies reporting on behavioral, neuropsychological, or neuroimaging features in bvAD and, when available, providing comparisons with typical amnestic-predominant AD (tAD) or behavioral variant frontotemporal dementia (bvFTD). Data Extraction and Synthesis This analysis involved random-effects meta-analyses on group-level study results of clinical data and systematic review of the neuroimaging literature. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Main Outcomes and Measures Behavioral symptoms (neuropsychiatric symptoms and bvFTD core clinical criteria), cognitive function (global cognition, episodic memory, and executive functioning), and neuroimaging features (structural magnetic resonance imaging, [18F]fluorodeoxyglucose-positron emission tomography, perfusion single-photon emission computed tomography, amyloid positron emission tomography, and tau positron emission tomography). Results The search led to the assessment of 83 studies, including 13 suitable for meta-analysis. Data were collected for 591 patients with bvAD. There was moderate to substantial heterogeneity and moderate risk of bias across studies. Cases with bvAD showed more severe behavioral symptoms than tAD (standardized mean difference [SMD], 1.16 [95% CI, 0.74-1.59]; P < .001) and a trend toward less severe behavioral symptoms compared with bvFTD (SMD, -0.22 [95% CI, -0.47 to 0.04]; P = .10). Meta-analyses of cognitive data indicated worse executive performance in bvAD vs tAD (SMD, -1.03 [95% CI, -1.74 to -0.32]; P = .008) but not compared with bvFTD (SMD, -0.61 [95% CI, -1.75 to 0.53]; P = .29). Cases with bvAD showed a nonsignificant difference of worse memory performance compared with bvFTD (SMD, -1.31 [95% CI, -2.75 to 0.14]; P = .08) but did not differ from tAD (SMD, 0.43 [95% CI, -0.46 to 1.33]; P = .34). The neuroimaging literature revealed 2 distinct bvAD neuroimaging phenotypes: an AD-like pattern with relative frontal sparing and a relatively more bvFTD-like pattern characterized by additional anterior involvement, with the AD-like pattern being more prevalent. Conclusions and Relevance These data indicate that bvAD is clinically most similar to bvFTD, while it shares most pathophysiological features with tAD. Based on these insights, we propose research criteria for bvAD aimed at improving the consistency and reliability of future research and aiding the clinical assessment of this AD phenotype.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - Ellen H Singleton
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Location VUMC, Amsterdam, the Netherlands
| | - Willem S Eikelboom
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Nihashi T, Sakurai K, Kato T, Iwata K, Kimura Y, Ikenuma H, Yamaoka A, Takeda A, Arahata Y, Washimi Y, Suzuki K, Bundo M, Sakurai T, Okamura N, Yanai K, Ito K, Nakamura A. Patterns of Distribution of 18F-THK5351 Positron Emission Tomography in Alzheimer's Disease Continuum. J Alzheimers Dis 2021; 85:223-234. [PMID: 34776443 DOI: 10.3233/jad-215024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is conceptualized as a biological continuum encompassing the preclinical (clinically asymptomatic but with evidence of AD pathology) and clinical (symptomatic) phases. OBJECTIVE Using 18F-THK5351 as a tracer that binds to both tau and MAO-B, we investigated the changes in 18F-THK5351 accumulation patterns in AD continuum individuals with positive amyloid PET consisting of cognitively normal individuals (CNp), amnestic mild cognitive impairment (aMCI), and AD and cognitively normal individuals (CNn) with negative amyloid PET. METHODS We studied 69 individuals (32 CNn, 11 CNp, 9 aMCI, and 17 AD) with structural magnetic resonance imaging, 11C-Pittsburgh compound-B (PIB) and 18F-THK5351 PET, and neuropsychological assessment. 18F-THK5351 accumulation was evaluated with visual analysis, voxel-based analysis and combined region of interest (ROI)-based analysis corresponding to Braak neurofibrillary tangle stage. RESULTS On visual analysis, 18F-THK5351 accumulation was increased with stage progression in the AD continuum. On voxel-based analysis, there was no statistical difference in 18F-THK5351 accumulation between CNp and CNn. However, a slight increase of the bilateral posterior cingulate gyrus in aMCI and definite increase of the bilateral parietal temporal association area and posterior cingulate gyrus/precuneus in AD were detected compared with CNn. On ROI-based analyses, 18F-THK5351 accumulation correlated positively with supratentorial 11C-PIB accumulation and negatively with the hippocampal volume and neuropsychological assessment. CONCLUSION The AD continuum showed an increase in 18F-THK5351 with stage progression, suggesting that 18F-THK5351 has the potential to visualize the severity of tau deposition and neurodegeneration in accordance with the AD continuum.
Collapse
Affiliation(s)
- Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan.,Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akiko Yamaoka
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Takeda
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yutaka Arahata
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Masahiko Bundo
- Department of Neurosurgery, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazuhiko Yanai
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kengo Ito
- National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | | |
Collapse
|
29
|
Ossenkoppele R, Reimand J, Smith R, Leuzy A, Strandberg O, Palmqvist S, Stomrud E, Zetterberg H, Scheltens P, Dage JL, Bouwman F, Blennow K, Mattsson-Carlgren N, Janelidze S, Hansson O. Tau PET correlates with different Alzheimer's disease-related features compared to CSF and plasma p-tau biomarkers. EMBO Mol Med 2021; 13:e14398. [PMID: 34254442 PMCID: PMC8350902 DOI: 10.15252/emmm.202114398] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
PET, CSF and plasma biomarkers of tau pathology may be differentially associated with Alzheimer's disease (AD)‐related demographic, cognitive, genetic and neuroimaging markers. We examined 771 participants with normal cognition, mild cognitive impairment or dementia from BioFINDER‐2 (n = 400) and ADNI (n = 371). All had tau‐PET ([18F]RO948 in BioFINDER‐2, [18F]flortaucipir in ADNI) and CSF p‐tau181 biomarkers available. Plasma p‐tau181 and plasma/CSF p‐tau217 were available in BioFINDER‐2 only. Concordance between PET, CSF and plasma tau biomarkers ranged between 66 and 95%. Across the whole group, ridge regression models showed that increased CSF and plasma p‐tau181 and p‐tau217 levels were independently of tau PET associated with higher age, and APOEɛ4‐carriership and Aβ‐positivity, while increased tau‐PET signal in the temporal cortex was associated with worse cognitive performance and reduced cortical thickness. We conclude that biofluid and neuroimaging markers of tau pathology convey partly independent information, with CSF and plasma p‐tau181 and p‐tau217 levels being more tightly linked with early markers of AD (especially Aβ‐pathology), while tau‐PET shows the strongest associations with cognitive and neurodegenerative markers of disease progression.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juhan Reimand
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia.,Radiology Centre, North Estonia Medical Centre, Tallinn, Estonia
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Femke Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
30
|
Boccardi M, Dodich A, Albanese E, Gayet-Ageron A, Festari C, Ashton NJ, Bischof GN, Chiotis K, Leuzy A, Wolters EE, Walter MA, Rabinovici GD, Carrillo M, Drzezga A, Hansson O, Nordberg A, Ossenkoppele R, Villemagne VL, Winblad B, Frisoni GB, Garibotto V. The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update. Eur J Nucl Med Mol Imaging 2021; 48:2070-2085. [PMID: 33688996 PMCID: PMC8175304 DOI: 10.1007/s00259-020-05120-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. METHODS We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. RESULTS The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. DISCUSSION This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
Collapse
Affiliation(s)
- Marina Boccardi
- German Center for Neurodegenerative Diseases DZNE-Standort Rostock/Greifswald, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland.
| | - Alessandra Dodich
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - Emiliano Albanese
- USI - Università della Svizzera Italiana, Institute of Public Health (IPH), Lugano, Switzerland
| | - Angèle Gayet-Ageron
- Division of Clinical Epidemiology, Department of Health and Community Medicine, University of Geneva & University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at The University of Gothenburg, Molndal, Sweden
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gérard N Bischof
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Leuzy
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Emma E Wolters
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martin A Walter
- Nuclear Medicine and Molecular Division, Geneva Medical Hospital, Geneva, Switzerland
| | - Gil D Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | - Alexander Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany
- Molecular Organization of the Brain, Research Center Jülich, Institute of Neuroscience and Medicine (INM-2), Julich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Theme Aging, Geriatric Clinic, Huddinge, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Memory Research, Lund University, Lund, Sweden
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsilvania, USA
| | - Bengt Winblad
- Karolinska University Hospital, Theme Aging, Geriatric Clinic, Huddinge, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - Valentina Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Nuclear Medicine and Molecular Division, Geneva Medical Hospital, Geneva, Switzerland
| |
Collapse
|
31
|
Garibotto V, Boccardi M, Chiti A, Frisoni GB. Molecular imaging and fluid biomarkers of Alzheimer's disease neuropathology: an opportunity for integrated diagnostics. Eur J Nucl Med Mol Imaging 2021; 48:2067-2069. [PMID: 33688995 DOI: 10.1007/s00259-020-05116-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Valentina Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland. .,Nuclear Medicine and Molecular Division, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Rostock, Germany
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Giovanni B Frisoni
- Memory Clinic, University Hospital, Geneva, Switzerland.,LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| |
Collapse
|