1
|
Cui Y, Li Y, Hu W, Wu Z, Li S, Wang H. Evaluating ΔMTV%, ΔD max%, and %ΔSUV max of 18F-FDG PET/CT for mid-treatment efficacy and prognosis in diffuse large B-cell lymphoma. Discov Oncol 2025; 16:411. [PMID: 40146454 PMCID: PMC11950622 DOI: 10.1007/s12672-025-02126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
PURPOSE To investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging in interim therapeutic and prognostic evaluation of patients with diffuse large B-cell lymphoma (DLBCL). MATERIALS AND METHODS Data of 86 patients with pathologically confirmed DLBCL who underwent 18F-FDG PET/CT imaging before chemotherapy, radiotherapy, and after interim chemotherapy, were retrospectively analyzed. Receive operating characteristic (ROC) curve analysis was performed to assess the predictive capacity of changes and change rates in PET/CT imaging parameters [maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum tumor dissemination (Dmax)] for progression-free survival (PFS) and to identify optimal cutoff values. Kaplan-Meier survival curves were constructed, and the log-rank test was used to assess intergroup differences. Cox regression analysis was used to explore potential factors influencing PFS. RESULTS Among 86 patients [(45 men, 41 women, age: 57.8 ± 12.2 years)], the median PFS was 22.5 (14.5, 46) months. Until the last follow-up date, progression or recurrence occurred in 14 patients, while 9 patients died. The ROC curves indicated that the optimal cutoff values for predicting PFS were 99.10%, 99.72%, and 96.47% for ΔMTV%, ΔTLG%, and ΔDmax%, respectively (area under the curve = 0.786-0.849, all P < 0.05). Cox univariate analysis demonstrated that the alteration rates in metabolic and diffusion parameters before and after treatment, including SUVmax%, MTV%, TLG%, and Dmax%, were predictive of PFS (hazard ratio [HR] = 6.213-13.430, all P < 0.05). The Cox multivariate analysis demonstrated that ΔMTV% and ΔDmax% independently predicted PFS, with HRs of 10.727 (95% confidence interval [CI] = 1.928-56.672, P = 0.007) and 7.178 (95%CI = 1.514-34.041, P = 0.013), respectively. We established a new prediction model by combining the ΔMTV% and ΔDmax% parameters, and the results of the model showed statistically significant differences in PFS between the high, intermediate, and low-risk groups. The model predicted higher effects than individual indicators. CONCLUSION The rate of change in metabolic and diffusion parameters on interim PET/CT can predict the prognosis of patients with DLBCL.
Collapse
Affiliation(s)
- Yali Cui
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yao Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Wenhao Hu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
2
|
Sobejana M, Al Beiramani M, Zwezerijnen GJC, van der Kooi A, Raaphorst J, Meskers CGM, van der Esch M, van der Laken CJ, Steinz MM. Methodology Development for Investigating Pathophysiological [ 18F]-FDG Muscle Uptake in Patients with Rheumatic Musculoskeletal Diseases. Biomedicines 2025; 13:465. [PMID: 40002878 PMCID: PMC11853360 DOI: 10.3390/biomedicines13020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: This retrospective study explored the qualitative and quantitative assessment of F18-fluordeoxyglucose ([18F]-FDG) positron emission tomography and computed tomography (PET/CT) scans to assess pathophysiological muscle glucose uptake in patients with a rheumatic musculoskeletal disease (RMD). [18F]-FDG PET/CT detects metabolic activity via glucose uptake in tissues. This study aimed to determine the feasibility of quantitative assessment of [18F]-FDG uptake in muscles across three different RMDs compared to controls. Methods: In this study we analysed whole-body [18F]-FDG PET/CT scans from patients with rheumatoid arthritis (RA; n = 11), osteoarthritis (OA; n = 10), and idiopathic inflammatory myositis (IIM; n = 10), and non-RMD controls (n = 11), focusing on muscle-tracer uptake in specific muscle groups. Qualitative assessment visually identified regions with high [18F]-FDG uptake, followed by quantitative assessment using two methods: fixed volume-of-interest (VOI) and hotspot VOI. In the fixed VOI method, a VOI was placed in the respective muscle at a fixed position (50% height from proximal to distal end) on PET/CT images. In the hotspot VOI method, the VOI was placed at the site of the highest [18F]-FDG uptake observed during qualitative assessment. Standardised uptake values (SUVs) were determined for different muscle groups between RMDs and controls. Results: Qualitative assessment revealed a heterogenous uptake pattern of [18F]-FDG that was found in 93% of quadriceps and hamstring muscles, while other muscles displayed either heterogenous or homogenous patterns. A Bland-Altman analysis showed that the hotspot VOI method had a higher sensitivity in detecting differential [18F]-FDG uptake in muscles. Across all muscle groups, patients with IIM had the highest [18F]-FDG uptake, followed by patients with OA and RA, respectively. Conclusions: [18F]-FDG PET/CT enables qualitative and quantitative differentiation of muscle glucose uptake in patients with RA, OA, and IIM, at both individual muscle and patient group levels. The hotspot method and SUVpeak are recommended for quantitative assessment. High [18F]-FDG uptake in multiple muscle groups suggests pathophysiological glucose metabolism in RMD-affected muscles.
Collapse
Affiliation(s)
- Maia Sobejana
- Reade, Center for Rehabilitation and Rheumatology, 1056 AB Amsterdam, The Netherlands
| | - Mustafa Al Beiramani
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Gerben J. C. Zwezerijnen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, 1081 HV Amsterdam, The Netherlands
| | - Anneke van der Kooi
- Department of Neurology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Carel G. M. Meskers
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
| | - Martin van der Esch
- Reade, Center for Rehabilitation and Rheumatology, 1056 AB Amsterdam, The Netherlands
- Health Faculty, Amsterdam University of Applied Sciences, 1067 SM Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), 1081 BT Amsterdam, The Netherlands
| | - Conny J. van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), 1081 BT Amsterdam, The Netherlands
| | - Maarten M. Steinz
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhou Y, Zhou XY, Xu YC, Ma XL, Tian R. Radiomics based on 18F-FDG PET for predicting treatment response and prognosis in newly diagnosed diffuse large B-cell lymphoma patients: do lesion selection and segmentation methods matter? Quant Imaging Med Surg 2025; 15:103-120. [PMID: 39839002 PMCID: PMC11744140 DOI: 10.21037/qims-24-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 01/23/2025]
Abstract
Background Radiomics features extracted from baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scans have shown promising results in predicting the treatment response and outcome of diffuse large B-cell lymphoma (DLBCL) patients. This study aimed to assess the influence of lesion selection approaches and segmentation methods on the radiomics of DLBCL in terms of treatment response and prognosis prediction. Methods A total of 522 and 382 patients pathologically diagnosed with DLBCL were enrolled for complete regression and 2-year event-free survival prediction, respectively. Three lesion selection methods (largest or hottest lesion, patient level) and five segmentation methods (manual and four semiautomatic segmentations) were applied. A total of 112 radiomics features were extracted from the lesions and at the patient level. The feature selection was performed via random forest, and models were constructed via eXtreme Gradient Boosting. The performance of all the models was evaluated via the area under the curve (AUC), which was compared via the Delong test. Results The AUC values varied from 0.583 to 0.768 for the treatment response and prognosis prediction models on the basis of different lesion selection and segmentation methods. However, the prediction performance gap was not significant for each model (all P>0.05). The combined models (AUC =0.908 and 0.837 for treatment response and prognosis prediction, respectively) that incorporated radiomics and clinical features exhibited significant predictive superiority over the clinical models (AUC =0.622 and 0.636, respectively) and the international prognostic index model (AUC =0.623 for prognosis prediction) (all P<0.05). Conclusions Although there are differences in the selected radiomics features among lesion selection and segmentation methods, there is no substantial difference in the predictive power of each radiomics model. In addition, radiomics features have potential added value to clinical features.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yan Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu-Chao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sun Z, Yang T, Ding C, Shi Y, Cheng L, Jia Q, Tao W. Clinical scoring systems, molecular subtypes and baseline [ 18F]FDG PET/CT image analysis for prognosis of diffuse large B-cell lymphoma. Cancer Imaging 2024; 24:168. [PMID: 39696503 DOI: 10.1186/s40644-024-00810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous hematological malignancy resulting in a range of outcomes, and the early prediction of these outcomes has important implications for patient management. Clinical scoring systems provide the most commonly used prognostic evaluation criteria, and the value of genetic testing has also been confirmed by in-depth research on molecular typing. [18F]-fluorodeoxyglucose positron emission tomography / computed tomography ([18F]FDG PET/CT) is an invaluable tool for predicting DLBCL progression. Conventional baseline image-based parameters and machine learning models have been used in prognostic FDG PET/CT studies of DLBCL; however, numerous studies have shown that combinations of baseline clinical scoring systems, molecular subtypes, and parameters and models based on baseline FDG PET/CT image may provide better predictions of patient outcomes and aid clinical decision-making in patients with DLBCL.
Collapse
Affiliation(s)
- Zhuxu Sun
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
5
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
6
|
Kwon R, Kim H, Ahn KS, Song BI, Lee J, Kim HW, Won KS, Lee HW, Kim TS, Kim Y, Kang KJ. A Machine Learning-Based Clustering Using Radiomics of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for the Prediction of Prognosis in Patients with Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2024; 14:2245. [PMID: 39410649 PMCID: PMC11475304 DOI: 10.3390/diagnostics14192245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (IHCC) is highly aggressive primary hepatic malignancy with an increasing incidence. OBJECTIVE This study aimed to develop machine learning-based radiomic clustering using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for predicting recurrence-free survival (RFS) and overall survival (OS) in IHCC. METHODS We retrospectively reviewed pretreatment F-18 FDG PET/CT scans of 60 IHCC patients who underwent surgery without neoadjuvant treatment between January 2008 and July 2020. Radiomic features such as first order, shape, and gray level were extracted from the scans of 52 patients and analyzed using unsupervised hierarchical clustering. RESULTS Of the 60 patients, 36 experienced recurrence and 31 died during follow-up. Eight patients with a negative FDG uptake were classified as Group 0. The unsupervised hierarchical clustering analysis divided the total cohort into three clusters (Group 1: n = 27; Group 2: n = 23; Group 3: n = 2). The Kaplan-Meier curves showed significant differences in RFS and OS among the clusters (p < 0.0001). Multivariate analyses showed that the PET radiomics grouping was an independent prognostic factor for RFS (hazard ratio (HR) = 3.03, p = 0.001) and OS (HR = 2.39, p = 0.030). Oxidative phosphorylation was significantly activated in Group 1, and the KRAS, P53, and WNT β-catenin pathways were enriched in Group 2. CONCLUSIONS This study demonstrated that machine learning-based PET radiomics clustering can preoperatively predict prognosis and provide valuable information complementing the genomic profiling of IHCC.
Collapse
Affiliation(s)
- Rosie Kwon
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hannah Kim
- Department of Biology, Columbia University, New York, NY 10027, USA
| | - Keun Soo Ahn
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
- Department of Medical Information, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jinny Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
- Department of Medical Information, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Tae-Seok Kim
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yonghoon Kim
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Koo Jeong Kang
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Captier N, Orlhac F, Hovhannisyan-Baghdasarian N, Luporsi M, Girard N, Buvat I. RadShap: An Explanation Tool for Highlighting the Contributions of Multiple Regions of Interest to the Prediction of Radiomic Models. J Nucl Med 2024; 65:1307-1312. [PMID: 38906555 PMCID: PMC11294068 DOI: 10.2967/jnumed.124.267434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024] Open
Abstract
Explaining the decisions made by a radiomic model is of significant interest, as it can provide valuable insights into the information learned by complex models and foster trust in well-performing ones, thereby facilitating their clinical adoption. Promising radiomic approaches that aggregate information from multiple regions within an image currently lack suitable explanation tools that could identify the regions that most significantly influence their decisions. Here we present a model- and modality-agnostic tool (RadShap, https://github.com/ncaptier/radshap), based on Shapley values, that explains the predictions of multiregion radiomic models by highlighting the contribution of each individual region. Methods: The explanation tool leverages Shapley values to distribute the aggregative radiomic model's output among all the regions of interest of an image, highlighting their individual contribution. RadShap was validated using a retrospective cohort of 130 patients with advanced non-small cell lung cancer undergoing first-line immunotherapy. Their baseline PET scans were used to build 1,000 synthetic tasks to evaluate the degree of alignment between the tool's explanations and our data generation process. RadShap's potential was then illustrated through 2 real case studies by aggregating information from all segmented tumors: the prediction of the progression-free survival of the non-small cell lung cancer patients and the classification of the histologic tumor subtype. Results: RadShap demonstrated strong alignment with the ground truth, with a median frequency of 94% for consistently explained predictions in the synthetic tasks. In both real-case studies, the aggregative models yielded superior performance to the single-lesion models (average [±SD] time-dependent area under the receiver operating characteristic curve was 0.66 ± 0.02 for the aggregative survival model vs. 0.55 ± 0.04 for the primary tumor survival model). The tool's explanations provided relevant insights into the behavior of the aggregative models, highlighting that for the classification of the histologic subtype, the aggregative model used information beyond the biopsy site to correctly classify patients who were initially misclassified by a model focusing only on the biopsied tumor. Conclusion: RadShap aligned with ground truth explanations and provided valuable insights into radiomic models' behaviors. It is implemented as a user-friendly Python package with documentation and tutorials, facilitating its smooth integration into radiomic pipelines.
Collapse
Affiliation(s)
- Nicolas Captier
- Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, INSERM U1288, PSL Research University, Orsay, France;
| | - Fanny Orlhac
- Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, INSERM U1288, PSL Research University, Orsay, France
| | | | - Marie Luporsi
- Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, INSERM U1288, PSL Research University, Orsay, France
- Department of Nuclear Medicine, Institut Curie, Paris, France; and
| | - Nicolas Girard
- Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, INSERM U1288, PSL Research University, Orsay, France;
| |
Collapse
|
8
|
Yang T, Liu D, Zhang Z, Sa R, Guan F. Predicting T-Cell Lymphoma in Children From 18F-FDG PET-CT Imaging With Multiple Machine Learning Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:952-964. [PMID: 38321311 PMCID: PMC11169166 DOI: 10.1007/s10278-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024]
Abstract
This study aimed to examine the feasibility of utilizing radiomics models derived from 18F-FDG PET/CT imaging to screen for T-cell lymphoma in children with lymphoma. All patients had undergone 18F-FDG PET/CT scans. Lesions were extracted from PET/CT and randomly divided into training and validation sets. Two different types of models were constructed as follows: features that are extracted from standardized uptake values (SUV)-associated parameters, and CT images were used to build SUV/CT-based model. Features that are derived from PET and CT images were used to build PET/CT-based model. Logistic regression (LR), linear support vector machine, support vector machine with the radial basis function kernel, neural networks, and adaptive boosting were performed as classifiers in each model. In the training sets, 77 patients, and 247 lesions were selected for building the models. In the validation sets, PET/CT-based model demonstrated better performance than that of SUV/CT-based model in the prediction of T-cell lymphoma. LR showed highest accuracy with 0.779 [0.697, 0.860], area under the receiver operating characteristic curve (AUC) with 0.863 [0.762, 0.963], and preferable goodness-of-fit in PET/CT-based model at the patient level. LR also showed best performance with accuracy of 0.838 [0.741, 0.936], AUC of 0.907 [0.839, 0.976], and preferable goodness-of-fit in PET/CT-based model at the lesion level. 18F-FDG PET/CT-based radiomics models with different machine learning classifiers were able to screen T-cell lymphoma in children with high accuracy, AUC, and preferable goodness-of-fit, providing incremental value compared with SUV-associated features.
Collapse
Affiliation(s)
- Taiyu Yang
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Danyan Liu
- Department of Radiology, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Zexu Zhang
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China
| | - Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China.
| | - Feng Guan
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, China.
| |
Collapse
|
9
|
Liu Y, Liu Z, Li X, Zhou W, Lin L, Chen X. Non-invasive assessment of response to transcatheter arterial chemoembolization for hepatocellular carcinoma with the deep neural networks-based radiomics nomogram. Acta Radiol 2024; 65:535-545. [PMID: 38489805 DOI: 10.1177/02841851241229185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND Transcatheter arterial chemoembolization (TACE) is a mainstay treatment for intermediate and advanced hepatocellular carcinoma (HCC), with the potential to enhance patient survival. Preoperative prediction of postoperative response to TACE in patients with HCC is crucial. PURPOSE To develop a deep neural network (DNN)-based nomogram for the non-invasive and precise prediction of TACE response in patients with HCC. MATERIAL AND METHODS We retrospectively collected clinical and imaging data from 110 patients with HCC who underwent TACE surgery. Radiomics features were extracted from specific imaging methods. We employed conventional machine-learning algorithms and a DNN-based model to construct predictive probabilities (RScore). Logistic regression helped identify independent clinical risk factors, which were integrated with RScore to create a nomogram. We evaluated diagnostic performance using various metrics. RESULTS Among the radiomics models, the DNN_LASSO-based one demonstrated the highest predictive accuracy (area under the curve [AUC] = 0.847, sensitivity = 0.892, specificity = 0.791). Peritumoral enhancement and alkaline phosphatase were identified as independent risk factors. Combining RScore with these clinical factors, a DNN-based nomogram exhibited superior predictive performance (AUC = 0.871, sensitivity = 0.844, specificity = 0.873). CONCLUSION In this study, we successfully developed a deep learning-based nomogram that can noninvasively and accurately predict TACE response in patients with HCC, offering significant potential for improving the clinical management of HCC.
Collapse
Affiliation(s)
- Yushuang Liu
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology and Imaging, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Zilin Liu
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology and Imaging, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Xinhua Li
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Weiwen Zhou
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology and Imaging, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Lifu Lin
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology and Imaging, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Xiaodong Chen
- Guangdong Medical University, Zhanjiang, PR China
- Department of Radiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| |
Collapse
|
10
|
Wu W, Zhao L, Wang Y, Chen P, Yuan X, Miao L, Zhu Y, Mao J, Cai Z, Ji Y, Wang L, Jia T. Prognostic value of the peripheral blood lymphocyte/monocyte ratio combined with 18F-FDG PET/CT in patients with diffuse large B-cell lymphoma. Curr Probl Cancer 2024; 48:101066. [PMID: 38364336 DOI: 10.1016/j.currproblcancer.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To explore the prognostic value of the peripheral blood lymphocyte/monocyte ratio (LMR) combined with 18F-FDG PET/CT for diffuse large B-cell lymphoma (DLBCL). METHODS The clinical data of 203 patients with primary DLBCL who were hospitalized to the First People's Hospital of Lianyungang between January 2017 and December 2022 were retrospectively analyzed. Before and after three courses of treatment, PET/CT was performed on forty DLBCL patients. The subject operating characteristic (ROC) curve has been employed to determine the most effective LMR cutoff points. According to the criteria for assessing the efficacy of Lugano lymphoma, the PET/CT findings after 3 courses of treatment were specified as complete remission (CR), partial remission (PR), stable disease (SD) and disease progression (PD). The CR group, PR+SD group, and PD group were the three groups created from the four outcomes. Results were analyzed using the Cox proportional risk model, the Kaplan-Meier method (K-M), and the log-rank test. RESULTS An optimal cutoff point of 3.00 for the LMR in 203 patients was determined by the SPSS 26 software ROC curve. When LMR≥3.00, the 1-year, 3-year, and 5-year OS (Overall Survival) rates are 98%, 88%, and 64% respectively, and the PFS (Progression-free Survival) rates are 90%, 75%, and 56% respectively. When LMR <3.00, the 1-year, 3-year, and 5-year OS rates are 96%, 72%, and 28% respectively, and the PFS rates are 83%, 60%, and 28% respectively. A lower LMR was substantially related with shorter OS, and PFS, according to a K-M survival analysis (P<0.005). LMR<3.00 was an independent predictor of OS, based on a multifactorial Cox analysis (P=0.037). K-M survival analysis of the 18F-FDG PET/CT results of 40 patients revealed that both OS and PFS were statistically significant (P<0.001). Patients were separated into 3 groups combining LMR and 18F-FDG PET/CT: PET/CT CR patients with LMR≥3.00, PET/CT PD patients with LMR<3.00, and others. The Kaplan-Meier analysis revealed that there were significant differences in OS and PFS for each of the three groups (P<0.001). ROC curves showed that the area under the curve (AUC) of the combined testing of the two was 0.735, and the combined testing of the two was better compared to testing alone (PET/CT AUC=0.535, LMR AUC=0.567). This indicates that combining both PET/CT and LMR is a favorable prediction for DLBCL. CONCLUSION A decreased LMR at initial diagnosis suggests an unfavorable prognosis for DLBCL patients; For patients with DLBCL, combining 18F-FDG PET/CT and the LMR has a better predictive value.
Collapse
Affiliation(s)
- Wenke Wu
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Department of Hematology, Postgraduate Training Base of the Lian Yungang First People's Hospital of Jinzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Ying Wang
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Peng Chen
- Department of Nuclear Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Xiaoshuai Yuan
- Department of Nuclear Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lei Miao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Yuanxin Zhu
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Zhimei Cai
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Yajun Ji
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lei Wang
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Tao Jia
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China.
| |
Collapse
|
11
|
Carlier T, Frécon G, Mateus D, Rizkallah M, Kraeber-Bodéré F, Kanoun S, Blanc-Durand P, Itti E, Le Gouill S, Casasnovas RO, Bodet-Milin C, Bailly C. Prognostic Value of 18F-FDG PET Radiomics Features at Baseline in PET-Guided Consolidation Strategy in Diffuse Large B-Cell Lymphoma: A Machine-Learning Analysis from the GAINED Study. J Nucl Med 2024; 65:156-162. [PMID: 37945379 DOI: 10.2967/jnumed.123.265872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
The results of the GA in Newly Diagnosed Diffuse Large B-Cell Lymphoma (GAINED) study demonstrated the success of an 18F-FDG PET-driven approach to allow early identification-for intensification therapy-of diffuse large B-cell lymphoma patients with a high risk of relapse. Besides, some works have reported the prognostic value of baseline PET radiomics features (RFs). This work investigated the added value of such biomarkers on survival of patients involved in the GAINED protocol. Methods: Conventional PET features and RFs were computed from 18F-FDG PET at baseline and extracted using different volume definitions (patient level, largest lesion, and hottest lesion). Clinical features and the consolidation treatment information were also considered in the model. Two machine-learning pipelines were trained with 80% of patients and tested on the remaining 20%. The training was repeated 100 times to highlight the test set variability. For the 2-y progression-free survival (PFS) outcome, the pipeline included a data augmentation and an elastic net logistic regression model. Results for different feature groups were compared using the mean area under the curve (AUC). For the survival outcome, the pipeline included a Cox univariate model to select the features. Then, the model included a split between high- and low-risk patients using the median of a regression score based on the coefficients of a penalized Cox multivariate approach. The log-rank test P values over the 100 loops were compared with a Wilcoxon signed-ranked test. Results: In total, 545 patients were included for the 2-y PFS classification and 561 for survival analysis. Clinical features alone, consolidation features alone, conventional PET features, and RFs extracted at patient level achieved an AUC of, respectively, 0.65 ± 0.07, 0.64 ± 0.06, 0.60 ± 0.07, and 0.62 ± 0.07 (0.62 ± 0.07 for the largest lesion and 0.54 ± 0.07 for the hottest). Combining clinical features with the consolidation features led to the best AUC (0.72 ± 0.06). Adding conventional PET features or RFs did not improve the results. For survival, the log-rank P values of the model involving clinical and consolidation features together were significantly smaller than all combined-feature groups (P < 0.007). Conclusion: The results showed that a concatenation of multimodal features coupled with a simple machine-learning model does not seem to improve the results in terms of 2-y PFS classification and PFS prediction for patient treated according to the GAINED protocol.
Collapse
Affiliation(s)
- Thomas Carlier
- Nantes Université, INSERM, CNRS, CRCINA, Université d'Angers, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Gauthier Frécon
- Nantes Université, INSERM, CNRS, CRCINA, Université d'Angers, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Diana Mateus
- Laboratoire des Sciences Numériques de Nantes, Ecole Centrale de Nantes, CNRS UMR 6004, Nantes, France
| | - Mira Rizkallah
- Laboratoire des Sciences Numériques de Nantes, Ecole Centrale de Nantes, CNRS UMR 6004, Nantes, France
| | - Françoise Kraeber-Bodéré
- Nantes Université, INSERM, CNRS, CRCINA, Université d'Angers, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Salim Kanoun
- Nuclear Medicine, Georges-François Leclerc Center, Dijon, France
| | - Paul Blanc-Durand
- Nuclear Medicine, CHU Henri Mondor, Paris-Est University, Créteil, France
| | - Emmanuel Itti
- Nuclear Medicine, CHU Henri Mondor, Paris-Est University, Créteil, France
| | - Steven Le Gouill
- Haematology Department, University Hospital, Nantes, France; and
| | | | - Caroline Bodet-Milin
- Nantes Université, INSERM, CNRS, CRCINA, Université d'Angers, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Clément Bailly
- Nantes Université, INSERM, CNRS, CRCINA, Université d'Angers, Nantes, France;
- Nuclear Medicine Department, University Hospital, Nantes, France
| |
Collapse
|
12
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
13
|
Lewis KL, Trotman J. Integration of PET in DLBCL. Semin Hematol 2023; 60:291-304. [PMID: 38326144 DOI: 10.1053/j.seminhematol.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
F-fluorodeoxyglucose positron emission tomography-computerized tomography (18FDG-PET/CT) is the gold-standard imaging modality for staging and response assessment for most lymphomas. This review focuses on the utility of 18FDG-PET/CT, and its role in staging, prognostication and response assessment in diffuse large B-cell lymphoma (DLBCL), including emerging possibilities for future use.
Collapse
Affiliation(s)
| | - Judith Trotman
- Concord Repatriation General Hospital, Concord, NSW, Australia
| |
Collapse
|
14
|
Jing F, Liu Y, Zhao X, Wang N, Dai M, Chen X, Zhang Z, Zhang J, Wang J, Wang Y. Baseline 18F-FDG PET/CT radiomics for prognosis prediction in diffuse large B cell lymphoma. EJNMMI Res 2023; 13:92. [PMID: 37884763 PMCID: PMC10603012 DOI: 10.1186/s13550-023-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma in adults. Standard treatment includes chemoimmunotherapy with R-CHOP or similar regimens. Despite treatment advancements, many patients with DLBCL experience refractory disease or relapse. While baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) parameters have shown promise in predicting survival, they may not fully capture lesion heterogeneity. This study aimed to assess the prognostic value of baseline 18F-FDG PET radiomics features in comparison with clinical factors and metabolic parameters for assessing 2-year progression-free survival (PFS) and 5-year overall survival (OS) in patients with DLBCL. RESULTS A total of 201 patients with DLBCL were enrolled in this study, and 1328 radiomics features were extracted. The radiomics signatures, clinical factors, and metabolic parameters showed significant prognostic value for individualized prognosis prediction in patients with DLBCL. Radiomics signatures showed the lowest Akaike information criterion (AIC) value and highest Harrell's concordance index (C-index) value in comparison with clinical factors and metabolic parameters for both PFS (AIC: 571.688 vs. 596.040 vs. 576.481; C-index: 0.732 vs. 0.658 vs. 0.702, respectively) and OS (AIC: 339.843 vs. 363.671 vs. 358.412; C-index: 0.759 vs. 0.667 vs. 0.659, respectively). Statistically significant differences were observed in the area under the curve (AUC) values between the radiomics signatures and clinical factors for both PFS (AUC: 0.768 vs. 0.681, P = 0.017) and OS (AUC: 0.767 vs. 0.667, P = 0.023). For OS, the AUC of the radiomics signatures were significantly higher than those of metabolic parameters (AUC: 0.767 vs. 0.688, P = 0.007). However, for PFS, no significant difference was observed between the radiomics signatures and metabolic parameters (AUC: 0.768 vs. 0.756, P = 0.654). The combined model and the best-performing individual model (radiomics signatures) alone showed no significant difference for both PFS (AUC: 0.784 vs. 0.768, P = 0.163) or OS (AUC: 0.772 vs. 0.767, P = 0.403). CONCLUSIONS Radiomics signatures derived from PET images showed the high predictive power for progression in patients with DLBCL. The combination of radiomics signatures, clinical factors, and metabolic parameters may not significantly improve predictive value beyond that of radiomics signatures alone.
Collapse
Affiliation(s)
- Fenglian Jing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Yunuan Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China.
| | - Na Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Meng Dai
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| | - Yingchen Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
15
|
Zhao S, Wang J, Jin C, Zhang X, Xue C, Zhou R, Zhong Y, Liu Y, He X, Zhou Y, Xu C, Zhang L, Qian W, Zhang H, Zhang X, Tian M. Stacking Ensemble Learning-Based [ 18F]FDG PET Radiomics for Outcome Prediction in Diffuse Large B-Cell Lymphoma. J Nucl Med 2023; 64:1603-1609. [PMID: 37500261 DOI: 10.2967/jnumed.122.265244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/31/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to develop an analytic approach based on [18F]FDG PET radiomics using stacking ensemble learning to improve the outcome prediction in diffuse large B-cell lymphoma (DLBCL). Methods: In total, 240 DLBCL patients from 2 medical centers were divided into the training set (n = 141), internal testing set (n = 61), and external testing set (n = 38). Radiomics features were extracted from pretreatment [18F]FDG PET scans at the patient level using 4 semiautomatic segmentation methods (SUV threshold of 2.5, SUV threshold of 4.0 [SUV4.0], 41% of SUVmax, and SUV threshold of mean liver uptake [PERCIST]). All extracted features were harmonized with the ComBat method. The intraclass correlation coefficient was used to evaluate the reliability of radiomics features extracted by different segmentation methods. Features from the most reliable segmentation method were selected by Pearson correlation coefficient analysis and the LASSO (least absolute shrinkage and selection operator) algorithm. A stacking ensemble learning approach was applied to build radiomics-only and combined clinical-radiomics models for prediction of 2-y progression-free survival and overall survival based on 4 machine learning classifiers (support vector machine, random forests, gradient boosting decision tree, and adaptive boosting). Confusion matrix, receiver-operating-characteristic curve analysis, and survival analysis were used to evaluate the model performance. Results: Among 4 semiautomatic segmentation methods, SUV4.0 segmentation yielded the highest interobserver reliability, with 830 (66.7%) selected radiomics features. The combined model constructed by the stacking method achieved the best discrimination performance. For progression-free survival prediction in the external testing set, the areas under the receiver-operating-characteristic curve and accuracy of the stacking-based combined model were 0.771 and 0.789, respectively. For overall survival prediction, the stacking-based combined model achieved an area under the curve of 0.725 and an accuracy of 0.763 in the external testing set. The combined model also demonstrated a more distinct risk stratification than the International Prognostic Index in all sets (log-rank test, all P < 0.05). Conclusion: The combined model that incorporates [18F]FDG PET radiomics and clinical characteristics based on stacking ensemble learning could enable improved risk stratification in DLBCL.
Collapse
Affiliation(s)
- Shuilin Zhao
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiang Zhang
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Yuwei Liu
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xuexin He
- Department of Medical Oncology, Huashan Hospital of Fudan University, Shanghai, China
| | - Youyou Zhou
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Caiyun Xu
- Department of Nuclear Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lixia Zhang
- Department of Nuclear Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Wenbin Qian
- Department of Hematology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China;
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China; and
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China;
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Huang R, Geng H, Zhu L, Yan J, Li C, Li Y. CT radiomics can predict disease progression within 6 months after chimeric antigen receptor-modified T-cell therapy in relapsed/refractory B-cell non-Hodgkin's lymphoma patients. Clin Radiol 2023; 78:e707-e717. [PMID: 37407367 DOI: 10.1016/j.crad.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
AIM To predict progression within 6 months after chimeric antigen receptor-modified (CAR) T-cell therapy for relapsed/refractory (R/R) B-cell non-Hodgkin's lymphoma (B-NHL) patients by radiomic indexes derived from contrast-enhanced computed tomography (CECT) examinations. MATERIALS AND METHODS Seventy R/R B-NHL patients who underwent CECT before treatment with CAR T-cells were examined retrospectively. In total, 297 volumes of interest for lesions were segmented from CECT images. Patients without and with disease progression were assigned to groups 1 and 2, respectively. Radiomic and combined predictive models were constructed by three machine-learning algorithms using features from the training set, respectively. Furthermore, predictive models were constructed based on multi-lesion-based and largest-lesion-based radiomic features, respectively. RESULTS In the test set, no marked differences were observed between the areas under the curves (AUCs) of the combined and radiomic models for all three machine-learning algorithms (all p>0.05). Differences in machine-learning algorithms did not significantly affect the predictive performances of the models. Radiomics and combined models constructed with multi-lesion-based radiomic features showed better predictive performances than those applying largest-lesion-based radiomic features (all p<0.05 for comparisons between combined models). CONCLUSION CECT-based radiomic features may be applied to predict disease progression in R/R B-NHL patients within 6 months after CAR T-cell treatment, and radiomic features from multiple lesions may have better predictive efficacy. Different machine-learning algorithms may not show significant differences in prediction performance.
Collapse
Affiliation(s)
- R Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - H Geng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - L Zhu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province, 215000, PR China
| | - J Yan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - C Li
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China
| | - Y Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu province 215000, PR China; Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu province 215000, PR China.
| |
Collapse
|
17
|
Chen K, Wang J, Li S, Zhou W, Xu W. Predictive value of 18F-FDG PET/CT-based radiomics model for neoadjuvant chemotherapy efficacy in breast cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging 2023; 50:1869-1880. [PMID: 36808002 DOI: 10.1007/s00259-023-06150-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To develop and validate the predictive value of an 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) model for breast cancer neoadjuvant chemotherapy (NAC) efficacy based on the tumor-to-liver ratio (TLR) radiomic features and multiple data pre-processing methods. METHODS One hundred and ninety-three breast cancer patients from multiple centers were retrospectively included in this study. According to the endpoint of NAC, we divided the patients into pathological complete remission (pCR) and non-pCR groups. All patients underwent 18F-FDG PET/CT imaging before NAC treatment, and CT and PET images volume of interest (VOI) segmentation by manual segmentation and semi-automated absolute threshold segmentation, respectively. Then, feature extraction of VOI was performed with the pyradiomics package. A total of 630 models were created based on the source of radiomic features, the elimination of the batch effect approach, and the discretization method. The differences in data pre-processing approaches were compared and analyzed to identify the best-performing model, which was further tested by the permutation test. RESULTS A variety of data pre-processing methods contributed in varying degrees to the improvement of model effects. Among them, TLR radiomic features and Combat and Limma methods that eliminate batch effects could enhance the model prediction overall, and data discretization could be used as a potential method that can further optimize the model. A total of seven excellent models were selected and then based on the AUC of each model in the four test sets and their standard deviations, we selected the optimal model. The optimal model predicted AUC between 0.7 and 0.77 for the four test groups, with p-values less than 0.05 for the permutation test. CONCLUSION It is necessary to enhance the predictive effect of the model by eliminating confounding factors through data pre-processing. The model developed in this way is effective in predicting the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Kun Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Shuai Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wen Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Wengui Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
18
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Veziroglu EM, Farhadi F, Hasani N, Nikpanah M, Roschewski M, Summers RM, Saboury B. Role of Artificial Intelligence in PET/CT Imaging for Management of Lymphoma. Semin Nucl Med 2023; 53:426-448. [PMID: 36870800 DOI: 10.1053/j.semnuclmed.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 03/06/2023]
Abstract
Our review shows that AI-based analysis of lymphoma whole-body FDG-PET/CT can inform all phases of clinical management including staging, prognostication, treatment planning, and treatment response evaluation. We highlight advancements in the role of neural networks for performing automated image segmentation to calculate PET-based imaging biomarkers such as the total metabolic tumor volume (TMTV). AI-based image segmentation methods are at levels where they can be semi-automatically implemented with minimal human inputs and nearing the level of a second-opinion radiologist. Advances in automated segmentation methods are particularly apparent in the discrimination of lymphomatous vs non-lymphomatous FDG-avid regions, which carries through to automated staging. Automated TMTV calculators, in addition to automated calculation of measures such as Dmax are informing robust models of progression-free survival which can then feed into improved treatment planning.
Collapse
Affiliation(s)
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Navid Hasani
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Department of Radiology, University of Alabama at Birmingham, AL
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Ronald M Summers
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
20
|
Albano D, Treglia G, Dondi F, Calabrò A, Rizzo A, Annunziata S, Guerra L, Morbelli S, Tucci A, Bertagna F. 18F-FDG PET/CT Maximum Tumor Dissemination (Dmax) in Lymphoma: A New Prognostic Factor? Cancers (Basel) 2023; 15:cancers15092494. [PMID: 37173962 PMCID: PMC10177347 DOI: 10.3390/cancers15092494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, several studies introduced the potential prognostic usefulness of maximum tumor dissemination (Dmax) measured by 2-deoxy-2-fluorine-18-fluoro-D-glucose positron-emission tomography/computed tomography (18F-FDG PET/CT). Dmax is a simple three-dimensional feature that represents the maximal distance between the two farthest hypermetabolic PET lesions. A comprehensive computer literature search of PubMed/MEDLINE, Embase, and Cochrane libraries was conducted, including articles indexed up to 28 February 2023. Ultimately, 19 studies analyzing the value of 18F-FDG PET/CT Dmax in patients with lymphomas were included. Despite their heterogeneity, most studies showed a significant prognostic role of Dmax in predicting progression-free survival (PFS) and overall survival (OS). Some articles showed that the combination of Dmax with other metabolic features, such as MTV and interim PET response, proved to better stratify the risk of relapse or death. However, some methodological open questions need to be clarified before introducing Dmax into clinical practice.
Collapse
Affiliation(s)
- Domenico Albano
- Division of Nuclear Medicine, Università degli Studi di Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Francesco Dondi
- Division of Nuclear Medicine, Università degli Studi di Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Anna Calabrò
- Division of Nuclear Medicine, Università degli Studi di Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Luca Guerra
- Nuclear Medicine Division, Ospedale San Gerardo, 20900 Monza, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Francesco Bertagna
- Division of Nuclear Medicine, Università degli Studi di Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
21
|
Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs A, Seifert R, Zwanenburg A, El Naqa I, Kinahan PE, Tixier F, Jha AK, Visvikis D. Joint EANM/SNMMI guideline on radiomics in nuclear medicine : Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. Eur J Nucl Med Mol Imaging 2023; 50:352-375. [PMID: 36326868 PMCID: PMC9816255 DOI: 10.1007/s00259-022-06001-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches. METHODS In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives. CONCLUSION Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.
Collapse
Affiliation(s)
- M Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | | | - A Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - T J Bradshaw
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - P F Costa
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - R Seifert
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
- Department of Nuclear Medicine, Münster University Hospital, Münster, Germany.
| | - A Zwanenburg
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - I El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33626, USA
| | - P E Kinahan
- Imaging Research Laboratory, PET/CT Physics, Department of Radiology, UW Medical Center, University of Washington, Seattle, WA, USA
| | - F Tixier
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - A K Jha
- McKelvey School of Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - D Visvikis
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
22
|
Chen B, Mao T, Qin X, Zhang W, Watanabe N, Li J. Role of estrogen receptor signaling pathway-related genes in diffuse large B-cell lymphoma and identification of key targets via integrated bioinformatics analysis and experimental validation. Front Oncol 2022; 12:1029998. [PMID: 36531013 PMCID: PMC9749266 DOI: 10.3389/fonc.2022.1029998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignancy. Epidemiologically, the incidence of DLBCL is higher in men, and the female sex is a favorable prognostic factor, which can be explained by estrogen. This study aimed to explore the potential targets of the estrogen receptor (ER) signaling pathway and provide a meaningful way to treat DLBCL patients. Datasets were obtained from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). Representative gene sets estrogen receptor pathways, and growth regulatory pathways were identified based on Gene Set Enrichment Analysis (GSEA) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for function and pathway analysis. STRING and Cytoscape were used to construct the interaction network, and the MCODE plug-in performed the module analysis. GEPIA, TCGA, and LOGpc databases were used for expression and predictive analysis. The Human Protein Atlas (HPA) database was used to analyze the protein expression levels, cBioPortal was used to explore genetic alterations, and ROC analysis and prognostic assessment were used to predict the diagnostic value of genes. Finally, BJAB cells were treated with ER inhibitor fulvestrant and specific shRNA, and the expression of hub genes was verified by RT-qPCR. We identified 81 overlapping DEGs and CDC6, CDC20, KIF20A, STIL, and TOP2A as novel biomarkers affecting the prognosis of DLBCL. In addition, the STAT and KRAS pathways are considered potential growth regulatory pathways. These results hold promise for new avenues for the treatment of DLBCL patients.
Collapse
Affiliation(s)
- Bo Chen
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianjiao Mao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiuni Qin
- Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| | - Wenqi Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|