1
|
Zerunian M, Polidori T, Palmeri F, Nardacci S, Del Gaudio A, Masci B, Tremamunno G, Polici M, De Santis D, Pucciarelli F, Laghi A, Caruso D. Artificial Intelligence and Radiomics in Cholangiocarcinoma: A Comprehensive Review. Diagnostics (Basel) 2025; 15:148. [PMID: 39857033 PMCID: PMC11763775 DOI: 10.3390/diagnostics15020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant biliary system tumor and the second most common primary hepatic neoplasm, following hepatocellular carcinoma. CCA still has an extremely high unfavorable prognosis, regardless of type and location, and complete surgical resection remains the only curative therapeutic option; however, due to the underhanded onset and rapid progression of CCA, most patients present with advanced stages at first diagnosis, with only 30 to 60% of CCA patients eligible for surgery. Recent innovations in medical imaging combined with the use of radiomics and artificial intelligence (AI) can lead to improvements in the early detection, characterization, and pre-treatment staging of these tumors, guiding clinicians to make personalized therapeutic strategies. The aim of this review is to provide an overview of how radiological features of CCA can be analyzed through radiomics and with the help of AI for many different purposes, such as differential diagnosis, the prediction of lymph node metastasis, the defining of prognostic groups, and the prediction of early recurrence. The combination of radiomics with AI has immense potential. Still, its effectiveness in practice is yet to be validated by prospective multicentric studies that would allow for the development of standardized radiomics models.
Collapse
Affiliation(s)
- Marta Zerunian
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Tiziano Polidori
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Federica Palmeri
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Stefano Nardacci
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Antonella Del Gaudio
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Benedetta Masci
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Giuseppe Tremamunno
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Michela Polici
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Domenico De Santis
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Francesco Pucciarelli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza–University of Rome, Radiology Unit–Sant’Andrea University Hospital, 00189 Rome, Italy; (T.P.); (F.P.); (S.N.); (A.D.G.); (B.M.); (G.T.); (M.P.); (D.D.S.); (F.P.); (A.L.); (D.C.)
| |
Collapse
|
2
|
Özdemir M, Koç U, Gökhan MB, Beşler MS. Unveiling the potential of strain elastography in perihilar cholangiocarcinoma biopsies. Abdom Radiol (NY) 2024; 49:3143-3148. [PMID: 38557769 DOI: 10.1007/s00261-024-04255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE This study was conducted to investigate the effectiveness of strain elastography in guiding precise and sufficient tissue sampling for perihilar cholangiocarcinoma (CCA) biopsies. METHODS Our retrospective analysis included 23 liver biopsies conducted between March 2019 and July 2022 for suspected perihilar CCA. An experienced radiologist performed the biopsies via an ultrasound machine with elastography configuration. Tissue stiffness color maps were used for guiding when the biopsies were performed. Strain index value calculations were made by radiologists on recorded images. RESULTS Patient demographics revealed a mean age of 65.17 ± 9.25 years, with a gender distribution of six females and 17 males. Gray-scale examinations unveiled diverse echogenic characteristics in liver lesions. Elastography-guided biopsies demonstrated no need for repeats, while gray-scale biopsies necessitated re-biopsy in four patients, resulting in cholangiocarcinoma diagnosis (P = 0.037). Strain index values showcased strong inter- and intra-observer agreements (P < 0.001). Notably, no post-biopsy complications emerged in either study group. CONCLUSION The diagnostic advantage of elastography, particularly in enhancing accuracy in challenging isoechoic lesions, was demonstrated, although the substantial overlap between strain index values of benign and malignant liver masses limits clinical usefulness of this technique.
Collapse
Affiliation(s)
- Mustafa Özdemir
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Ural Koç
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Muhammed Said Beşler
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Radiology, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş, Turkey
| |
Collapse
|
3
|
Caragut RL, Ilie M, Cabel T, Günșahin D, Panaitescu A, Pavel C, Plotogea OM, Rînja EM, Constantinescu G, Sandru V. Updates in Diagnosis and Endoscopic Management of Cholangiocarcinoma. Diagnostics (Basel) 2024; 14:490. [PMID: 38472961 DOI: 10.3390/diagnostics14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an adenocarcinoma originating from the epithelial cells of the bile ducts/hepatocytes or peribiliary glands. There are three types of cholangiocarcinoma: intrahepatic, perihilar and distal. CCA represents approximately 3% of the gastrointestinal malignancies. The incidence of CCA is higher in regions of the Eastern world compared to the Western countries. There are multiple risk factors associated with cholangiocarcinoma such as liver fluke, primary sclerosing cholangitis, chronic hepatitis B, liver cirrhosis and non-alcoholic fatty liver disease. Endoscopy plays an important role in the diagnosis and management of cholangiocarcinoma. The main endoscopic methods used for diagnosis, biliary drainage and delivering intrabiliary local therapies are endoscopic retrograde cholangiopancreatography and endoscopic ultrasound. The purpose of this review is to analyze the current data found in literature about cholangiocarcinoma, with a focus on the actual diagnostic tools and endoscopic management options.
Collapse
Affiliation(s)
- Roxana-Luiza Caragut
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Madalina Ilie
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Teodor Cabel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Deniz Günșahin
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Afrodita Panaitescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Christopher Pavel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Oana Mihaela Plotogea
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Ecaterina Mihaela Rînja
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Gabriel Constantinescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Vasile Sandru
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Cerrito L, Ainora ME, Borriello R, Piccirilli G, Garcovich M, Riccardi L, Pompili M, Gasbarrini A, Zocco MA. Contrast-Enhanced Imaging in the Management of Intrahepatic Cholangiocarcinoma: State of Art and Future Perspectives. Cancers (Basel) 2023; 15:3393. [PMID: 37444503 PMCID: PMC10341250 DOI: 10.3390/cancers15133393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) represents the second most common liver cancer after hepatocellular carcinoma, accounting for 15% of primary liver neoplasms. Its incidence and mortality rate have been rising during the last years, and total new cases are expected to increase up to 10-fold during the next two or three decades. Considering iCCA's poor prognosis and rapid spread, early diagnosis is still a crucial issue and can be very challenging due to the heterogeneity of tumor presentation at imaging exams and the need to assess a correct differential diagnosis with other liver lesions. Abdominal contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) plays an irreplaceable role in the evaluation of liver masses. iCCA's most typical imaging patterns are well-described, but atypical features are not uncommon at both CT and MRI; on the other hand, contrast-enhanced ultrasound (CEUS) has shown a great diagnostic value, with the interesting advantage of lower costs and no renal toxicity, but there is still no agreement regarding the most accurate contrastographic patterns for iCCA detection. Besides diagnostic accuracy, all these imaging techniques play a pivotal role in the choice of the therapeutic approach and eligibility for surgery, and there is an increasing interest in the specific imaging features which can predict tumor behavior or histologic subtypes. Further prognostic information may also be provided by the extraction of quantitative data through radiomic analysis, creating prognostic multi-parametric models, including clinical and serological parameters. In this review, we aim to summarize the role of contrast-enhanced imaging in the diagnosis and management of iCCA, from the actual issues in the differential diagnosis of liver masses to the newest prognostic implications.
Collapse
Affiliation(s)
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.B.); (G.P.); (M.G.); (L.R.); (M.P.); (A.G.); (M.A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Klambauer K, Cecatka S, Clevert DA. [Ultrasound diagnostics of the liver : Principles and important pathologies]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:387-402. [PMID: 37071126 DOI: 10.1007/s00117-023-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/19/2023]
Abstract
Diffuse changes in the liver parenchyma, focal lesions and blood flow in hepatic vessels can be assessed using ultrasound. Screening by ultrasound can be used to detect hepatocellular carcinomas as possible malignant sequelae of liver cirrhosis. As metastases are far more frequent than primary malignant liver tumors, secondary malignant neoplasms should be taken into consideration as a differential diagnosis in the presence of focal liver lesions. This particularly concerns patients with a known metastatic disease. Benign focal liver lesions are often incidentally discovered in women of childbearing age. Cysts, hemangiomas and focal nodular hyperplasia mostly show typical morphological features in ultrasound and do not require further follow-up; however, with hepatic adenomas, regular follow-up is recommended due to the risk of bleeding and/or malignant transformation.
Collapse
Affiliation(s)
- Konstantin Klambauer
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, LMU München, München, Deutschland.
| | - Sasa Cecatka
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, LMU München, München, Deutschland
| | - Dirk-André Clevert
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, LMU München, München, Deutschland
| |
Collapse
|
6
|
Shen H, Bai X, Liu J, Liu P, Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol 2022; 12:1001400. [PMID: 36300097 PMCID: PMC9590411 DOI: 10.3389/fonc.2022.1001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignant tumor associated with poor prognosis. This study aimed to identify CCA biomarkers by investigating differentially expressed genes (DEGs) between CCA patients and healthy subjects obtained from the Gene Expression Omnibus database. Bioinformatics tools, including the Illumina BaseSpace Correlation Engine (BSCE) and Gene Expression Profiling Interactive Analysis (GEPIA), were used. The initial DEGs from GSE26566, GSE31370, and GSE77984 were analyzed using GEO2R and Venn, and protein–protein interaction networks were constructed using STRING. The BSCE was applied to assess curated CCA studies to select additional DEGs and them DEGs across the 10 biosets, which was supported by findings in the literature. The final 18 DEGs with clinical significance for CCA were further verified using GEPIA. These included CEACAM6, EPCAM, LAMC2, MMP11, KRT7, KRT17, KRT19, SFN, and SOX9, which were upregulated, and ADH1A, ALDOB, AOX1, CTH, FGA, FGB, FGG, GSTA1, and OTC, which were downregulated in CCA patients. Among these 18 genes, 56 groups of genes (two in each group) were significantly related, and none were independently and differentially expressed. The hub genes FGA, OTC, CTH, and MMP11, which were most correlated with the 18 DEGs, were screened using STRING. The significantly low expression of FGA, OTC, and CTH and significantly high expression of MMP11 were verified by immunohistochemical analysis. Overall, four CCA biomarkers were identified that might regulate the occurrence and development of this disease and affect the patient survival rate, and they have the potential to become diagnostic and therapeutic targets for patients with CCA.
Collapse
Affiliation(s)
- Hengyan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| |
Collapse
|
7
|
Sarikaya I. Biology of Cancer and PET Imaging: Pictorial Review. J Nucl Med Technol 2022; 50:jnmt.121.263534. [PMID: 35440477 DOI: 10.2967/jnmt.121.263534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Development and spread of cancer is a multi-step and complex process which involves number of alterations, interactions and molecular networks. PET imaging is closely related with biology of cancer as it detects the cancer based on biological and pathological changes in tumor cells and tumor microenvironment. In this review article, biology of development and spread of cancer and role of PET imaging in Oncology was summarized and supported with various PET images demonstrating cancer spread patterns.
Collapse
|
8
|
Liu J, Ren WX, Shu J. Multimodal molecular imaging evaluation for early diagnosis and prognosis of cholangiocarcinoma. Insights Imaging 2022; 13:10. [PMID: 35050416 PMCID: PMC8776965 DOI: 10.1186/s13244-021-01147-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and lethal malignancy with limited therapeutic options. Despite recent advances in diagnostic imaging for CCA, the early diagnosis of CCA and evaluation of tumor invasion into the bile duct and its surrounding tissues remain challenging. Most patients with CCA are diagnosed at an advanced stage, at which treatment options are limited. Molecular imaging is a promising diagnostic method for noninvasive imaging of biological events at the cellular and molecular level in vivo. Molecular imaging plays a key role in the early diagnosis, staging, and treatment-related evaluation and management of cancer. This review will describe different methods for molecular imaging of CCA, including nuclear medicine, magnetic resonance imaging, optical imaging, and multimodal imaging. The main challenges and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wen Xiu Ren
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Klekowski J, Piekarska A, Góral M, Kozula M, Chabowski M. The Current Approach to the Diagnosis and Classification of Mirizzi Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11091660. [PMID: 34574001 PMCID: PMC8465817 DOI: 10.3390/diagnostics11091660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Mirizzi syndrome occurs in up to 6% of patients with cholecystolithiasis. It is generally caused by external compression of the common hepatic duct by a gallstone impacted in the neck of the gallbladder or the cystic duct, which can lead to fistulisation. The aim of this review was to highlight the proposed classifications for Mirizzi syndrome (MS) and to provide an update on modern approaches to the diagnosis of this disease. We conducted research on various internet databases and the total number of records was 993, but after a gradual process of elimination our final review consisted of 21 articles. According to the literature, the Cesendes classification is the most commonly used, but many new suggestions have appeared. Our review shows that the ultrasonography (US) is the most frequently used method of initial diagnosis, despite still having only average sensitivity. Magnetic resonance cholangiopancreatography (MRCP) and endoscopic retrograde cholangiopancreatography (ERCP) are good methods and are similarly effective, but only the latter can be simultaneously therapeutic. Some modern methods show very high sensitivity, but are not so commonly administered. Mirizzi syndrome is still a diagnostic challenge, despite the advancement of the available tools. Preoperative diagnosis is crucial to avoid complications during treatment. New research may bring a unification of classifications and diagnostic algorithms.
Collapse
Affiliation(s)
- Jakub Klekowski
- Student Research Group No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (J.K.); (A.P.); (M.G.); (M.K.)
| | - Aleksandra Piekarska
- Student Research Group No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (J.K.); (A.P.); (M.G.); (M.K.)
| | - Marta Góral
- Student Research Group No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (J.K.); (A.P.); (M.G.); (M.K.)
| | - Marta Kozula
- Student Research Group No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (J.K.); (A.P.); (M.G.); (M.K.)
| | - Mariusz Chabowski
- Division of Oncology and Palliative Care, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wrocław, Poland
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wrocław, Poland
- Correspondence: ; Tel.: +48-261-660-247; Fax: +48-261-660-245
| |
Collapse
|
10
|
Mar WA, Chan HK, Trivedi SB, Berggruen SM. Imaging of Intrahepatic Cholangiocarcinoma. Semin Ultrasound CT MR 2021; 42:366-380. [PMID: 34130849 DOI: 10.1053/j.sult.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma is the second most common primary hepatic malignancy and is a heterogeneous tumor of biliary epithelium. We discuss the risk factors, anatomic classification of cholangiocarcinoma (CC) as well as the different morphologic subtypes of CC. Imaging findings of CC on different modalities are described, focusing on intrahepatic CC. Recently recognized imaging features that carry prognostic significance, such as a worse prognosis in tumors that have more desmoplastic stroma, are detailed. Other benign and malignant entities that should be considered in the differential diagnosis of CC will also be discussed.
Collapse
Affiliation(s)
- Winnie A Mar
- Department of Radiology, University of Illinois at Chicago
| | - Hing Kiu Chan
- Department of Radiology, University of Illinois at Chicago
| | | | | |
Collapse
|
11
|
Bartsch F, Hahn F, Müller L, Baumgart J, Hoppe-Lotichius M, Kloeckner R, Lang H. Intrahepatic cholangiocarcinoma: Introducing the preoperative prediction score based on preoperative imaging. Hepatobiliary Pancreat Dis Int 2021; 20:262-270. [PMID: 32861577 DOI: 10.1016/j.hbpd.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) still has a poor long-term outcome, even after complete resection. We investigated different parameters gathered in preoperative imaging and analyzed their influence on resectability, recurrence, and survival. METHODS All patients who underwent exploration due to ICC between January 2008 and June 2018 were analyzed retrospectively. Kaplan-Meier model, log-rank test and Cox regression were used. RESULTS Out of 184 patients, 135 (73.4%) underwent curative intended resection. Median overall survival (OS) was 22.2 months with a consecutive 1-, 3- and 5-year OS of 73%, 29%, and 17%. Median recurrence-free survival (RFS) was 9.3 months with a consecutive 1-, 3- and 5-year RFS of 36%, 15%, and 11%. Site of tumor, parenchymal localization, tumor configuration/dissemination, and estimated tumor volume had significant influence on resectability. Univariate analyses showed that site of tumor, tumor configuration/dissemination, number of nodules, and estimated tumor volume had predictive values for OS and RFS. Together with tumor size the preoperative prediction (POP) score was created showing significance for OS and RFS (all P < 0.001). In multivariate analysis, POP score (HR = 1.779; 95% CI: 1.268-2.495; P = 0.001), T stage (HR = 1.255; 95% CI: 1.040-1.514; P = 0.018) and N stage (HR = 1.334; 95% CI: 1.081-1.645; P = 0.007) were the independent predictors for OS. For RFS, POP score (HR = 1.733; 95% CI: 1.300-2.311; P < 0.001) and M stage (HR = 3.036; 95% CI: 1.376-6.697; P = 0.006) were the independent predictors. CONCLUSIONS The POP score showed to have a highly significant influence on OS and RFS. The score is easy to assess through preoperative imaging. For patients in the high risk group at least staging laparoscopy or preoperative chemotherapy should be evaluated, because they showed equal outcome compared to the irresectable group.
Collapse
Affiliation(s)
- Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Felix Hahn
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Janine Baumgart
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Maria Hoppe-Lotichius
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst, 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Granata V, Fusco R, Setola SV, Avallone A, Palaia R, Grassi R, Izzo F, Petrillo A. Radiological assessment of secondary biliary tree lesions: an update. J Int Med Res 2021; 48:300060519850398. [PMID: 32597280 PMCID: PMC7432986 DOI: 10.1177/0300060519850398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To conduct a systematic literature review of imaging techniques and findings
in patients with peribiliary liver metastasis. Methods Several electronic datasets were searched from January 1990 to June 2017 to
identify studies assessing the use of different imaging techniques for the
detection and staging of peribiliary metastases. Results The search identified 44 studies, of which six met the inclusion criteria and
were included in the systematic review. Multidetector computed tomography
(MDCT) is the technique of choice in the preoperative setting and during the
follow-up of patients with liver tumors. However, the diagnostic performance
of MDCT for the assessment of biliary tree neoplasms was low compared with
magnetic resonance imaging (MRI). Ultrasound (US), without and with contrast
enhancement (CEUS), is commonly employed as a first-line tool for evaluating
focal liver lesions; however, the sensitivity and specificity of US and CEUS
for both the detection and characterization are related to operator
expertise and patient suitability. MRI has thus become the gold standard
technique because of its ability to provide morphologic and functional data.
MRI showed the best diagnostic performance for the detection of peribiliary
metastases. Conclusions MRI should be considered the gold standard technique for the radiological
assessment of secondary biliary tree lesions.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Fusco
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Raffaele Palaia
- Abdominal Surgical Oncology Division, Hepatobiliary Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberto Grassi
- Radiology Unit, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Izzo
- Abdominal Surgical Oncology Division, Hepatobiliary Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
13
|
Detarya M, Thaenkaew S, Seubwai W, Indramanee S, Phoomak C, Saengboonmee C, Wongkham S, Wongkham C. High glucose upregulates FOXM1 expression via EGFR/STAT3 dependent activation to promote progression of cholangiocarcinoma. Life Sci 2021; 271:119114. [PMID: 33513399 DOI: 10.1016/j.lfs.2021.119114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
AIMS Epidemiological studies indicate diabetes mellitus and hyperglycemia as risk factors of cancers including cholangiocarcinoma (CCA). How high glucose promotes cancer development and progression, however, is still unrevealed. In this study, insight into the molecular pathway of high glucose promoting progression of CCA cells was investigated. MAIN METHODS Human CCA cell lines, KKU-213A and KKU-213B were cultured in normal glucose (NG; 5.56 mM) or high glucose (HG; 25 mM) and used as NG and HG cells. Forkhead box M1 (FOXM1) expression was transiently suppressed using siFOXM1. Western blotting and image analysis were employed to semi-quantitatively determine the expression levels of the specified proteins. The migration and invasion of CCA cells were revealed using Boyden chamber assays. KEY FINDINGS All HG cells exhibited higher expression of FOXM1 than the corresponding NG cells in a dose dependent manner. Suppression of FOXM1 expression by siFOXM1 significantly reduced migration and invasion abilities of CCA cells by suppression of Slug and MMP2 expression. Inhibition of STAT3 activation using Stattic, significantly suppressed expression of FOXM1 and Slug and decreased migration and invasion abilities of HG cells. In addition, EGFR expression was significantly higher in HG cells than NG cells and increased dependently with glucose concentration. Inhibition of EGFR activation by cetuximab significantly suppressed STAT3 activation and FOXM1 expression. SIGNIFICANCE The mechanism of high glucose promoting progression of CCA cells was revealed to be via in part by upregulation of FOXM1 expression under EGF/EGFR and STAT3 dependent activation.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Salak Thaenkaew
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Basic-Related subject Department, Khon Kaen Vocational College, Khon Kaen 40000, Thailand
| | - Wunchana Seubwai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsiri Indramanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
14
|
Saleh M, Virarkar M, Bura V, Valenzuela R, Javadi S, Szklaruk J, Bhosale P. Intrahepatic cholangiocarcinoma: pathogenesis, current staging, and radiological findings. Abdom Radiol (NY) 2020; 45:3662-3680. [PMID: 32417933 DOI: 10.1007/s00261-020-02559-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To this date, it is a major oncological challenge to optimally diagnose, stage, and manage intrahepatic cholangiocarcinoma (ICC). Imaging can not only diagnose and stage ICC, but it can also guide management. Hence, imaging is indispensable in the management of ICC. In this article, we review the pathology, epidemiology, genetics, clinical presentation, staging, pathology, radiology, and treatment of ICC.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mayur Virarkar
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vlad Bura
- Department of Radiology, County Clinical Emergency Hospital, 400006, Cluj-Napoca, Cluj, Romania
| | - Raul Valenzuela
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanaz Javadi
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Janio Szklaruk
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Moazzami B, Majidzadeh-A K, Dooghaie-Moghadam A, Eslami P, Razavi-Khorasani N, Iravani S, Khoshdel A, Shahi F, Dashti H, Mehrvar A, Nassiri Toosi M. Cholangiocarcinoma: State of the Art. J Gastrointest Cancer 2020; 51:774-781. [PMID: 32157571 DOI: 10.1007/s12029-020-00390-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the second most frequent primary liver tumor and defined as the heterogeneous group of tumors derived from cells in the biliary tree. METHODS AND RESULTS Based on the anatomical locations (intrahepatic, perihilar, and distal), there are various approaches to the diagnosis and treatment of CCA. Imaging modalities, staging classifications, understandings around natural behavior of CCA, and therapeutic strategies have had remarkable progress in recent years. CONCLUSIONS This article reviews and discusses the epidemiology, clinical presentation, diagnosis, and treatment modalities of CCA; determines the appropriate inclusion and exclusion criteria for liver transplantation (LT); and defines the risk of disease progression for patients in the waiting list of LT.
Collapse
Affiliation(s)
- Bobak Moazzami
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Majidzadeh-A
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | | | - Pegah Eslami
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Iravani
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshdel
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Farhad Shahi
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibolah Dashti
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Mehrvar
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran.
| | - Mohssen Nassiri Toosi
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Forner A, Vidili G, Rengo M, Bujanda L, Ponz-Sarvisé M, Lamarca A. Clinical presentation, diagnosis and staging of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:98-107. [PMID: 30831002 DOI: 10.1111/liv.14086] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/13/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of tumours, derived from cells of the biliary tree, which represent the second most frequent primary liver tumour. According to the most recent classifications, CCA can be subdivided into intrahepatic (iCCA) and extrahepatic (eCCA) which include perihilar (pCCA) and distal (dCCA) CCA. CCA are usually identified at advanced stages, when the primary tumour grows enough to produce a large liver mass or when jaundice has developed because of biliary tree obstruction. The ongoing challenges in the identification of risk factors and definition of a specific population at higher risk of developing CCA are the main challenges for the development of screening programs. Therefore, late diagnosis remains an unresolved issue in CCA. Imaging plays an important role in the detection and characterization of CCA, helping with radiological diagnosis, guiding biopsy procedures and allowing staging of the tumour. This review focuses on clinical presentations and diagnosis and staging techniques of CCA.
Collapse
Affiliation(s)
- Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer Group, Hospital Clínic Barcelona, August Pi i Sunyer Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Gianpaolo Vidili
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Rengo
- Academic Diagnostic Imaging Division - I.C.O.T. Hospital, University of Rome "Sapienza", Latina, Italy
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)., Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Mariano Ponz-Sarvisé
- Gastrointestinal Oncology Unit, Clinica Universidad de Navarra, Programa Tumores Solidos y biomarcadrores, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Lo EC, N. Rucker A, Federle MP. Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Imaging for Diagnosis, Tumor Response to Treatment and Liver Response to Radiation. Semin Radiat Oncol 2018; 28:267-276. [DOI: 10.1016/j.semradonc.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdom Radiol (NY) 2018; 43:2665-2672. [PMID: 29492607 DOI: 10.1007/s00261-018-1505-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE On computed tomography (CT), intrahepatic cholangiocarcinomas (ICC) are a visibly heterogeneous group of tumors. The purpose of this study was to investigate the associations between CT imaging phenotypes, patient survival, and known genetic markers. METHODS A retrospective study was performed with 66 patients with surgically resected ICC. Pre-surgical CT images of ICC were assessed by radiologists blinded to tumor genetics and patient clinical data. Associations between qualitative imaging features and overall survival (OS) and disease-free survival (DFS) were performed with Cox proportional hazards regression and visualized with Kaplan-Meier plots. Associations between radiographic features and genetic pathways (IDH1, Chromatin and RAS-MAPK) were assessed with Fisher's Exact test and the Wilcoxon Rank sum test where appropriate and corrected for multiple comparisons within each pathway using the False Discovery Rate correction. RESULTS Three imaging features were significantly associated with a higher risk of death: necrosis (hazard ratio (HR) 2.95 95% CI 1.44-6.04, p = 0.029), satellite nodules (HR 3.29, 95% CI:1.35-8.02, p = 0.029), and vascular encasement (HR 2.63, 95% CI 1.28-5.41, p = 0.029). Additionally, with each increase in axial size, the risk of death increased (HR 1.14, 95% CI 1.03-1.26, p = 0.029). Similar to findings for OS, satellite nodules (HR 3.81, 95% CI 1.88-7.71, p = 0.002) and vascular encasement (HR 2.25, 95% CI 1.24-4.06, p = 0.019) were associated with increased risk of recurrence/death. No significant associations were found between radiographic features and genes in the IDH1, Chromatin or RAS-MAPK pathways (p = 0.63-84). CONCLUSION This preliminary analysis of resected ICC suggests associations between CT imaging features and OS and DFS. No association was identified between imaging features and currently known genetic pathways.
Collapse
|
19
|
Bösmüller H, Pfefferle V, Bittar Z, Scheble V, Horger M, Sipos B, Fend F. Microvessel density and angiogenesis in primary hepatic malignancies: Differential expression of CD31 and VEGFR-2 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol Res Pract 2018; 214:1136-1141. [PMID: 29935812 DOI: 10.1016/j.prp.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microvessel density is an indicator of tumor-driven neoangiogenesis. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) have distinct vascular patterns, which are also reflected in their imaging characteristics. Since a significant proportion of HCC are treated without biopsy confirmation, it is essential to discriminate HCC and ICC radiologically. The aim of our study was therefore to compare microvessel density and expression of VEGFR-2 in HCC and ICC, since these data may ultimately help us to better understand their imaging characteristics. Whereas CD31 documents vessel density, VEGFR-2 expression is an indicator of tumor-related neoangiogenesis. METHODS CD31 and VEGFR-2 expressing microvessels were quantified on tissue microarrays of 95 resection specimens of HCC and 47 cases of ICC. Microvessel density was evaluated by counting immuno-reactive vascular structures both within the tumor and adjacent liver control tissue, respectively. Further 16 cases of ICC were immunostained for CD31 and VEGFR-2 on full sections. RESULTS The frequency of VEGFR-2 (46.2/HPF; range 0-150) and CD31 (61.2/HPF; range 2.6-140) expressing vascular structures was significantly increased in HCC compared to adjacent liver parenchyma (VEGFR-2 33.3/HPF, range 0-87, CD31 21.4/HPF, range 0-78, both p < 0,001). ICC revealed significantly less VEGFR2-positive microvessels (15.4/HPF; range 2-77) compared to matched control tissue (42.3/HPF; range 4.6-109), whereas microvessel density with CD31 was comparable between ICC and adjacent liver (32.1/HPF; range 5.3-78 versus 28.0/HPF; range 5.3-57; p = 0.89). In ICC, the tumor-to-normal microvessel density ratio was 0.38 for VEGFR-2 and 1.24 for CD31. These ratios were nearly identical (VEGFR: 0.38; CD31: 0,97) for the 16 cases of ICC studied on whole sections, confirming the validity of the TMA approach. In contrast, ratios of VEGFR-2 and CD31 in HCC vs. adjacent liver were significantly higher (VEGFR: 2.23; CD31: 6.57). Expression of VEGFR-2 by tumor cells was not observed in any of the cases. CONCLUSIONS HCC and ICC differ significantly in their microvessel density, confirming the hypovascular nature of ICC as compared to the hypervascularity of HCC. Of note, inverse tumor-to-normal ratios of microvascular VEGFR-2 expression between the two neoplasms indicate distinct features of neoangiogenesis. Whether these differences can be exploited for improvements in imaging of hepatic tumors and may play a role for anti-angiogenic treatment strategies requires further studies.
Collapse
Affiliation(s)
- Hans Bösmüller
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Vanessa Pfefferle
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Zeid Bittar
- Department of Pathology, Katharinenhospital Stuttgart, Germany.
| | - Veit Scheble
- Department of Internal Medicine I, University Hospital of Tübingen, Germany.
| | - Marius Horger
- Department of Radiology, University Hospital Tübingen, Germany.
| | - Bence Sipos
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| |
Collapse
|
20
|
Rassam F, Roos E, van Lienden KP, van Hooft JE, Klümpen HJ, van Tienhoven G, Bennink RJ, Engelbrecht MR, Schoorlemmer A, Beuers UHW, Verheij J, Besselink MG, Busch OR, van Gulik TM. Modern work-up and extended resection in perihilar cholangiocarcinoma: the AMC experience. Langenbecks Arch Surg 2018; 403:289-307. [PMID: 29350267 PMCID: PMC5986829 DOI: 10.1007/s00423-018-1649-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
AIM Perihilar cholangiocarcinoma (PHC) is a challenging disease and requires aggressive surgical treatment in order to achieve curation. The assessment and work-up of patients with presumed PHC is multidisciplinary, complex and requires extensive experience. The aim of this paper is to review current aspects of diagnosis, preoperative work-up and extended resection in patients with PHC from the perspective of our own institutional experience with this complex tumor. METHODS We provided a review of applied modalities in the diagnosis and work-up of PHC according to current literature. All patients with presumed PHC in our center between 2000 and 2016 were identified and described. The types of resection, surgical techniques and outcomes were analyzed. RESULTS AND CONCLUSION Upcoming diagnostic modalities such as Spyglass and combinations of serum biomarkers and molecular markers have potential to decrease the rate of misdiagnosis of benign, inflammatory disease. Assessment of liver function with hepatobiliary scintigraphy provides better information on the future remnant liver (FRL) than volume alone. The selective use of staging laparoscopy is advisable to avoid futile laparotomies. In patients requiring extended resection, selective preoperative biliary drainage is mandatory in cholangitis and when FRL is small (< 50%). Preoperative portal vein embolization (PVE) is used when FRL volume is less than 40% and optionally includes the left portal vein branches to segment 4. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) as alternative to PVE is not recommended in PHC. N2 positive lymph nodes preclude long-term survival. The benefit of unconditional en bloc resection of the portal vein bifurcation is uncertain. Along these lines, an aggressive surgical approach encompassing extended liver resection including segment 1, regional lymphadenectomy and conditional portal venous resection translates into favorable long-term survival.
Collapse
Affiliation(s)
- F Rassam
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands.
| | - E Roos
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - K P van Lienden
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - J E van Hooft
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - H J Klümpen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - G van Tienhoven
- Department of Radiotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | - R J Bennink
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M R Engelbrecht
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - A Schoorlemmer
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - U H W Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - J Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - M G Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - O R Busch
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - T M van Gulik
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Sheybani A, Gaba RC, Lokken RP, Berggruen SM, Mar WA. Liver Masses: What Physicians Need to Know About Ordering and Interpreting Liver Imaging. Curr Gastroenterol Rep 2017; 19:58. [PMID: 29044439 DOI: 10.1007/s11894-017-0596-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This paper reviews diagnostic imaging techniques used to characterize liver masses and the imaging characteristics of the most common liver masses. RECENT FINDINGS The role of recently adopted ultrasound and magnetic resonance imaging contrast agents will be emphasized. Contrast-enhanced ultrasound is an inexpensive exam which can confirm benignity of certain liver masses without ionizing radiation. Magnetic resonance imaging using hepatocyte-specific gadolinium-based contrast agents can help confirm or narrow the differential diagnosis of liver masses.
Collapse
Affiliation(s)
- Arman Sheybani
- Department of Radiology, University of Illinois at Chicago, 1740 W Taylor St Rm 2483, MC 931, Chicago, IL, 60612, USA
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, 1740 W Taylor St Rm 2483, MC 931, Chicago, IL, 60612, USA
| | - R Peter Lokken
- Department of Radiology, University of Illinois at Chicago, 1740 W Taylor St Rm 2483, MC 931, Chicago, IL, 60612, USA
| | - Senta M Berggruen
- Department of Radiology, Northwestern University, NMH/Arkes Family Pavilion Suite 800, 676 N Saint Clair, Chicago, IL, 60611, USA
| | - Winnie A Mar
- Department of Radiology, University of Illinois at Chicago, 1740 W Taylor St Rm 2483, MC 931, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Puik JR, Meijer LL, Le Large TY, Prado MM, Frampton AE, Kazemier G, Giovannetti E. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18:1343-1358. [PMID: 28832247 DOI: 10.2217/pgs-2017-0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy originating from the biliary tract epithelium. Most patients are diagnosed at an advanced stage. Even after resection with curative intent, prognosis remains poor. Previous studies have reported the evolving role of miRNAs as novel biomarkers in cancer diagnosis, prognostication and chemotherapy response. Various miRNAs, such as miR-21, miR-26, miR-122 and miR-150, have been identified as possible blood-based biomarkers for noninvasive diagnosis of CCA. Moreover, epithelial-mesenchymal transition (EMT)- and angiogenesis-associated miRNAs have been implicated in tumor cell dissemination and are able to determine clinical outcome. In fact, miRNAs involved in cell survival might even determine chemotherapy response. This review provides an overview of known miRNAs as CCA-specific biomarkers.
Collapse
Affiliation(s)
- Jisce R Puik
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Laura L Meijer
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Oncology & Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Kim SY. Preoperative Radiologic Evaluation of Cholangiocarcinoma. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 69:159-163. [PMID: 28329917 DOI: 10.4166/kjg.2017.69.3.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In patients with cholangiocarcinoma, surgical resection with curative intent is the only way to achieve cure. Since surgical resection of cholangiocarcinomas is technically demanding, determination of resectability and accurate preoperative staging are crucial. For these purposes, high quality imaging including multidetector computed tomography and magnetic resonance imaging with magnetic resonance cholangiopancreaticography, is mandatory. This article will present recent advances in imaging techniques for cholangiocarginomas, potential pitfalls in imaging evaluation, and a checklist for preoperative radiologic assessment of resectability in these patients with an emphasis on perihilar cholangiocarinoma.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Olthof SC, Othman A, Clasen S, Schraml C, Nikolaou K, Bongers M. Imaging of Cholangiocarcinoma. Visc Med 2016; 32:402-410. [PMID: 28229074 DOI: 10.1159/000453009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CC) is the second most common primary hepatobiliary tumour, and it is increasing in incidence. Imaging characteristics, behaviour, and therapeutic strategies in CC differ significantly, depending on the morphology and location of the tumour. In cross-sectional imaging, CCs can be classified according to the growth pattern (mass-forming, periductal infiltrating, intraductal) and the location (intrahepatic, perihilar, extrahepatic/distal). The prognosis of CC is unfavourable and surgical resection is the only curative treatment option; thus, early diagnosis (also in recurrent disease) and accurate staging including the evaluation of lymph node involvement and vascular infiltration is crucial. However, the diagnostic evaluation of CC is challenging due to the heterogeneous nature of the tumour. Diagnostic modalities used in the imaging of CC include transabdominal ultrasound, endosonography, computed tomography, magnetic resonance imaging with cholangiopancreatography, and hybrid imaging such as positron emission tomography/computed tomography. In this review, the potential of cross-sectional imaging modalities in primary staging, treatment monitoring, and detection of recurrent disease will be discussed.
Collapse
Affiliation(s)
- Susann-Cathrin Olthof
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Ahmed Othman
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Stephan Clasen
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Christina Schraml
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Malte Bongers
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|