1
|
Le HDM, Vo DT, Do HT, Le HNG, Phan CC, Nguyen DT, Le QND. Hepatectomy in a young patient with advanced hepatocellular carcinoma and poor prognostic imaging features: A case of recurrence-free survival. Radiol Case Rep 2025; 20:2704-2709. [PMID: 40151292 PMCID: PMC11937630 DOI: 10.1016/j.radcr.2025.02.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
A 45-year-old male with chronic hepatitis B presented with an advanced hepatocellular carcinoma (HCC) occupying the entire left liver and invading the left portal vein. Despite multiple poor prognostic imaging features, including vascular invasion, corona enhancement, an incomplete capsule, intratumoral necrosis, intratumoral arteries, and irregular tumor borders, the patient elected to undergo a left hepatectomy. Although Barcelona Clinic Liver Cancer (BCLC) staging classified the case as stage C, a resection was successfully performed. Remarkably, 6 years postsurgery, the patient remains recurrence-free. This report highlights a rare, fortunate outcome in a high-risk HCC case and underscores the potential of surgical intervention even in advanced HCC.
Collapse
Affiliation(s)
- Huyen Duy Mai Le
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
| | - Duc Tan Vo
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
- Department of Diagnostic Imaging, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Hai Trong Do
- Department of General Surgery, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Hy Nguyen Gia Le
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
| | - Chien Cong Phan
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
| | - Duy Thanh Nguyen
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
| | - Quynh Nguyen Diem Le
- Department of Diagnostic Imaging, University Medical Center, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Hao L, Zhang ZN, Han S, Li SS, Lin SX, Miao YD. New frontiers in hepatocellular carcinoma: Precision imaging for microvascular invasion prediction. World J Gastroenterol 2025; 31:102224. [PMID: 40062334 PMCID: PMC11886512 DOI: 10.3748/wjg.v31.i8.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
This paper highlights the innovative approach and findings of the recently published study by Xu et al, which underscores the integration of radiomics and clinicoradiological factors to enhance the preoperative prediction of microvascular invasion in patients with hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). The study's use of contrast-enhanced computed tomography radiomics to construct predictive models offers a significant advancement in the surgical planning and management of HBV-HCC, potentially transforming patient outcomes through more personalized treatment strategies. This editorial commends the study's contribution to precision medicine and discusses its implications for future research and clinical practice.
Collapse
Affiliation(s)
- Liang Hao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Zhao-Nan Zhang
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Shuang Han
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Shan-Shan Li
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Si-Xiang Lin
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Yan-Dong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| |
Collapse
|
3
|
Shan J, Yang P, Yen E, Zhou Q, Gu B, Xie X, Wang J, Niu T, Sun X. Cone-beam CT radiomics for early response assessment in liver stereotactic body radiation therapy: Results of a pilot study. Cancer Radiother 2025; 29:104586. [PMID: 40049062 DOI: 10.1016/j.canrad.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 04/01/2025]
Abstract
PURPOSE The objective of the study was to assess the correlation between radiomics features extracted from cone-beam CT with the treatment response of liver tumors treated with stereotactic body radiation. MATERIAL AND METHODS The planning CT and cone-beam CT were prospectively collected for 76 patients with liver cancer who received five fractions of stereotactic body radiation therapy. Pearson correlation test was used to identify interchangeable radiomics features between cone-beam- and planning CT from a total of 547 extracted radiomics features. Principal components analysis was used for cone-beam CT delta radiomics to characterize therapy-induced tumor change. The Mann-Whitney U-test was used to identify features with correlation to treatment response: local efficacy versus local non-efficacy; complete versus partial response in both raw and principal components analysis-based cone-beam CT radiomics features. The area under the receiver operating characteristic curve was used for assessing feature performance. RESULTS A total of 345 cone-beam CT radiomics features were interchangeable with planning CT. The mean value of LHH_GLSZM_LGZE showed an ascending trend in five fractions during the course of treatment. Among these features, PCA3_LHH_Histogram_Energy showed the best performance in predicting local efficacy, with an AUC of 0.879 (0.744-1.00, 95 % CI). For identifying complete response from partial response, CBCT2_LHL_GLSZM_GLV showed the best value, with the highest AUC of 0.884 (0.773-1.00, 95 % CI). CONCLUSION Radiomics features extracted from cone-beam CT images have the potential for assessing the response to treatment in advance and can serve as an early biomarker for liver tumor stereotactic body radiation therapy.
Collapse
Affiliation(s)
- Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pengfei Yang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Eric Yen
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinxuan Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Benxing Gu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianye Niu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wu L, Lai Q, Li S, Wu S, Li Y, Huang J, Zeng Q, Wei D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:263. [PMID: 39375586 PMCID: PMC11457388 DOI: 10.1186/s12880-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The aim of this study was to conduct a systematic review and meta-analysis to comprehensively evaluate the performance and methodological quality of artificial intelligence (AI) in predicting recurrence after single first-line treatment for liver cancer. METHODS A rigorous and systematic evaluation was conducted on the AI studies related to recurrence after single first-line treatment for liver cancer, retrieved from the PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The area under the curve (AUC), sensitivity (SENC), and specificity (SPEC) of each study were extracted for meta-analysis. RESULTS Six percutaneous ablation (PA) studies, 16 surgical resection (SR) studies, and 5 transarterial chemoembolization (TACE) studies were included in the meta-analysis for predicting recurrence after hepatocellular carcinoma (HCC) treatment, respectively. Four SR studies and 2 PA studies were included in the meta-analysis for recurrence after intrahepatic cholangiocarcinoma (ICC) and colorectal cancer liver metastasis (CRLM) treatment. The pooled SENC, SEPC, and AUC of AI in predicting recurrence after primary HCC treatment via PA, SR, and TACE were 0.78, 0.90, and 0.92; 0.81, 0.77, and 0.86; and 0.73, 0.79, and 0.79, respectively. The values for ICC treated with SR and CRLM treated with PA were 0.85, 0.71, 0.86 and 0.69, 0.63,0.74, respectively. CONCLUSION This systematic review and meta-analysis demonstrates the comprehensive application value of AI in predicting recurrence after a single first-line treatment of liver cancer, with satisfactory results, indicating the clinical translation potential of AI in predicting recurrence after liver cancer treatment.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qingfeng Lai
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Yizhong Li
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Ju Huang
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qiuli Zeng
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.
| |
Collapse
|
5
|
Behmanesh B, Abdi-Saray A, Deevband MR, Amoui M, Haghighatkhah HR. Radiomics Analysis for Clinical Decision Support in 177Lu-DOTATATE Therapy of Metastatic Neuroendocrine Tumors using CT Images. J Biomed Phys Eng 2024; 14:423-434. [PMID: 39391275 PMCID: PMC11462270 DOI: 10.31661/jbpe.v0i0.2112-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 10/12/2024]
Abstract
Background Radiomics is the computation of quantitative image features extracted from medical imaging modalities to help clinical decision support systems, which could ultimately meliorate personalized management based on individual characteristics. Objective This study aimed to create a predictive model of response to peptide receptor radionuclide therapy (PRRT) using radiomics computed tomography (CT) images to decrease the dose for patients if they are not a candidate for treatment. Material and Methods In the current retrospective study, 34 patients with neuroendocrine tumors whose disease is clinically confirmed participated. Effective factors in the treatment were selected by eXtreme gradient boosting (XGBoost) and minimum redundancy maximum relevance (mRMR). Classifiers of decision trees (DT), random forest (RF), and K-nearest neighbors (KNN) with selected quantitative and clinical features were used for modeling. A confusion matrix was used to evaluate the performance of the model. Results Out of 866 quantitative and clinical features, nine features with the XGBoost method and ten features with the mRMR pattern were selected that had the most relevance in predicting response to treatment. Selected features of the XGBoost method in integration with the RF classifier provided the highest accuracy (accuracy: 89%), and features selected by the mRMR method in combination with the RF classifier showed satisfactory performance (accuracy: 74%). Conclusion This exploratory analysis shows that radiomic features with high accuracy can effectively predict response to personalize treatment.
Collapse
Affiliation(s)
- Baharak Behmanesh
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Akbar Abdi-Saray
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Mohammad Reza Deevband
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Haghighatkhah
- Department of Radiology and Medical Imaging Center, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hosseini MS, Aghamiri SMR, Fatemi Ardekani A, BagheriMofidi SM. Assessing the stability and discriminative ability of radiomics features in the tumor microenvironment: Leveraging peri-tumoral regions in vestibular schwannoma. Eur J Radiol 2024; 178:111654. [PMID: 39089057 DOI: 10.1016/j.ejrad.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE The tumor microenvironment (TME) plays a crucial role in tumor progression and treatment response. Radiomics offers a non-invasive approach to studying the TME by extracting quantitative features from medical images. In this study, we present a novel approach to assess the stability and discriminative ability of radiomics features in the TME of vestibular schwannoma (VS). METHODS Magnetic Resonance Imaging (MRI) data from 242 VS patients were analyzed, including contrast-enhanced T1-weighted (ceT1) and high-resolution T2-weighted (hrT2) sequences. Radiomics features were extracted from concentric peri-tumoral regions of varying sizes. The intraclass correlation coefficient (ICC) was used to assess feature stability and discriminative ability, establishing quantile thresholds for ICCmin and ICCmax. RESULTS The identified thresholds for ICCmin and ICCmax were 0.45 and 0.72, respectively. Features were classified into four categories: stable and discriminative (S-D), stable and non-discriminative (S-ND), unstable and discriminative (US-D), and unstable and non-discriminative (US-ND). Different feature groups exhibited varying proportions of S-D features across ceT1 and hrT2 sequences. The similarity of S-D features between ceT1 and hrT2 sequences was evaluated using Jaccard's index, with a value of 0.78 for all feature groups which is ranging from 0.68 (intensity features) to 1.00 (Neighbouring Gray Tone Difference Matrix (NGTDM) features). CONCLUSIONS This study provides a framework for identifying stable and discriminative radiomics features in the TME, which could serve as potential biomarkers or predictors of patient outcomes, ultimately improving the management of VS patients.
Collapse
Affiliation(s)
| | | | - Ali Fatemi Ardekani
- Department of Physics, Jackson State University, Jackson, MS, USA; Merit Health Central, Department of Radiation Oncology,Gamma Knife Center, Jackson, MS, USA.
| | - Seyed Mehdi BagheriMofidi
- Department of Biomedical Engineering, Aliabad Katoul Branch Islamic Azad University, Aliabad-e-Katoul, Iran.
| |
Collapse
|
7
|
Gao Y, Yang X, Li H, Ding DW. A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging. Int J Med Inform 2024; 189:105509. [PMID: 38851131 DOI: 10.1016/j.ijmedinf.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. METHODS We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. RESULTS Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. CONCLUSIONS The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.
Collapse
Affiliation(s)
- Yu Gao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China
| | - Xue Yang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Da-Wei Ding
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
8
|
Hu Y, Zhang L, Zhang H, Zhang B, Yang J, Li R. Prediction power of radiomics in early recurrence of hepatocellular carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38721. [PMID: 38968499 PMCID: PMC11224803 DOI: 10.1097/md.0000000000038721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Raiomics is an emerging auxiliary diagnostic tool, but there are still differences in whether it can be applied to predict early recurrence of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to systematically evaluate the predictive power of radiomics in the early recurrence (ER) of HCC. METHODS Comprehensive studies on the application of radiomics to predict ER in HCC patients after hepatectomy or curative ablation were systematically screened in Embase, PubMed, and Web of Science. RESULTS Ten studies which is involving a total of 1929 patients were reviewed. The overall estimates of radiomic models for sensitivity and specificity in predicting the ER of HCC were 0.79 (95% confidence interval [CI]: 0.68-0.87) and 0.83 (95% CI: 0.73-0.90), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.88 (95% CI: 0.85-0.91). CONCLUSIONS The imaging method is a reliable method for diagnosing HCC. Radiomics, which is based on medical imaging, has excellent power in predicting the ER of HCC. With the help of radiomics, we can predict the recurrence of HCC after surgery more effectively and provide a useful reference for clinical practice.
Collapse
Affiliation(s)
- Yanzi Hu
- Department of Radiology, Yuhuan Second People’s Hospital, Zhejiang, China
| | - Limin Zhang
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huangqi Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Binhao Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiawen Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Renzhan Li
- Department of Radiology, Sanmen People’s Hospital, Zhejiang Province, China
| |
Collapse
|
9
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Mao B, Ren Y, Yu X, Liang X, Ding X. Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics. Front Oncol 2024; 14:1346124. [PMID: 38559563 PMCID: PMC10978579 DOI: 10.3389/fonc.2024.1346124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To develop a contrast-enhanced computed tomography (CECT) based radiomics model using machine learning method and assess its ability of preoperative prediction for the early recurrence of hepatocellular carcinoma (HCC). Methods A total of 297 patients confirmed with HCC were assigned to the training dataset and test dataset based on the 8:2 ratio, and the follow-up period of the patients was from May 2012 to July 2017. The lesion sites were manually segmented using ITK-SNAP, and the pyradiomics platform was applied to extract radiomic features. We established the machine learning model to predict the early recurrence of HCC. The accuracy, AUC, standard deviation, specificity, and sensitivity were applied to evaluate the model performance. Results 1,688 features were extracted from the arterial phase and venous phase images, respectively. When arterial phase and venous phase images were employed correlated with clinical factors to train a prediction model, it achieved the best performance (AUC with 95% CI 0.8300(0.7560-0.9040), sensitivity 89.45%, specificity 79.07%, accuracy 82.67%, p value 0.0064). Conclusion The CECT-based radiomics may be helpful to non-invasively reveal the potential connection between CECT images and early recurrence of HCC. The combination of radiomics and clinical factors could boost model performance.
Collapse
Affiliation(s)
- Bing Mao
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Yajun Ren
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinliang Liang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Zossou VBS, Gnangnon FHR, Biaou O, de Vathaire F, Allodji RS, Ezin EC. Radiomics-Based Classification of Tumor and Healthy Liver on Computed Tomography Images. Cancers (Basel) 2024; 16:1158. [PMID: 38539493 PMCID: PMC10969048 DOI: 10.3390/cancers16061158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/29/2025] Open
Abstract
Liver malignancies, particularly hepatocellular carcinoma and metastasis, stand as prominent contributors to cancer mortality. Much of the data from abdominal computed tomography images remain underused by radiologists. This study explores the application of machine learning in differentiating tumor tissue from healthy liver tissue using radiomics features. Preoperative contrast-enhanced images of 94 patients were used. A total of 1686 features classified as first-order, second-order, higher-order, and shape statistics were extracted from the regions of interest of each patient's imaging data. Then, the variance threshold, the selection of statistically significant variables using the Student's t-test, and lasso regression were used for feature selection. Six classifiers were used to identify tumor and non-tumor liver tissue, including random forest, support vector machines, naive Bayes, adaptive boosting, extreme gradient boosting, and logistic regression. Grid search was used as a hyperparameter tuning technique, and a 10-fold cross-validation procedure was applied. The area under the receiver operating curve (AUROC) assessed the performance. The AUROC scores varied from 0.5929 to 0.9268, with naive Bayes achieving the best score. The radiomics features extracted were classified with a good score, and the radiomics signature enabled a prognostic biomarker for hepatic tumor screening.
Collapse
Affiliation(s)
- Vincent-Béni Sèna Zossou
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805 Villejuif, France (R.S.A.)
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP), U1018, Institut National de la Santé et de la Recherche Médicale, 94805 Villejuif, France
- Ecole Doctorale Sciences de l’Ingénieur, Université d’Abomey-Calavi, Abomey-Calavi 384, Benin
| | | | - Olivier Biaou
- Department of Radiology, CNHU-HKM, Cotonou 229, Benin
| | - Florent de Vathaire
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805 Villejuif, France (R.S.A.)
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP), U1018, Institut National de la Santé et de la Recherche Médicale, 94805 Villejuif, France
| | - Rodrigue S. Allodji
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805 Villejuif, France (R.S.A.)
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP), U1018, Institut National de la Santé et de la Recherche Médicale, 94805 Villejuif, France
| | - Eugène C. Ezin
- Institut de Formation et de Recherche en Informatique, Université d’Abomey-Calavi, Abomey-Calavi 384, Benin;
- Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, Dangbo 384, Benin
| |
Collapse
|
12
|
Maino C, Vernuccio F, Cannella R, Franco PN, Giannini V, Dezio M, Pisani AR, Blandino AA, Faletti R, De Bernardi E, Ippolito D, Gatti M, Inchingolo R. Radiomics and liver: Where we are and where we are headed? Eur J Radiol 2024; 171:111297. [PMID: 38237517 DOI: 10.1016/j.ejrad.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies. In recent years, clinical practice has moved forward to a quantitative approach to better evaluate and manage each patient with a more fitted approach. In this setting, radiomics has gained an important role in helping radiologists and clinicians characterize hepatic pathological entities, in managing patients, and in determining prognosis. Radiomics can extract a large amount of data from radiological images, which can be associated with different liver scenarios. Thanks to its wide applications in ultrasonography (US), CT, and MRI, different studies were focused on specific aspects related to liver diseases. Even if broadly applied, radiomics has some advantages and different pitfalls. This review aims to summarize the most important and robust studies published in the field of liver radiomics, underlying their main limitations and issues, and what they can add to the current and future clinical practice and literature.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy.
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Michele Dezio
- Department of Radiology, Miulli Hospital, Acquaviva delle Fonti 70021, Bari, Italy
| | - Antonio Rosario Pisani
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine, University of Bari, Bari 70121, Italy
| | - Antonino Andrea Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, University of Milano Bicocca, Milano 20100, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| |
Collapse
|
13
|
Jin J, Jiang Y, Zhao YL, Huang PT. Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:467-479. [PMID: 37867018 DOI: 10.1016/j.acra.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
RATIONALE AND OBJECTIVES Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality. MATERIALS AND METHODS Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS). RESULTS A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70-0.79; MRI: C-index = 0.788, 95% CI: 0.75-0.83; CEUS: C-index = 0.763, 95% CI: 0.60-0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65-0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53-0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76-0.82; MRI: C-index = 0.826, 95% CI: 0.79-0.86; US: C-index = 0.760, 95% CI: 0.65-0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44-0.97). CONCLUSION Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
Collapse
Affiliation(s)
- Jin Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Ying Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Yu-Lan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Pin-Tong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.); Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (P.-L.H.); Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, P.R. China (P.-L.H.).
| |
Collapse
|
14
|
Wu J, Liu W, Qiu X, Li J, Song K, Shen S, Huo L, Chen L, Xu M, Wang H, Jia N, Chen L. A Noninvasive Approach to Evaluate Tumor Immune Microenvironment and Predict Outcomes in Hepatocellular Carcinoma. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:549-564. [PMID: 38223688 PMCID: PMC10781918 DOI: 10.1007/s43657-023-00136-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
It is widely recognized that tumor immune microenvironment (TIME) plays a crucial role in tumor progression, metastasis, and therapeutic response. Despite several noninvasive strategies have emerged for cancer diagnosis and prognosis, there are still lack of effective radiomic-based model to evaluate TIME status, let alone predict clinical outcome and immune checkpoint inhibitor (ICIs) response for hepatocellular carcinoma (HCC). In this study, we developed a radiomic model to evaluate TIME status within the tumor and predict prognosis and immunotherapy response. A total of 301 patients who underwent magnetic resonance imaging (MRI) examinations were enrolled in our study. The intra-tumoral expression of 17 immune-related molecules were evaluated using co-detection by indexing (CODEX) technology, and we construct Immunoscore (IS) with the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression method to evaluate TIME. Of 6115 features extracted from MRI, five core features were filtered out, and the Radiomic Immunoscore (RIS) showed high accuracy in predicting TIME status in testing cohort (area under the curve = 0.753). More importantly, RIS model showed the capability of predicting therapeutic response to anti-programmed cell death 1 (PD-1) immunotherapy in an independent cohort with advanced HCC patients (area under the curve = 0.731). In comparison with previously radiomic-based models, our integrated RIS model exhibits not only higher accuracy in predicting prognosis but also the potential guiding significance to HCC immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00136-8.
Collapse
Affiliation(s)
- Jianmin Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Wanmin Liu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200333 China
| | - Xinyao Qiu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kairong Song
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Lei Huo
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Lu Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Mingshuang Xu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Hongyang Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ningyang Jia
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| |
Collapse
|
15
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
16
|
Park JW, Lee H, Hong H, Seong J. Efficacy of Radiomics in Predicting Oncologic Outcome of Liver-Directed Combined Radiotherapy in Locally Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5405. [PMID: 38001665 PMCID: PMC10670316 DOI: 10.3390/cancers15225405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE We investigated whether radiomic features extracted from three-phase dynamic contrast-enhanced computed tomography (CECT) can be used to predict clinical outcomes, including objective treatment response (OR) and in-field failure-free survival rate (IFFR), in patients with hepatocellular carcinoma (HCC) who received liver-directed combined radiotherapy (LD-CRT). METHODS We included 409 patients, and they were randomly divided into training (n = 307) and validation (n = 102) cohorts. For radiomics models, we extracted 116 radiomic features from the region of interest on the CECT images. Significant clinical prognostic factors are identified to predict the OR and IFFR in the clinical models. We developed clinical models, radiomics models, and a combination of both features (CCR model). RESULTS Among the radiomic models evaluated for OR, the OR-PVP-Peri-1cm model showed favorable predictive performance with an area under the curve (AUC) of 0.647. The clinical model showed an AUC of 0.729, whereas the CCR model showed better performance (AUC 0.759). For the IFFR, the IFFR-PVP-Peri-1cm model showed an AUC of 0.673, clinical model showed 0.687, and the CCR model showed 0.736. We also developed and validated a prognostic nomogram based on CCR models. CONCLUSION In predicting the OR and IFFR in patients with HCC undergoing LD-CRT, CCR models performed better than clinical and radiomics models. Moreover, the constructed nomograms based on these models may provide valuable information on the prognosis of these patients.
Collapse
Affiliation(s)
- Jong Won Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hansang Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Helen Hong
- Department of Software Convergence, College of Interdisciplinary Studies for Emerging Industries, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
17
|
Ding Z, Wu Y, Fang G, Lin Z, Lin K, Fu J, Huang Q, Tang Y, You W, Liu J, Zeng Y. Development and validation a radiomics nomogram for predicting thymidylate synthase status in hepatocellular carcinoma based on Gd-DTPA contrast enhanced MRI. BMC Cancer 2023; 23:991. [PMID: 37848807 PMCID: PMC10580573 DOI: 10.1186/s12885-023-11096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/21/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVES The purpose of this study was to develop and validate a radiomics nomogram for predicting thymidylate synthase (TYMS) status in hepatocellular carcinoma (HCC) by using Gd-DTPA contrast enhanced MRI. METHODS We retrospectively enrolled 147 consecutive patients with surgically confirmed HCC and randomly allocated to training and validation set (7:3). The TYMS status was immunohistochemical determined and classified into low TYMS (positive cells ≤ 25%) and high TYMS (positive cells > 25%) groups. Radiomics features were extracted from the arterial phases and portal venous phase of Gd-DTPA contrast enhanced MRI. Least absolute shrinkage and selection operator (LASSO) were applied for generating the Rad score. Clinical data and MRI findings were assessed to build a clinical model. Rad score combined with clinical features was used to construct radiomics nomogram. RESULTS A total of 2260 features were extracted and reduced to 7 features as the most important discriminators to build the Rad score. InAFP was identified as the only independent clinical factors for TYMS status. The radiomics nomogram showed good discrimination in training (AUC, 0.759; 95% CI 0.665-0.838) and validation set (AUC, 0.739; 95% CI 0.585-0.860), and showed better discrimination capability (P < 0.05) compared with clinical model in training (AUC, 0.656; 95% CI 0.555-0.746) and validation set (AUC, 0.622; 95% CI 0.463-0.764). CONCLUSIONS The radiomics nomogram shows favorable predictive efficacy for TYMS status in HCC, which might be helpful for the personalized treatment of HCC.
Collapse
Affiliation(s)
- Zongren Ding
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China
| | - Yijun Wu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China
| | - Guoxu Fang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China
| | - Zhaowang Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Kongying Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China
| | - Jun Fu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China
| | - Qizhen Huang
- Department of Radiotherapy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Yanyan Tang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Wuyi You
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Jingfeng Liu
- Fujian Provincial Cancer Hospital, Fuzhou, 350025, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China.
| |
Collapse
|
18
|
Marinelli B, Chen M, Stocker D, Charles D, Radell J, Lee JY, Fauveau V, Bello-Martinez R, Kim E, Taouli B. Early Prediction of Response of Hepatocellular Carcinoma to Yttrium-90 Radiation Segmentectomy Using a Machine Learning MR Imaging Radiomic Approach. J Vasc Interv Radiol 2023; 34:1794-1801.e2. [PMID: 37364730 DOI: 10.1016/j.jvir.2023.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To assess the accuracy of a machine learning (ML) approach based on magnetic resonance (MR) imaging radiomic quantification obtained before treatment and early after treatment for prediction of early hepatocellular carcinoma (HCC) response to yttrium-90 transarterial radioembolization (TARE). MATERIALS AND METHODS In this retrospective single-center study of 76 patients with HCC, baseline and early (1-2 months) post-TARE MR images were collected. Semiautomated tumor segmentation facilitated extraction of shape, first-order histogram, and custom signal intensity-based radiomic features, which were then trained (n = 46) using a ML XGBoost model and validated on a separate cohort (n = 30) not used in training to predict treatment response assessed at 4-6 months (based on modified Response and Evaluation Criteria in Solid Tumors criteria). Performance of this ML radiomic model was compared with those of models comprising clinical parameters and standard imaging characteristics using area under the receiver operating curve (AUROC) analysis for prediction of complete response (CR). RESULTS Seventy-six tumors with a mean (±SD) diameter of 2.6 cm ± 1.6 were included. Sixty, 12, 1, and 3 patients were classified as having CR, partial response, stable disease, and progressive disease, respectively, at 4-6 months posttreatment on the basis of MR images. In the validation cohort, the radiomic model showed good performance (AUROC, 0.89) for prediction of CR, compared with models comprising clinical and standard imaging criteria (AUROC, 0.58 and 0.59, respectively). Baseline imaging features appeared to be more heavily weighted in the radiomic model. CONCLUSIONS The use of ML modeling of radiomic data combining baseline and early follow-up MR imaging could predict HCC response to TARE. These models need to be investigated further in an independent cohort.
Collapse
Affiliation(s)
- Brett Marinelli
- Biomedical Engineering and Imaging Institute; Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mark Chen
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Stocker
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dudley Charles
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Jake Radell
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Yoep Lee
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Edward Kim
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bachir Taouli
- Biomedical Engineering and Imaging Institute; Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Chen C, Liu J, Gu Z, Sun Y, Lu W, Liu X, Chen K, Ma T, Zhao S, Zhao H. Integration of Multimodal Computed Tomography Radiomic Features of Primary Tumors and the Spleen to Predict Early Recurrence in Patients with Postoperative Adjuvant Transarterial Chemoembolization. J Hepatocell Carcinoma 2023; 10:1295-1308. [PMID: 37576612 PMCID: PMC10422964 DOI: 10.2147/jhc.s423129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Patients with HCC choose postoperative adjuvant transarterial chemoembolization (PA-TACE) after surgical resection to reduce the risk of recurrence. However, many of them have recurrence within a short period. Methods In this retrospective analysis, a total of 173 patients who underwent PA-TACE between September 2016 and March 2020 were recruited. Radiomic features were derived from the arterial and venous phases of each patient. Early recurrence (ER)-related radiomics features of HCC and the spleen were selected to build two rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Logistic regression was applied to establish the Radiation (Rad)_score by combining the two regions. We constructed a nomogram containing clinical information and dual-region rad-scores, which was evaluated in terms of discrimination, calibration, and clinical usefulness. Results All three radiological scores showed good performance for ER prediction. The combined Rad_score performed the best, with an area under the curve (AUC) of 0.853 (95% confidence interval [CI], 0.783-0.908) in the training set and 0.929 (95% CI, 0.789-0.988) in the validation set. Multivariate analysis identified total bilirubin (TBIL) and the combined Rad_score as independent prognostic factors for ER. The nomogram was found to be clinically valuable, as determined by the decision curves (DCA) and clinical impact curves (CIC). Conclusion A multimodal dual-region radiomics model combining HCC and the spleen is an independent prognostic tool for ER. The combination of dual-region radiomics features and clinicopathological factors has a good clinical application value.
Collapse
Affiliation(s)
- Cong Chen
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jian Liu
- Dalian Medical University and Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Zhuxin Gu
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yanjun Sun
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Wenwu Lu
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Xiaokan Liu
- Department of Interventional Radiology, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People’s Republic of China
| | - Kang Chen
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tianzhi Ma
- Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, People’s Republic of China
| | - Suming Zhao
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Hui Zhao
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
20
|
Anichini M, Galluzzo A, Danti G, Grazzini G, Pradella S, Treballi F, Bicci E. Focal Lesions of the Liver and Radiomics: What Do We Know? Diagnostics (Basel) 2023; 13:2591. [PMID: 37568954 PMCID: PMC10417608 DOI: 10.3390/diagnostics13152591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Despite differences in pathological analysis, focal liver lesions are not always distinguishable in contrast-enhanced magnetic resonance imaging (MRI), contrast-enhanced computed tomography (CT), and positron emission tomography (PET). This issue can cause problems of differential diagnosis, treatment, and follow-up, especially in patients affected by HBV/HCV chronic liver disease or fatty liver disease. Radiomics is an innovative imaging approach that extracts and analyzes non-visible quantitative imaging features, supporting the radiologist in the most challenging differential diagnosis when the best-known methods are not conclusive. The purpose of this review is to evaluate the most significant CT and MRI texture features, which can discriminate between the main benign and malignant focal liver lesions and can be helpful to predict the response to pharmacological or surgical therapy and the patient's prognosis.
Collapse
Affiliation(s)
| | | | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; (M.A.); (A.G.); (G.G.); (S.P.); (F.T.); (E.B.)
| | | | | | | | | |
Collapse
|
21
|
Xu Y, Zhao J, Chen Q, Wang F, Lin L, Hu H, Tong R, Li J, Chen YW. Contrastive Learning for Preoperative Early Recurrence Prediction of Hepatocellular Carcinoma with Liver CT Image and Tumor Mask. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083328 DOI: 10.1109/embc40787.2023.10340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
High early recurrence (ER) rate is the main factor leading to the poor outcome of patients with hepatocellular carcinoma (HCC). Accurate preoperative prediction of ER is thus highly desired for HCC treatment. Many radiomics solutions have been proposed for the preoperative prediction of HCC using CT images based on machine learning and deep learning methods. Nevertheless, most current radiomics approaches extract features only from segmented tumor regions that neglect the liver tissue information which is useful for HCC prognosis. In this work, we propose a deep prediction network based on CT images of full liver combined with tumor mask that provides tumor location information for better feature extraction to predict the ER of HCC. While, due to the complex imaging characteristics of HCC, the image-based ER prediction methods suffer from limited capability. Therefore, on the one hand, we propose to employ supervised contrastive loss to jointly train the deep prediction model with cross-entropy loss to alleviate the problem of intra-class variation and inter-class similarity of HCC. On the other hand, we incorporate the clinical data to further improve the prediction ability of the model. Experiments are extensively conducted to verify the effectiveness of our proposed deep prediction model and the contribution of liver tissue for prognosis assessment of HCC.
Collapse
|
22
|
Wang Q, Sheng Y, Jiang Z, Liu H, Lu H, Xing W. What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics (Basel) 2023; 13:2012. [PMID: 37370907 DOI: 10.3390/diagnostics13122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It is of great importance to predict the early recurrence (ER) of hepatocellular carcinoma (HCC) after hepatectomy using preoperative imaging modalities. Nevertheless, no comparative studies have been conducted to determine which modality, CT or MRI with radiomics analysis, is more effective. METHODS We retrospectively enrolled 119 HCC patients who underwent preoperative CT and MRI. A total of 3776 CT features and 4720 MRI features were extracted from the whole tumor. The minimum redundancy and maximum relevance algorithm (MRMR) and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection, then support vector machines (SVMs) were applied for model construction. Multivariable logistic regression analysis was employed to construct combined models that integrate clinical-radiological-pathological (CRP) traits and radscore. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to compare the efficacy of CT, MRI, and CT and MRI models in the test cohort. RESULTS The CT model and MRI model showed no significant difference in the prediction of ER in HCC patients (p = 0.911). RadiomicsCT&MRI demonstrated a superior predictive performance than either RadiomicsCT or RadiomicsMRI alone (p = 0.032, 0.039). The combined CT and MRI model can significantly stratify patients at high risk of ER (area under the curve (AUC) of 0.951 in the training set and 0.955 in the test set) than the CT model (AUC of 0.894 and 0.784) and the MRI model (AUC of 0.856 and 0.787). DCA demonstrated that the CT and MRI model provided a greater net benefit than the models without radiomics analysis. CONCLUSIONS No significant difference was found in predicting the ER of HCC between CT models and MRI models. However, the multimodal radiomics model derived from CT and MRI can significantly improve the prediction of ER in HCC patients after resection.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haifeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haitao Lu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| |
Collapse
|
23
|
Tian H, Xie Y, Wang Z. Radiomics for preoperative prediction of early recurrence in hepatocellular carcinoma: a meta-analysis. Front Oncol 2023; 13:1114983. [PMID: 37350952 PMCID: PMC10282764 DOI: 10.3389/fonc.2023.1114983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Objective Early recurrence (ER) affects the long-term survival prognosis of patients with hepatocellular carcinoma (HCC). Many previous studies have utilized CT/MRI-based radiomics to predict ER after radical treatment, achieving high predictive value. However, the diagnostic performance of radiomics for the preoperative identification of ER remains uncertain. Therefore, we aimed to perform a meta-analysis to investigate the predictive performance of radiomics for ER in HCC. Methods A systematic literature search was conducted in PubMed, Web of Science (including MEDLINE), EMBASE and the Cochrane Central Register of Controlled Trials to identify studies that utilized radiomics methods to assess ER in HCC. Data were extracted and quality assessed for retrieved studies. Statistical analyses included pooled data, tests for heterogeneity, and publication bias. Meta-regression and subgroup analyses were performed to investigate potential sources of heterogeneity. Results The analysis included fifteen studies involving 3,281 patients focusing on preoperative CT/MRI-based radiomics for the prediction of ER in HCC. The combined sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic were 75% (95% CI: 65-82), 78% (95% CI: 68-85), and 83% (95% CI: 79-86), respectively. The combined positive likelihood ratio, negative likelihood ratio, diagnostic score, and diagnostic odds ratio were 3.35 (95% CI: 2.41-4.65), 0.33 (95% CI: 0.25-0.43), 2.33 (95% CI: 1.91-2.75), and 10.29 (95% CI: 6.79-15.61), respectively. Substantial heterogeneity was observed among the studies (I²=99%; 95% CI: 99-100). Meta-regression showed imaging equipment contributed to the heterogeneity of specificity in subgroup analysis (P= 0.03). Conclusion Preoperative CT/MRI-based radiomics appears to be a promising and non-invasive predictive approach with moderate ER recognition performance.
Collapse
Affiliation(s)
- Huan Tian
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yong Xie
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
24
|
Mahmoudi S, Bernatz S, Ackermann J, Koch V, Dos Santos DP, Grünewald LD, Yel I, Martin SS, Scholtz JE, Stehle A, Walter D, Zeuzem S, Wild PJ, Vogl TJ, Kinzler MN. Computed Tomography Radiomics to Differentiate Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma. Clin Oncol (R Coll Radiol) 2023; 35:e312-e318. [PMID: 36804153 DOI: 10.1016/j.clon.2023.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
AIMS Intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) differ in prognosis and treatment. We aimed to non-invasively differentiate iCCA and HCC by means of radiomics extracted from contrast-enhanced standard-of-care computed tomography (CT). MATERIALS AND METHODS In total, 94 patients (male, n = 68, mean age 63.3 ± 12.4 years) with histologically confirmed iCCA (n = 47) or HCC (n = 47) who underwent contrast-enhanced abdominal CT between August 2014 and November 2021 were retrospectively included. The enhancing tumour border was manually segmented in a clinically feasible way by defining three three-dimensional volumes of interest per tumour. Radiomics features were extracted. Intraclass correlation analysis and Pearson metrics were used to stratify robust and non-redundant features with further feature reduction by LASSO (least absolute shrinkage and selection operator). Independent training and testing datasets were used to build four different machine learning models. Performance metrics and feature importance values were computed to increase the models' interpretability. RESULTS The patient population was split into 65 patients for training (iCCA, n = 32) and 29 patients for testing (iCCA, n = 15). A final combined feature set of three radiomics features and the clinical features age and sex revealed a top test model performance of receiver operating characteristic (ROC) area under the curve (AUC) = 0.82 (95% confidence interval =0.66-0.98; train ROC AUC = 0.82) using a logistic regression classifier. The model was well calibrated, and the Youden J Index suggested an optimal cut-off of 0.501 to discriminate between iCCA and HCC with a sensitivity of 0.733 and a specificity of 0.857. CONCLUSIONS Radiomics-based imaging biomarkers can potentially help to non-invasively discriminate between iCCA and HCC.
Collapse
Affiliation(s)
- S Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - S Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany; Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - J Ackermann
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University, Frankfurt am Main, Germany
| | - V Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - D P Dos Santos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - L D Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - I Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - S S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J-E Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - A Stehle
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - D Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - S Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - P J Wild
- Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - T J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - M N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Long Y, Lv Z, Wang S, Tang B, Li Q, Zhang W. Comparison of preoperative ultrasound and MRI in the diagnosis of microvascular invasion in hepatocellular carcinoma. Funct Integr Genomics 2023; 23:100. [PMID: 36961647 DOI: 10.1007/s10142-023-01006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Ultrasound has few reports on its application in prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). The purpose of this study was to explore the diagnostic efficacies of preoperative ultrasound and magnetic resonance imaging (MRI) for HCC MVI and compare these two imaging methods for the diagnosis of this condition. The clinical and preoperative ultrasound and MR imaging data of 26 patients with newly diagnosed HCC were collected between October 2020 and October 2021. According to the gold standard (postoperative pathology), the patients were divided into MVI-positive and MVI-negative groups, and the efficacies of ultrasound and MRI in diagnosing HCC MVI and the consistency between the two imaging modalities were analyzed. For the preoperative diagnosis of MVI using ultrasound, the sensitivity was 93.33%, the specificity was 81.82%, and the accuracy was 88.46%. For preoperative MRI, the sensitivity was 66.67%, the specificity was 100%, and the accuracy was 80.77%. In diagnosing MVI, the two methods had significantly different efficacy (P = 0.031). Ultrasound and MRI have high diagnostic efficiency for MVI, but the accuracy of preoperative MRI was lower than that of preoperative ultrasound. These results indicate that ultrasound has a certain guiding significance in the diagnosis of HCC MVI.
Collapse
Affiliation(s)
- Yunmin Long
- Department of Ultrasound, Guilin Medical University Affiliated Hospital, Guilin, 541001, China
| | - Zheng Lv
- Department of Radiology, Guilin Medical University Affiliated Hospital, Guilin, 541001, China
| | - Shaoyi Wang
- Department of Radiology, Guilin Medical University Affiliated Hospital, Guilin, 541001, China
| | - Bing Tang
- Department of Ultrasound, Guilin Medical University Affiliated Hospital, Guilin, 541001, China
| | - Qin Li
- Department of Ultrasound, Guilin Medical University Affiliated Hospital, Guilin, 541001, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Chengzhong District, 8 Wenchang Road, Liuzhou, 545006, China.
| |
Collapse
|
26
|
Fan XL, Wang YH, Chen YH, Chen BX, Cai JN, Yang JS, Sun X, Yan FR, He BS. Computed tomography texture analysis combined with preoperative clinical factors serve as a predictor of early efficacy of transcatheter arterial chemoembolization in hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:2008-2018. [PMID: 36943423 DOI: 10.1007/s00261-023-03868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
AIM To investigate a pre-therapeutic radiomics nomogram to accurately predict hepatocellular carcinoma (HCC) lesion responses to transcatheter arterial chemoembolization (TACE). METHODS This retrospective study from January 2012 to 2022 included 92 TACE-treated patients who underwent liver contrast-enhanced CT scan 7 days before treatment, having complete clinical information. We extracted quantitative texture parameters and clinical factors for the largest tumors on the baseline arterial and portal venous phase CT images. An adaptive least absolute shrinkage and selection operator (LASSO)-penalized logistic regression identified independent predictors of tumor activity after TACE. RESULTS We fitted an adaptive LASSO regression model to narrow down the texture features and clinical risk factors of the tumor activity status. The selected texture features were used to construct radiomic scores (RadScore), which demonstrated superior performance in predicting tumor activity on both the training (area under the curve (AUC): 0.881, 95% CI: 0.799-0.963) and testing sets (AUC: 0.88, 95% CI: 0.726-1). A logistic regression-based nomogram was developed using RadScore and four selected clinical features. In the testing set, nomogram total points were significant predictors (P = 0.034), and the training set showed no departure from perfect fit (P = 0.833). Internal validation of the nomogram was obtained for the training (AUC: 0.91, 95% CI: 0.837-0.984) and testing (AUC: 0.889, 95% CI: 0.746-1) sets. CONCLUSION We propose a nomogram to predict the early response of HCC lesions to TACE treatment with high accuracy, which may serve as an additional criterion in multidisciplinary decision-making treatment.
Collapse
Affiliation(s)
- Xiao Le Fan
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yu Hang Wang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yu Hao Chen
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Bai Xu Chen
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jia Nan Cai
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ju Shun Yang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xu Sun
- Université Paris Cité, 75013, Paris, France
| | - Fang Rong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bo Sheng He
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
- Clinical Medicine Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
27
|
Wang H, Liu R, Mo H, Li R, Lian J, Liu Q, Han S. A novel nomogram predicting the early recurrence of hepatocellular carcinoma patients after R0 resection. Front Oncol 2023; 13:1133807. [PMID: 37007138 PMCID: PMC10063973 DOI: 10.3389/fonc.2023.1133807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Background Early tumor recurrence is one of the most significant poor prognostic factors for patients with HCC after R0 resection. The aim of this study is to identify risk factors of early recurrence, in addition, to develop a nomogram model predicting early recurrence of HCC patients. Methods A total of 481 HCC patients after R0 resection were enrolled and divided into a training cohort (n = 337) and a validation cohort (n = 144). Risk factors for early recurrence were determined based on Cox regression analysis in the training cohort. A nomogram incorporating independent risk predictors was established and validated. Results Early recurrence occurred in 37.8% of the 481 patients who underwent curative liver resection of HCC. AFP ≥ 400 ng/mL (HR: 1.662; P = 0.008), VEGF-A among 127.8 to 240.3 pg/mL (HR: 1.781, P = 0.012), VEGF-A > 240.3 pg/mL (HR: 2.552, P < 0.001), M1 subgroup of MVI (HR: 2.221, P = 0.002), M2 subgroup of MVI (HR: 3.120, P < 0.001), intratumor necrosis (HR: 1.666, P = 0.011), surgical margin among 5.0 to 10.0 mm (HR: 1.601, P = 0.043) and surgical margin < 5.0 mm (HR: 1.790, P = 0.012) were found to be independent risk factors for recurrence-free survival in the training cohort and were used for constructing the nomogram. The nomogram indicated good predictive performance with an AUC of 0.781 (95% CI: 0.729-0.832) and 0.808 (95% CI: 0.731-0.886) in the training and validation cohorts, respectively. Conclusions Elevated serum concentrations of AFP and VEGF-A, microvascular invasion, intratumor necrosis, surgical margin were independent risk factors of early intrahepatic recurrence. A reliable nomogram model which incorporated blood biomarkers and pathological variables was established and validated. The nomogram achieved desirable effectiveness in predicting early recurrence in HCC patients.
Collapse
Affiliation(s)
- Huanhuan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Runtian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Ren Y, Bo L, Shen B, Yang J, Xu S, Shen W, Chen H, Wang X, Chen H, Cai X. Development and validation of a clinical-radiomics model to predict recurrence for patients with hepatocellular carcinoma after curative resection. Med Phys 2023; 50:778-790. [PMID: 36269204 DOI: 10.1002/mp.16061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Recurrence is the leading cause of death in hepatocellular carcinoma (HCC) patients with curative resection. In this study, we aimed to develop a preoperative predictive model based on high-throughput radiomics features and clinical factors for prediction of long- and short-term recurrence for these patients. METHODS A total of 270 patients with HCC who were followed up for at least 5 years after curative hepatectomy between June 2014 and December 2017 were enrolled in this retrospective study. Regions of interest were manually delineated in preoperative T2-weighted images using ITK-SNAP software on each HCC tumor slice. A total of 1197 radiomics features were extracted, and the recursive feature elimination method based on logistic regression was used for radiomics signature building. Tenfold cross-validation was applied for model development. Nomograms were constructed and assessed by calibration plot, which compares nomogram-predicated probability with observed outcome. Receiver-operating characteristic was then generated to evaluate the predictive performance of the model in the development and test cohorts. RESULTS The 10 most recurrence-free survival-related radiomics features were selected for the radiomics signatures. A multiparametric clinical-radiomics model combining albumin and radiomics score for recurrence prediction was further established. The integrated model demonstrated good calibration and satisfactory discrimination, with the area under the curve (AUC) of 0.864, 95% CI 0.842-0.903, sensitivity of 0.889, and specificity of 0.644 in the test set. Calibration curve showed good agreement concerning 5-year recurrence risk predicted by the nomogram. In addition, the AUC of 1-, 2-, 3-, and 4-year recurrence was 0.935 (95% CI 0.836-1.000), 0.861 (95% CI 0.723-0.999), 0.878 (95% CI 0.762-0.994), and 0.878 (95% CI 0.762-0.994) in the test set, respectively. CONCLUSIONS The clinical-radiomics model integrating radiomics features and clinical factors can improve recurrence predictions beyond predictions made using clinical factors or radiomics features alone. Our clinical-radiomics model is a valid method to predict recurrence that should improve preoperative prognostic performance and allow more individualized treatment decisions.
Collapse
Affiliation(s)
- Yiyue Ren
- Department of General Surgery, Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Bo
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, China
| | - Bo Shen
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Jing Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shufeng Xu
- Department of Radiology, People's Hospital of Quzhou, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Weiqiang Shen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Hao Chen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xiaoyan Wang
- Department of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
| | - Haipeng Chen
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Xiujun Cai
- Department of General Surgery, Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
30
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
32
|
Chan LWC, Wong SCC, Cho WCS, Huang M, Zhang F, Chui ML, Lai UNY, Chan TYK, Cheung ZHC, Cheung JCY, Tang KF, Tse ML, Wong HK, Kwok HMF, Shen X, Zhang S, Chiu KWH. Primary Tumor Radiomic Model for Identifying Extrahepatic Metastasis of Hepatocellular Carcinoma Based on Contrast Enhanced Computed Tomography. Diagnostics (Basel) 2022; 13:102. [PMID: 36611394 PMCID: PMC9818425 DOI: 10.3390/diagnostics13010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
This study aimed to identify radiomic features of primary tumor and develop a model for indicating extrahepatic metastasis of hepatocellular carcinoma (HCC). Contrast-enhanced computed tomographic (CT) images of 177 HCC cases, including 26 metastatic (MET) and 151 non-metastatic (non-MET), were retrospectively collected and analyzed. For each case, 851 radiomic features, which quantify shape, intensity, texture, and heterogeneity within the segmented volume of the largest HCC tumor in arterial phase, were extracted using Pyradiomics. The dataset was randomly split into training and test sets. Synthetic Minority Oversampling Technique (SMOTE) was performed to augment the training set to 145 MET and 145 non-MET cases. The test set consists of six MET and six non-MET cases. The external validation set is comprised of 20 MET and 25 non-MET cases collected from an independent clinical unit. Logistic regression and support vector machine (SVM) models were identified based on the features selected using the stepwise forward method while the deep convolution neural network, visual geometry group 16 (VGG16), was trained using CT images directly. Grey-level size zone matrix (GLSZM) features constitute four of eight selected predictors of metastasis due to their perceptiveness to the tumor heterogeneity. The radiomic logistic regression model yielded an area under receiver operating characteristic curve (AUROC) of 0.944 on the test set and an AUROC of 0.744 on the external validation set. Logistic regression revealed no significant difference with SVM in the performance and outperformed VGG16 significantly. As extrahepatic metastasis workups, such as chest CT and bone scintigraphy, are standard but exhaustive, radiomic model facilitates a cost-effective method for stratifying HCC patients into eligibility groups of these workups.
Collapse
Affiliation(s)
- Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Mohan Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fei Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Man Lik Chui
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Una Ngo Yin Lai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tiffany Yuen Kwan Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zoe Hoi Ching Cheung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jerry Chun Yin Cheung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kin Fu Tang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Man Long Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hung Kit Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hugo Man Fung Kwok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinping Shen
- Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Sailong Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Keith Wan Hang Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
- Department of Radiology & Imaging, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
33
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Li J, Li X, Ma J, Wang F, Cui S, Ye Z. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Eur Radiol 2022:10.1007/s00330-022-09318-w. [PMID: 36515713 DOI: 10.1007/s00330-022-09318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To compare computed tomography (CT)-based radiomics for preoperatively differentiating type I and II epithelial ovarian cancers (EOCs) using different machine learning classifiers and to construct and validate the best diagnostic model. METHODS A total of 470 patients with EOCs were included retrospectively. Patients were divided into a training dataset (N = 329) and a test dataset (N = 141). A total of 1316 radiomics features were extracted from the portal venous phase of contrast-enhanced CT images for each patient, followed by dimension reduction of the features. The support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), naïve Bayes (NB), logistic regression (LR), and eXtreme Gradient Boosting (XGBoost) classifiers were trained to obtain the radiomics signatures. The performance of each radiomics signature was evaluated and compared by the area under the receiver operating characteristic curve (AUC) and relative standard deviation (RSD). The best radiomics signature was selected and combined with clinical and radiological features to establish a combined model. The diagnostic value of the combined model was assessed. RESULTS The LR-based radiomics signature performed well in the test dataset, with an AUC of 0.879 and an accuracy of 0.773. The combined model performed best in both the training and test datasets, with AUCs of 0.900 and 0.934 and accuracies of 0.848 and 0.823, respectively. CONCLUSION The combined model showed the best diagnostic performance for distinguishing between type I and II EOCs preoperatively. Therefore, it can be a useful tool for clinical individualized EOC classification. KEY POINTS • Radiomics features extracted from computed tomography (CT) could be used to differentiate type I and II epithelial ovarian cancers (EOCs). • Machine learning can improve the performance of differentiating type I and II EOCs. • The combined model exhibited the best diagnostic capability over the other models in both the training and test datasets.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Radiology, First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Xubin Li
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Juanwei Ma
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Fang Wang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Shujun Cui
- Department of Radiology, First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000, China.
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
35
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
36
|
Tang Y, Che X, Wang W, Su S, Nie Y, Yang C. Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer. Med Phys 2022; 49:7555-7566. [PMID: 35869750 DOI: 10.1002/mp.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately. PURPOSE The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN). METHODS A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC. RESULTS Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]). CONCLUSIONS Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
Collapse
Affiliation(s)
- Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoling Che
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Weijia Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Nie
- Department of Radiology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
37
|
Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219:985-995. [PMID: 35766531 PMCID: PMC10616929 DOI: 10.2214/ajr.22.27695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiomics is the process of extraction of high-throughput quantitative imaging features from medical images. These features represent noninvasive quantitative biomarkers that go beyond the traditional imaging features visible to the human eye. This article first reviews the steps of the radiomics pipeline, including image acquisition, ROI selection and image segmentation, image preprocessing, feature extraction, feature selection, and model development and application. Current evidence for the application of radiomics in abdominopelvic solid-organ cancers is then reviewed. Applications including diagnosis, subtype determination, treatment response assessment, and outcome prediction are explored within the context of hepatobiliary and pancreatic cancer, renal cell carcinoma, prostate cancer, gynecologic cancer, and adrenal masses. This literature review focuses on the strongest available evidence, including systematic reviews, meta-analyses, and large multicenter studies. Limitations of the available literature are highlighted, including marked heterogeneity in radiomics methodology, frequent use of small sample sizes with high risk of overfitting, and lack of prospective design, external validation, and standardized radiomics workflow. Thus, although studies have laid a foundation that supports continued investigation into radiomics models, stronger evidence is needed before clinical adoption.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Joint Department of Medical Imaging, Division of Abdominal Imaging, University Health Network, University of Toronto, ON, Canada
| | - Mohamed G Elbanan
- Department of Radiology, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT
| | | | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, Canada
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
| | - Bradley M Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Moawad
- Department of Diagnostic and Interventional Radiology, Mercy Catholic Medical Center, Darby, PA
| | - Serageldin Kamel
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khaled M Elsayes
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030
| |
Collapse
|
38
|
Sim JZT, Hui TCH, Chuah TK, Low HM, Tan CH, Shelat VG. Efficacy of texture analysis of pre-operative magnetic resonance imaging in predicting microvascular invasion in hepatocellular carcinoma. World J Clin Oncol 2022; 13:918-928. [PMID: 36483976 PMCID: PMC9724184 DOI: 10.5306/wjco.v13.i11.918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Presence of microvascular invasion (MVI) indicates poorer prognosis post-curative resection of hepatocellular carcinoma (HCC), with an increased chance of tumour recurrence. By present standards, MVI can only be diagnosed post-operatively on histopathology. Texture analysis potentially allows identification of patients who are considered 'high risk' through analysis of pre-operative magnetic resonance imaging (MRI) studies. This will allow for better patient selection, improved individualised therapy (such as extended surgical margins or adjuvant therapy) and pre-operative prognostication. AIM This study aims to evaluate the accuracy of texture analysis on pre-operative MRI in predicting MVI in HCC. METHODS Retrospective review of patients with new cases of HCC who underwent hepatectomy between 2007 and 2015 was performed. Exclusion criteria: No pre-operative MRI, significant movement artefacts, loss-to-follow-up, ruptured HCCs, previous hepatectomy and adjuvant therapy. Fifty patients were divided into MVI (n = 15) and non-MVI (n = 35) groups based on tumour histology. Selected images of the tumour on post-contrast-enhanced T1-weighted MRI were analysed. Both qualitative (performed by radiologists) and quantitative data (performed by software) were obtained. Radiomics texture parameters were extracted based on the largest cross-sectional area of each tumor and analysed using MaZda software. Five separate methods were performed. Methods 1, 2 and 3 exclusively made use of features derived from arterial, portovenous and equilibrium phases respectively. Methods 4 and 5 made use of the comparatively significant features to attain optimal performance. RESULTS Method 5 achieved the highest accuracy of 87.8% with sensitivity of 73% and specificity of 94%. CONCLUSION Texture analysis of tumours on pre-operative MRI can predict presence of MVI in HCC with accuracies of up to 87.8% and can potentially impact clinical management.
Collapse
Affiliation(s)
- Jordan Zheng Ting Sim
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Terrence Chi Hong Hui
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Tong Kuan Chuah
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - Hsien Min Low
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vishal G Shelat
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
39
|
He Y, Liang T, Chen Z, Mo S, Liao Y, Gao Q, Huang K, Peng T, Zhou W, Han C. Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7261786. [PMID: 36238647 PMCID: PMC9553367 DOI: 10.1155/2022/7261786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Background Early stage hepatocellular carcinoma (HCC) has a high recurrence rate after surgery and lacks reliable predictive tools. We explored the potential of combining enhanced CT with gut microbiome to develop a predictive model for recurrence after early HCC surgery. Methods A total of 112 patients with early HCC who underwent hepatectomy from September 2018 to December 2020 were included in this study, and the machine learning method was divided into a training group (N = 71) and a test group (N = 41) with the observed endpoint of recurrence-free survival (RFS). Features were extracted from the arterial and portal phases of enhanced computed tomography (CT) images and gut microbiome, and features with minimum absolute contraction and selection operator regression were created, and the extracted features were scored to create a preoperative prediction model by using the multivariate Cox regression analysis with risk stratification analysis. Results In the study cohort, the model constructed by combining radiological and gut flora features provided good predictive performance (C index, 0.811 (0.650-0.972)). The combined radiology and gut flora-based model constructed risk strata with high, intermediate, or low risk of recurrence and different characteristics of recurrent tumor imaging and gut flora. Recurrence of early stage hepatocellular carcinoma may be associated with oxidative stress in the intestinal flora. Conclusions This study successfully constructs a risk model integrating enhanced CT and gut microbiome characteristics that can be used for the risk of postoperative recurrence in patients with early HCC. In addition, intestinal flora associated with HCC recurrence may be involved in oxidative stress.
Collapse
Affiliation(s)
- Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijie Zhou
- Deputy Chief Technician of Laboratory, Baise People's Hospital, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Deng PZ, Zhao BG, Huang XH, Xu TF, Chen ZJ, Wei QF, Liu XY, Guo YQ, Yuan SG, Liao WJ. Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma. World J Gastroenterol 2022; 28:4376-4389. [PMID: 36159012 PMCID: PMC9453776 DOI: 10.3748/wjg.v28.i31.4376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with a rising incidence worldwide. The prognosis of HCC patients after radical resection remains poor. Radiomics is a novel machine learning method that extracts quantitative features from medical images and provides predictive information of cancer, which can assist with cancer diagnosis, therapeutic decision-making and prognosis improvement.
AIM To develop and validate a contrast-enhanced computed tomography-based radiomics model for predicting the overall survival (OS) of HCC patients after radical hepatectomy.
METHODS A total of 150 HCC patients were randomly divided into a training cohort (n = 107) and a validation cohort (n = 43). Radiomics features were extracted from the entire tumour lesion. The least absolute shrinkage and selection operator algorithm was applied for the selection of radiomics features and the construction of the radiomics signature. Univariate and multivariate Cox regression analyses were used to identify the independent prognostic factors and develop the predictive nomogram, incorporating clinicopathological characteristics and the radiomics signature. The accuracy of the nomogram was assessed with the concordance index, receiver operating characteristic (ROC) curve and calibration curve. The clinical utility was evaluated by decision curve analysis (DCA). Kaplan–Meier methodology was used to compare the survival between the low- and high-risk subgroups.
RESULTS In total, seven radiomics features were selected to construct the radiomics signature. According to the results of univariate and multivariate Cox regression analyses, alpha-fetoprotein (AFP), neutrophil-to-lymphocyte ratio (NLR) and radiomics signature were included to build the nomogram. The C-indices of the nomogram in the training and validation cohorts were 0.736 and 0.774, respectively. ROC curve analysis for predicting 1-, 3-, and 5-year OS confirmed satisfactory accuracy [training cohort, area under the curve (AUC) = 0.850, 0.791 and 0.823, respectively; validation cohort, AUC = 0.905, 0.884 and 0.911, respectively]. The calibration curve analysis indicated a good agreement between the nomogram-prediction and actual survival. DCA curves suggested that the nomogram had more benefit than traditional staging system models. Kaplan–Meier survival analysis indicated that patients in the low-risk group had longer OS and disease-free survival (all P < 0.0001).
CONCLUSION The nomogram containing the radiomics signature, NLR and AFP is a reliable tool for predicting the OS of HCC patients.
Collapse
Affiliation(s)
- Peng-Zhan Deng
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Bi-Geng Zhao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Xian-Hui Huang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Ting-Feng Xu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zi-Jun Chen
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qiu-Feng Wei
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Yi Liu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Yu-Qi Guo
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Guang Yuan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
41
|
Li N, Wan X, Zhang H, Zhang Z, Guo Y, Hong D. Tumor and peritumor radiomics analysis based on contrast-enhanced CT for predicting early and late recurrence of hepatocellular carcinoma after liver resection. BMC Cancer 2022; 22:664. [PMID: 35715783 PMCID: PMC9205126 DOI: 10.1186/s12885-022-09743-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background In China, liver resection has been proven to be one of the most important strategies for hepatocellular carcinoma patients, but the recurrence rate is high. This study sought to investigate the prognostic value of pretreatment tumor and peritumor contrast-enhanced CT radiomics features for early and late recurrence of BCLC stage 0-B hepatocellular carcinoma after liver resection. Methods This study involved 329 hepatocellular carcinoma patients after liver resection. A radiomics model was built by using Lasso-Cox regression model. Association between radiomics model and recurrence-free survival was explored by using Harrell’s concordance index (C-Index) and receiver operating characteristic (ROC) curves. Then, we combined the radiomics model and clinical factors to establish a nomogram whose calibration and discriminatory ability were revealed. Results Ten significant tumor and peritumor features were screened to build the radiomics model whose C-indices were 0.743 [95% CI, 0.707 to 0.778] and 0.69 [95% CI, 0.629 to 0.751] in the training and validation cohorts. Moreover, the discriminative accuracy of the radiomics model improved with peritumor features entry. The C-indices of the combined model were 0.773 [95% CI, 0.739 to 0.806] and 0.727 [95% CI, 0.667 to 0.787] in the training and validation cohorts, outperforming the radiomics model. Conclusions The tumor and peritumor contrast-enhanced CT radiomic signature is a quantitative imaging biomarker that could improve the prediction of early and late recurrence after liver resection for hepatocellular carcinoma patients when used in addition to clinical predictors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09743-6.
Collapse
Affiliation(s)
- Nu Li
- Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Xiaoting Wan
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Hong Zhang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zitian Zhang
- Department of Radiology, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Yan Guo
- GE Healthcare, Beijing, China
| | - Duo Hong
- Department of Interventional Radiology, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
42
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
43
|
Tian R, Li Y, Jia C, Mou Y, Zhang H, Wu X, Li J, Yu G, Mao N, Song X. Radiomics Model for Predicting TP53 Status Using CT and Machine Learning Approach in Laryngeal Squamous Cell Carcinoma. Front Oncol 2022; 12:823428. [PMID: 35574352 PMCID: PMC9095903 DOI: 10.3389/fonc.2022.823428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objective We aim to establish and validate computed tomography (CT)-based radiomics model for predicting TP53 status in patients with laryngeal squamous cell carcinoma (LSCC). Methods We divided all patients into a training set 1 (n=66) and a testing set 1 (n=30) to establish and validate radiomics model to predict TP53. Radiomics features were selected by analysis of variance (ANOVA) and the least absolute shrinkage and selection operator (Lasso) regression analysis. Five radiomics models were established by using K-Nearest Neighbor, logistics regressive, linear-support vector machine (SVM), gaussian-SVM, and polynomial-SVM in training set 1. We also divided all patients into a training set 2 and a testing set 2 according to different CT equipment to establish and evaluate the stability of the radiomics models. Results After ANOVA and subsequent Lasso regression analysis, 22 radiomics features were selected to build the radiomics model in training set 1. The radiomics model based on linear-SVM has the best predictive performance of the five models, and the area under the receiver operating characteristic curve in training set 1 and testing set 1 were 0.831(95% confidence interval [CI] 0.692–0.970) and 0.797(95% CI 0.632–0.957) respectively. The specificity, sensitivity, and accuracy were 0.971(95% CI 0.834–0.999), 0.714(95% CI 0.535–0.848), and 0.843(95% CI 0.657–0.928) in training set 1 and 0.750(95% CI 0.500–0.938), 0.786(95% CI 0.571–1.000), and 0.667(95% CI 0.467–0.720) in testing set 1, respectively. In addition, the radiomics model also achieved stable prediction results even in different CT equipment. Decision curve analysis showed that the radiomics model for predicting TP53 status could benefit LSCC patients. Conclusion We developed and validated a relatively optimal radiomics model for TP53 status prediction by trying five different machine learning methods in patients with LSCC. It shown great potential of radiomics features for predicting TP53 status preoperatively and guiding clinical treatment.
Collapse
Affiliation(s)
- Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chuanliang Jia
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xinxin Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jingjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
44
|
Lysdahlgaard S. Comparing Radiomics features of tumour and healthy liver tissue in a limited CT dataset: A machine learning study. Radiography (Lond) 2022; 28:718-724. [PMID: 35428570 DOI: 10.1016/j.radi.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Liver cancer lesions on Computed Tomography (CT) withholds a great amount of data, which is not visible to the radiologists and radiographer. Radiomics features can be extracted from the lesions and used to train Machine Learning (ML) algorithms to predict between tumour and liver tissue. The purpose of this study was to investigate and classify Radiomics features extracted from liver tumours and normal liver tissue in a limited CT dataset. METHODS The Liver Tumour Segmentation Benchmark (LiTS) dataset consisting of 131 CT scans of the liver with segmentations of tumour tissue and healthy liver was used to extract Radiomic features. Extracted Radiomic features included size, shape, and location extracted with morphological and statistical techniques according to the International Symposium on Biomedical Imaging manual. Relevant features was selected with chi2 correlation and principal component analysis (PCA) with tumour and healthy liver tissue as outcome according to a consensus between three experienced radiologists. Logistic regression, random forest and support vector machine was used to train and validate the dataset with a 10-fold cross-validation method and the Grid Search as hyper-parameter tuning. Performance was evaluated with sensitivity, specificity and accuracy. RESULTS The performance of the ML algorithms achieved sensitivities, specificities and accuracy ranging from 96.30% (95% CI: 81.03%-99.91%) to 100.00% (95% CI: 86.77%-100.00%), 91.30% (95% CI: 71.96%-98.93%) to 100.00% (95% CI: 83.89%-100.00%)and 94.00% (95% CI: 83.45%-98.75%) to 100.00% (95% CI: 92.45%-100.00%), respectively. CONCLUSION ML algorithms classifies Radiomics features extracted from healthy liver and tumour tissue with perfect accuracy. The Radiomics signature allows for a prognostic biomarker for hepatic tumour screening on liver CT. IMPLICATIONS FOR PRACTICE Differentiation between tumour and liver tissue with Radiomics ML algorithms have the potential to increase the diagnostic accuracy, assist in the decision-making of supplementary multiphasic enhanced medical imaging, as well as for developing novel prognostic biomarkers for liver cancer patients.
Collapse
Affiliation(s)
- S Lysdahlgaard
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Imaging Research Initiative Southwest (IRIS), Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark.
| |
Collapse
|
45
|
Wang Q, Dong Y, Xiao T, Zhang S, Yu J, Li L, Zhang Q, Wang Y, Xiao Y, Wang W. Prediction of programmed cell death protein 1 in hepatocellular carcinoma patients using radiomics analysis with radiofrequency-based ultrasound multifeature maps. Biomed Eng Online 2022; 21:24. [PMID: 35413926 PMCID: PMC9006564 DOI: 10.1186/s12938-021-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study explored the feasibility of radiofrequency (RF)-based radiomics analysis techniques for the preoperative prediction of programmed cell death protein 1 (PD-1) in patients with hepatocellular carcinoma (HCC). METHODS The RF-based radiomics analysis method used ultrasound multifeature maps calculated from the RF signals of HCC patients, including direct energy attenuation (DEA) feature map, skewness of spectrum difference (SSD) feature map, and noncentrality parameter S of the Rician distribution (NRD) feature map. From each of the above ultrasound maps, 345 high-throughput radiomics features were extracted. Then, the useful radiomics features were selected by the sparse representation method and input into support vector machine (SVM) classifier for PD-1 prediction. RESULTS AND CONCLUSION Among all the RF-based prediction models and the ultrasound grayscale comparative model, the RF-based model using all of the three ultrasound feature maps had the highest prediction accuracy (ACC) and area under the curve (AUC), which were 92.5% and 94.23%, respectively. The method proposed in this paper is effective for the meaningful feature extraction of RF signals and can effectively predict PD-1 in patients with HCC.
Collapse
Affiliation(s)
- Qingmin Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tianlei Xiao
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Shiquan Zhang
- Institute of Biomedical and Health Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen, University Town, Shenzhen, 518055, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Leyin Li
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Yang Xiao
- Institute of Biomedical and Health Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen, University Town, Shenzhen, 518055, China.
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
46
|
Wang W, Wang F, Chen Q, Ouyang S, Iwamoto Y, Han X, Lin L, Hu H, Tong R, Chen YW. Phase Attention Model for Prediction of Early Recurrence of Hepatocellular Carcinoma With Multi-Phase CT Images and Clinical Data. FRONTIERS IN RADIOLOGY 2022; 2:856460. [PMID: 37492657 PMCID: PMC10365106 DOI: 10.3389/fradi.2022.856460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 07/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer that produces a high mortality rate. It is one of the most common malignancies worldwide, especially in Asia, Africa, and southern Europe. Although surgical resection is an effective treatment, patients with HCC are at risk of recurrence after surgery. Preoperative early recurrence prediction for patients with liver cancer can help physicians develop treatment plans and will enable physicians to guide patients in postoperative follow-up. However, the conventional clinical data based methods ignore the imaging information of patients. Certain studies have used radiomic models for early recurrence prediction in HCC patients with good results, and the medical images of patients have been shown to be effective in predicting the recurrence of HCC. In recent years, deep learning models have demonstrated the potential to outperform the radiomics-based models. In this paper, we propose a prediction model based on deep learning that contains intra-phase attention and inter-phase attention. Intra-phase attention focuses on important information of different channels and space in the same phase, whereas inter-phase attention focuses on important information between different phases. We also propose a fusion model to combine the image features with clinical data. Our experiment results prove that our fusion model has superior performance over the models that use clinical data only or the CT image only. Our model achieved a prediction accuracy of 81.2%, and the area under the curve was 0.869.
Collapse
Affiliation(s)
- Weibin Wang
- Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qingqing Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuyi Ouyang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yutaro Iwamoto
- Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Xianhua Han
- Graduate School of Information Science and Engineering, Yamaguchi University, Yamaguchi-shi, Japan
| | - Lanfen Lin
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ruofeng Tong
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Research Center for Healthcare Data Science, Hangzhou, China
| | - Yen-Wei Chen
- Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Research Center for Healthcare Data Science, Hangzhou, China
| |
Collapse
|
47
|
He Y, Hu B, Zhu C, Xu W, Ge Y, Hao X, Dong B, Chen X, Dong Q, Zhou X. A Novel Multimodal Radiomics Model for Predicting Prognosis of Resected Hepatocellular Carcinoma. Front Oncol 2022; 12:745258. [PMID: 35321432 PMCID: PMC8936674 DOI: 10.3389/fonc.2022.745258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To explore a new model to predict the prognosis of liver cancer based on MRI and CT imaging data. METHODS A retrospective study of 103 patients with histologically proven hepatocellular carcinoma (HCC) was conducted. Patients were randomly divided into training (n = 73) and validation (n = 30) groups. A total of 1,217 radiomics features were extracted from regions of interest on CT and MR images of each patient. Univariate Cox regression, Spearman's correlation analysis, Pearson's correlation analysis, and least absolute shrinkage and selection operator Cox analysis were used for feature selection in the training set, multivariate Cox proportional risk models were established to predict disease-free survival (DFS) and overall survival (OS), and the models were validated using validation cohort data. Multimodal radiomics scores, integrating CT and MRI data, were applied, together with clinical risk factors, to construct nomograms for individualized survival assessment, and calibration curves were used to evaluate model consistency. Harrell's concordance index (C-index) values were calculated to evaluate the prediction performance of the models. RESULTS The radiomics score established using CT and MR data was an independent predictor of prognosis (DFS and OS) in patients with HCC (p < 0.05). Prediction models illustrated by nomograms for predicting prognosis in liver cancer were established. Integrated CT and MRI and clinical multimodal data had the best predictive performance in the training and validation cohorts for both DFS [(C-index (95% CI): 0.858 (0.811-0.905) and 0.704 (0.563-0.845), respectively)] and OS [C-index (95% CI): 0.893 (0.846-0.940) and 0.738 (0.575-0.901), respectively]. The calibration curve showed that the multimodal radiomics model provides greater clinical benefits. CONCLUSION Multimodal (MRI/CT) radiomics models can serve as effective visual tools for predicting prognosis in patients with liver cancer. This approach has great potential to improve treatment decisions when applied for preoperative prediction in patients with HCC.
Collapse
Affiliation(s)
- Ying He
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Hu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| | - Xianjun Zhou
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Multi-phase contrast-enhanced magnetic resonance image-based radiomics-combined machine learning reveals microscopic ultra-early hepatocellular carcinoma lesions. Eur J Nucl Med Mol Imaging 2022; 49:2917-2928. [PMID: 35230493 PMCID: PMC9206604 DOI: 10.1007/s00259-022-05742-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
Purpose
This study aimed to investigate whether models built from radiomics features based on multiphase contrast-enhanced MRI can identify microscopic pre-hepatocellular carcinoma lesions. Methods We retrospectively studied 54 small hepatocellular carcinoma (SHCC, diameter < 2 cm) patients and 70 patients with hepatocellular cysts or haemangiomas from September 2018 to June 2021. For the former, two MRI scans were collected within 12 months of each other; the 2nd scan was used to confirm the diagnosis. The volumes of interest (VOIs), including SHCCs and normal liver tissues, were delineated on the 2nd scans, mapped to the 1st scans via image registration, and enrolled into the SHCC and internal-control cohorts, respectively, while those of normal liver tissues from patients with hepatocellular cysts or haemangioma were enrolled in the external-control cohort. We extracted 1132 radiomics features from each VOI and analysed their discriminability between the SHCC and internal-control cohorts for intra-group classification and the SHCC and external-control cohorts for inter-group classification. Five radial basis-function, kernel-based support vector machine (SVM) models (four corresponding single-phase models and one integrated from the four-phase MR images) were established. Results Among the 124 subjects, the multiphase models yielded better performance on the testing set for intra-group and inter-group classification, with areas under the receiver operating characteristic curves of 0.93 (95% CI, 0.85–1.00) and 0.97 (95% CI, 0.92–1.00), accuracies of 86.67% and 94.12%, sensitivities of 87.50% and 94.12%, and specificities of 85.71% and 94.12%, respectively. Conclusion The combined multiphase MRI-based radiomics feature model revealed microscopic pre-hepatocellular carcinoma lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05742-8.
Collapse
|
49
|
Gao W, Wang W, Song D, Yang C, Zhu K, Zeng M, Rao SX, Wang M. A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma. Radiol Med 2022; 127:259-271. [PMID: 35129757 DOI: 10.1007/s11547-021-01445-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). MATERIALS AND METHODS A total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. RESULTS In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). CONCLUSION The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
Collapse
Affiliation(s)
- Wenyu Gao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, 200032, China
| | - Wentao Wang
- Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Danjun Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Chun Yang
- Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Kai Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Sheng-Xiang Rao
- Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, 200032, China.
| |
Collapse
|
50
|
Huang H, Ruan SM, Xian MF, Li MD, Cheng MQ, Li W, Huang Y, Xie XY, Lu MD, Kuang M, Wang W, Hu HT, Chen LD. Contrast-enhanced ultrasound-based ultrasomics score: a potential biomarker for predicting early recurrence of hepatocellular carcinoma after resection or ablation. Br J Radiol 2022; 95:20210748. [PMID: 34797687 PMCID: PMC8822579 DOI: 10.1259/bjr.20210748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES This study aimed to construct a prediction model based on contrast-enhanced ultrasound (CEUS) ultrasomics features and investigate its efficacy in predicting early recurrence (ER) of primary hepatocellular carcinoma (HCC) after resection or ablation. METHODS This study retrospectively included 215 patients with primary HCC, who were divided into a developmental cohort (n = 139) and a test cohort (n = 76). Four representative images-grayscale ultrasound, arterial phase, portal venous phase and delayed phase-were extracted from each CEUS video. Ultrasomics features were extracted from tumoral and peritumoral area inside the region of interest. Logistic regression was used to establish models, including a tumoral model, a peritumoral model and a combined model with additional clinical risk factors. The performance of the three models in predicting recurrence within 2 years was verified. RESULTS The combined model performed best in predicting recurrence within 2 years, with an area under the curve (AUC) of 0.845, while the tumoral model had an AUC of 0.810 and the peritumoral model one of 0.808. For prediction of recurrence-free survival, the 2-year cumulative recurrence rate was significant higher in the high-risk group (76.5%) than in the low-risk group (9.5%; p < 0.0001). CONCLUSION These CEUS ultrasomics models, especially the combined model, had good efficacy in predicting early recurrence of HCC. The combined model has potential for individual survival assessment for HCC patients undergoing resection or ablation. ADVANCES IN KNOWLEDGE CEUS ultrasomics had high sensitivity, specificity and PPV in diagnosing early recurrence of HCC, and high efficacy in predicting early recurrence of HCC (AUC > 0.8). The combined model performed better than the tumoral ultrasomics model and peritumoral ultrasomics model in predicting recurrence within 2 years. Recurrence was more likely to occur in the high-risk group than in the low-risk group, with 2-year cumulative recurrence rates, respectively, 76.5% and 9.5% (p < 0.0001).
Collapse
Affiliation(s)
- Hui Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si-min Ruan
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-fei Xian
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming-de Li
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mei-qing Cheng
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-yan Xie
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hang-tong Hu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|