1
|
Li S, Zeng G, Pang C, Li J, Wu L, Luo M, Qiu Z, Jiang Y. Single-cell and spatial transcriptomics analysis reveals that Pros1 + oligodendrocytes are involved in endogenous neuroprotection after brainstem stroke. Neurobiol Dis 2025; 208:106855. [PMID: 40090471 DOI: 10.1016/j.nbd.2025.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Brainstem stroke accounts only 7-10 % of all ischemic stroke while it had more morbidity and mortality. As the predominant cellular component of nerve tracts, oligodendrocytes might provide some neuroprotection against ischemic injury in the context of brainstem stroke, but the underlying mechanism remains unclear. METHOD A mouse model of brainstem stroke was established, and single-cell RNA sequencing and spatial transcriptomic sequencing analysis were performed to elucidate the phenotype of oligodendrocytes within this context. RESULTS Loss of oligodendrocytes led to neurological impairment following brainstem stroke, and subsequent proliferation of oligodendrocytes was observed. We identified a subcluster of Pros1+ oligodendrocytes, designated OLG8 cells. These cells increased in number after brainstem stroke and were enriched around the peri-infarct zone. OLG8 cells were derived from oligodendrocyte progenitor cells, and this process was found to be regulated by Myo1e. We found that OLG8 cells protected interneurons. Notably, the overexpression of Myo1e within OLG8 cells led to a marked reduction in infarct volume while simultaneously improving the recovery of neurological function. CONCLUSION In conclusion, we identified a novel cell subcluster, OLG8 cells, in the context of brainstem stroke, and found that overexpression of Myo1e alleviated ischemic injury by facilitating the differentiation of OLG8 cells. Our study provided insight into the mechanism of brainstem stroke.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Guanfeng Zeng
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Chunmei Pang
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Li Wu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Ming Luo
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Zhihua Qiu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| |
Collapse
|
2
|
Pappa O, Astrakas L, Anagnostou N, Bougia CΚ, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. 3.0 T diffusion tensor imaging and fiber tractography of the testes in nonobstructive azoospermia. Abdom Radiol (NY) 2024; 49:4543-4555. [PMID: 38940912 DOI: 10.1007/s00261-024-04457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the role of 3.0 T Diffusion Tensor Imaging (DTI) and Fiber Tractography (FT) of the testes in the work-up of nonobstructive azoospermia (NOA). METHODS This prospective study included consecutive NOA men and controls. A 3.0 T scrotal MRI was performed, including DTI. The testicular apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated. FT reconstructions were created. The Kruskal-Wallis test, followed by pairwise comparisons, assessed differences in testicular ADC and FA between NOA histologic phenotypes (group 1: hypospermatogenesis; group 2: maturation arrest; and group 3: Sertoli cell-only syndrome) and normal testes. The Mann-Whitney-U test compared ADC and FA between NOA testes with positive and negative sperm retrieval. Visual assessment of the testicular fiber tracts was performed. Fiber tracts fewer in number, of reduced thickness, disrupted and/or disorganized were considered "abnormal". Chi-square tests and binary logistic regression analysis assessed variations in testicular fiber tracts morphology. RESULTS Twenty-nine NOA men (mean age: 39 ± 5.93 years) and 20 controls (mean age: 26 ± 5.83 years) were included for analysis. Higher ADC (p < 0.001) and FA (p < 0.001) was observed in NOA testes compared to controls. Differences in FA were found between groups 1 and 3 (0.07 vs 0.10, p = 0.26) and groups 2 and 3 (0.07 vs 0.10, p = 0.03), but not between groups 1 and 2 (p = 0.66). An increase in FA was observed in NOA testes with Sertoli cell-only syndrome compared to hypospermatogenesis and maturation arrest. FA was higher in NOA testes with negative results for the presence of sperm compared to those with positive results (0.09 vs 0.07, p = 0.006). FT showed "abnormal" fiber tracts in NOA testes (p < 0.001). CONCLUSION 3.0 T DTI and FT provide an insight into deranged spermatogenesis in NOA testes.
Collapse
Affiliation(s)
- Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Nikoletta Anagnostou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece.
| |
Collapse
|
3
|
Bougia CΚ, Astrakas L, Pappa O, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. Diffusion tensor imaging and fiber tractography of the normal epididymis. Abdom Radiol (NY) 2024; 49:2932-2941. [PMID: 38836882 DOI: 10.1007/s00261-024-04372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE To evaluate the feasibility of diffusion tensor imaging (DTI) and fiber tractography (FT) of the normal epididymis and to determine normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. METHODS Twenty-eight healthy volunteers underwent MRI of the scrotum, including DTI on a 3.0 T system. For each anatomic part of the epididymis (head, body and tail) free-hand regions of interest were drawn and the mean ADC and FA were measured by two radiologists in consensus. Parametric statistical tests were used to determine intersubject differences in ADC and FA between the anatomic parts of each normal epididymis and between bilateral epididymides. Fiber tracts of the epididymis were reconstructed using the MR Diffusion tool. RESULTS The mean ADC and FA of the normal epididymis was 1.31 × 10-3 mm2/s and 0.20, respectively. No differences in ADC (p = 0.736) and FA (p = 0.628) between the anatomic parts of each normal epididymis were found. Differences (p = 0.020) were observed in FA of the body between the right and the left epididymis. FT showed the fiber tracts of the normal epididymis. Main study's limitations include the following: small number of participants with narrow age range, absence of histologic confirmation and lack of quantitative assessment of the FT reconstructions. CONCLUSION DTI and FT of the normal epididymis is feasible and allow the noninvasive assessment of the structural and geometric organization of the organ.
Collapse
Affiliation(s)
- Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos, 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Wang F, Lee SY, Adelnia F, Takahashi K, Harkins KD, He L, Zu Z, Ellinger P, Grundmann M, Harris RC, Takahashi T, Gore JC. Severity of polycystic kidney disease revealed by multiparametric MRI. Magn Reson Med 2023; 90:1151-1165. [PMID: 37093746 PMCID: PMC10805116 DOI: 10.1002/mrm.29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE We aimed to compare multiple MRI parameters, including relaxation rates (R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging (S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. InT 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures,R 2 $$ {R}_2 $$ andR 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR andR 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION R 2 $$ {R}_2 $$ ,R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - Seo Yeon Lee
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
| | - Keiko Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Raymond C. Harris
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Takamune Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
6
|
Fleischer LT, Ballester L, Dutt M, Howarth K, Poznick L, Darge K, Furth SL, Hartung EA. Evaluation of galectin-3 and intestinal fatty acid binding protein as serum biomarkers in autosomal recessive polycystic kidney disease. J Nephrol 2023; 36:133-145. [PMID: 35980535 PMCID: PMC11904866 DOI: 10.1007/s40620-022-01416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) causes fibrocystic kidney disease, congenital hepatic fibrosis, and portal hypertension. Serum galectin-3 (Gal-3) and intestinal fatty acid binding protein (I-FABP) are potential biomarkers of kidney fibrosis and portal hypertension, respectively. We examined whether serum Gal-3 associates with kidney disease severity and serum I-FABP associates with liver disease severity in ARPKD. METHODS Cross-sectional study of 29 participants with ARPKD (0.2-21 years old) and presence of native kidneys (Gal-3 analyses, n = 18) and/or native livers (I-FABP analyses, n = 21). Serum Gal-3 and I-FABP were analyzed using enzyme linked immunosorbent assay. Kidney disease severity variables included estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume (htTKV). Liver disease severity was characterized using ultrasound elastography to measure liver fibrosis, and spleen length and platelet count as markers of portal hypertension. Simple and multivariable linear regression examined associations between Gal-3 and kidney disease severity (adjusted for liver disease severity) and between I-FABP and liver disease severity (adjusted for eGFR). RESULTS Serum Gal-3 was negatively associated with eGFR; 1 standard deviation (SD) lower eGFR was associated with 0.795 SD higher Gal-3 level (95% CI - 1.116, - 0.473; p < 0.001). This association remained significant when adjusted for liver disease severity. Serum Gal-3 was not associated with htTKV in adjusted analyses. Overall I-FABP levels were elevated, but there were no linear associations between I-FABP and liver disease severity in unadjusted or adjusted models. CONCLUSIONS Serum Gal-3 is associated with eGFR in ARPKD, suggesting its value as a possible novel biomarker of kidney disease severity. We found no associations between serum I-FABP and ARPKD liver disease severity despite overall elevated I-FABP levels.
Collapse
Affiliation(s)
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohini Dutt
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Poznick
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Safri AA, Nassir CMNCM, Iman IN, Mohd Taib NH, Achuthan A, Mustapha M. Diffusion tensor imaging pipeline measures of cerebral white matter integrity: An overview of recent advances and prospects. World J Clin Cases 2022; 10:8450-8462. [PMID: 36157806 PMCID: PMC9453345 DOI: 10.12998/wjcc.v10.i24.8450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of age-related microvascular cognitive decline, resulting in significant morbidity and decreased quality of life. Despite a progress on its key pathophysiological bases and general acceptance of key terms from neuroimaging findings as observed on the magnetic resonance imaging (MRI), key questions on CSVD remain elusive. Enhanced relationships and reliable lesion studies, such as white matter tractography using diffusion-based MRI (dMRI) are necessary in order to improve the assessment of white matter architecture and connectivity in CSVD. Diffusion tensor imaging (DTI) and tractography is an application of dMRI that provides data that can be used to non-invasively appraise the brain white matter connections via fiber tracking and enable visualization of individual patient-specific white matter fiber tracts to reflect the extent of CSVD-associated white matter damage. However, due to a lack of standardization on various sets of software or image pipeline processing utilized in this technique that driven mostly from research setting, interpreting the findings remain contentious, especially to inform an improved diagnosis and/or prognosis of CSVD for routine clinical use. In this minireview, we highlight the advances in DTI pipeline processing and the prospect of this DTI metrics as potential imaging biomarker for CSVD, even for subclinical CSVD in at-risk individuals.
Collapse
Affiliation(s)
- Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Hartini Mohd Taib
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anusha Achuthan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
8
|
Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr Radiol 2022; 52:217-227. [PMID: 33856502 DOI: 10.1007/s00247-021-05042-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging is widely available and accepted as the imaging method of choice for many pediatric body imaging applications. Traditionally, it has been used in a qualitative way, where the images are reported non-numerically by radiologists. But now MRI machines have built-in post-processing software connected to the scanner and the database of MR images. This setting enables and encourages simple quantitative analysis of MR images. In this paper, the author reviews the fundamentals of MRI and discusses the most common quantitative MRI techniques for body imaging: T1, T2, T2*, T1rho and diffusion-weighted imaging (DWI). For each quantitative imaging method, this article reviews the technique, its measurement mechanism, and selected clinical applications to body imaging.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA. .,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Simrén Y, Stokland E, Hansson S, Hebelka H, Svensson PA, Lagerstrand KM. Diffusion tensor imaging based multiparametric characterization of renal lesions in infants with urinary tract infections: an explorative study. BMC Pediatr 2021; 21:440. [PMID: 34625051 PMCID: PMC8499515 DOI: 10.1186/s12887-021-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Conventional diffusion weighted imaging (DWI) is a promising non-invasive tool in the evaluation of infants with symptomatic urinary tract infections (UTI). The use of multiparametric diffusion tensor imaging (DTI) provides further information on renal pathology by reflecting renal microstructure. However, its potential to characterize and distinguish between renal lesions, such as acute pyelonephritic lesions, permanent renal damages or dysplastic changes has not been shown. This study aimed to evaluate the potential of multiparametric DTI for characterization of renal lesions with purpose to distinguish acute pyelonephritis from other renal lesions in young infants with their first UTI. Methods Nine kidneys in seven infants, age 1.0–5.6 months, with renal lesions i.e. uptake reductions, on acute scintigraphy performed after their first UTI, were included. The DTI examinations were performed during free breathing without sedation. The signal in the lesions and in normal renal tissue was measured in the following images: b0, b700, apparent diffusion coefficient (ADC), and fractional anisotropy (FA). In addition, DTI tractographies were produced for visibility. Results There was a difference between lesions and normal tissue in b700 signal (197 ± 52 and 164 ± 53, p = 0.011), ADC (1.22 ± 0.11 and 1.45 ± 0.15 mm2/s, p = 0.008), and FA (0.18 ± 0.03 and 0.30 ± 0.10, p = 0.008) for all nine kidneys. Six kidneys had focal lesions with increased b700 signal, decreased ADC and FA indicating acute inflammation. In three patients, the multiparametric characteristics of the lesions were diverging. Conclusion Multiparametric DTI has the potential to further characterize and distinguish acute pyelonephritis from other renal lesions in infants with symptomatic UTI.
Collapse
Affiliation(s)
- Yvonne Simrén
- Department of Radiology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Eira Stokland
- Department of Radiology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sverker Hansson
- Department of Pediatrics, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Hebelka
- Department of Radiology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Par-Arne Svensson
- Department of Radiology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin M Lagerstrand
- Department of Radiation Physics, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
11
|
Usefulness of readout-segmented EPI-based diffusion tensor imaging of lacrimal gland for detection and disease staging in thyroid-associated ophthalmopathy. BMC Ophthalmol 2021; 21:281. [PMID: 34284740 PMCID: PMC8290601 DOI: 10.1186/s12886-021-02044-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Background Dysfunction of lacrimal gland (LG) gains increasing attention in patients with thyroid-associated ophthalmopathy (TAO), while the underlying pathological change is still not fully established. This study aimed to evaluate the utility of readout-segmented echo-planar imaging (rs-EPI)-based diffusion tensor imaging (DTI) in non-invasively detecting microstructural alterations of LG in patients with TAO, as well as in discriminating disease activity. Methods Thirty TAO patients and 15 age- and sex- matched healthy controls, who underwent rs-EPI-based DTI, were retrospectively enrolled. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of LG, and clinical-endocrinological variables were collected and compared. The correlations between FA and ADC values of LG and serum thyroid biochemical markers were also assessed. Results TAO group showed significantly lower FA (P < 0.001) and higher ADC (P = 0.014) of LG than healthy group. Active subgroup had significantly lower FA (P < 0.001) and higher ADC (P < 0.001) than inactive subgroup. In TAO group, FA of LG was significantly and negatively correlated with TRAb (r=-0.475, P = 0.008), while ADC of LG showed no significant correlation (P > 0.05). The area under receiver operating characteristic curve of FA was significantly greater than that under curve of ADC for discriminating disease activity (0.832 vs. 0.570, P = 0.009). Conclusions rs-EPI-based DTI is a useful tool to characterize the microstructural change of LG in patients with TAO. The derived metrics, particularly FA, can help to reveal disease activity.
Collapse
|
12
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
13
|
Otero HJ, Calle-Toro JS, Maya CL, Darge K, Serai SD. DTI of the kidney in children: comparison between normal kidneys and those with ureteropelvic junction (UPJ) obstruction. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:63-71. [DOI: 10.1007/s10334-019-00812-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
|