1
|
Almeida CF, Smith DGM, Cheng TY, Harpur CM, Batleska E, Nguyen-Robertson CV, Nguyen T, Thelemann T, Reddiex SJJ, Li S, Eckle SBG, Van Rhijn I, Rossjohn J, Uldrich AP, Moody DB, Williams SJ, Pellicci DG, Godfrey DI. Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proc Natl Acad Sci U S A 2021; 118:e2104420118. [PMID: 34417291 PMCID: PMC8403964 DOI: 10.1073/pnas.2104420118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αβTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dylan G M Smith
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
| | - Chris M Harpur
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Elena Batleska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tram Nguyen
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tamara Thelemann
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Scott J J Reddiex
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, 3584CL Utrecht, Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam P Uldrich
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115;
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia;
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Singh NK, Alonso JA, Harris DT, Anderson SD, Ma J, Hellman LM, Rosenberg AM, Kolawole EM, Evavold BD, Kranz DM, Baker BM. An Engineered T Cell Receptor Variant Realizes the Limits of Functional Binding Modes. Biochemistry 2020; 59:4163-4175. [PMID: 33074657 DOI: 10.1021/acs.biochem.0c00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
T cell receptors (TCRs) orchestrate cellular immunity by recognizing peptides presented by a range of major histocompatibility complex (MHC) proteins. Naturally occurring TCRs bind the composite peptide/MHC surface, recognizing peptides that are structurally and chemically compatible with the TCR binding site. Here we describe a molecularly evolved TCR variant that binds the human class I MHC protein HLA-A2 independent of the bound peptide, achieved by a drastic perturbation of the TCR binding geometry that places the molecule far from the peptide binding groove. This unique geometry is unsupportive of normal T cell signaling. A substantial divergence between affinity measurements in solution and in two dimensions between proximal cell membranes leads us to attribute the lack of signaling to steric hindrance that limits binding in the confines of a cell-cell interface. Our results provide an example of how receptor binding geometry can impact T cell function and provide further support for the view that germline-encoded residues in TCR binding loops evolved to drive productive TCR recognition and signaling.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jesus A Alonso
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel T Harris
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott D Anderson
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Jiaqi Ma
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Aaron M Rosenberg
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - David M Kranz
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 2016; 65:631-49. [PMID: 27138532 DOI: 10.1007/s00262-016-1842-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
4
|
Wimmers F, Aarntzen EHJG, Duiveman-deBoer T, Figdor CG, Jacobs JFM, Tel J, de Vries IJM. Long-lasting multifunctional CD8 + T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. Oncoimmunology 2015; 5:e1067745. [PMID: 26942087 PMCID: PMC4760336 DOI: 10.1080/2162402x.2015.1067745] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T cells are considered crucial for antitumor immunity and their induction is the aim of various immunotherapeutic strategies. High frequencies of tumor-specific CD8+ T cells alone, however, are no guarantee for long-term tumor control. Here, we analyzed the functionality of tumor-specific CD8+ T cells in melanoma patients upon dendritic cell vaccination by measuring multiple T cell effector functions considered crucial for anticancer immunity, including the expression of pro-inflammatory cytokines, chemokines and cytotoxic markers (IFNγ, TNFα, IL-2, CCL4, CD107a). We identified small numbers of multifunctional (polyfunctional) tumor-specific CD8+ T cells in several patients and dendritic cell therapy was able to improve the functionality of these pre-existing tumor-specific CD8+ T cells. Generated multifunctional CD8+ T cell responses could persist for up to ten years and within the same patient functionality could vary greatly for the different vaccination antigens. Importantly, after one cycle of DC vaccination highly functional CD8+ T cells were only detected in patients displaying prolonged overall survival. Our results shed light on the dynamics of multifunctional tumor-specific CD8+ T cells during metastatic melanoma and reveal a new feature of dendritic cell vaccination in vivo.
Collapse
Affiliation(s)
- Florian Wimmers
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Erik H J G Aarntzen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherands; Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherands
| | - Tjitske Duiveman-deBoer
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Carl G Figdor
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Joannes F M Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Jurjen Tel
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - I Jolanda M de Vries
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherands
| |
Collapse
|
5
|
Linscheid C, Petroff MG. Minor histocompatibility antigens and the maternal immune response to the fetus during pregnancy. Am J Reprod Immunol 2013; 69:304-14. [PMID: 23398025 PMCID: PMC4048750 DOI: 10.1111/aji.12075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022] Open
Abstract
The tolerance of the semiallogeneic fetus by the maternal immune system is an important area of research for understanding how the maternal and fetal systems interact during pregnancy to ensure a successful outcome. Several lines of research reveal that the maternal immune system can recognize and respond to fetal minor histocompatibility antigens during pregnancy. Reactions to these antigens arise because of allelic differences between the mother and fetus and have been shown more broadly to play an important role in mediating transplantation outcomes. This review outlines the discovery of minor histocompatibility antigens and their importance in solid organ and hematopoietic stem cell transplantations, maternal T-cell responses to minor histocompatibility antigens during pregnancy, expression of minor histocompatibility antigens in the human placenta, and the potential involvement of minor histocompatibility antigens in the development and manifestation of pregnancy complications.
Collapse
Affiliation(s)
- Caitlin Linscheid
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| | - Margaret G. Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
6
|
Holmström F, Pasetto A, Nähr V, Brass A, Kriegs M, Hildt E, Broderick KE, Chen M, Ahlén G, Frelin L. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1113-24. [PMID: 23284053 DOI: 10.4049/jimmunol.1201497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.
Collapse
Affiliation(s)
- Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baan C, Bouvy A, Vafadari R, Weimar W. Phospho-specific flow cytometry for pharmacodynamic monitoring of immunosuppressive therapy in transplantation. Transplant Res 2012; 1:20. [PMID: 23369224 PMCID: PMC3561037 DOI: 10.1186/2047-1440-1-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/02/2012] [Indexed: 12/25/2022] Open
Abstract
Organ transplant recipients frequently suffer from toxicity or from lack of efficacy of immunosuppressive drugs, which can be attributed to individual variations in drug sensitivity. This problem can be resolved by applying pharmacodynamic monitoring that focuses on measuring the biological effects of drugs. Here we discuss the new technique called phospho-specific flow cytometry to monitor the activity of intracellular immune signaling pathways at the single-cell level in whole blood samples. Through this tool the efficacy of immunosuppressive medication can be assessed, novel targets can be identified, and differences in drug sensitivity between cells and patients can be clarified.
Collapse
Affiliation(s)
- Carla Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Sommermeyer D, Conrad H, Krönig H, Gelfort H, Bernhard H, Uckert W. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability. Int J Cancer 2012; 132:1360-7. [PMID: 22907642 PMCID: PMC3617456 DOI: 10.1002/ijc.27792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022]
Abstract
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy.
Collapse
|
9
|
Wilde S, Sommermeyer D, Leisegang M, Frankenberger B, Mosetter B, Uckert W, Schendel DJ. Human antitumor CD8+ T cells producing Th1 polycytokines show superior antigen sensitivity and tumor recognition. THE JOURNAL OF IMMUNOLOGY 2012; 189:598-605. [PMID: 22689880 DOI: 10.4049/jimmunol.1102165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of T cells expressing transgenic TCR with antitumor specificity provides a hopeful new therapy for patients with advanced cancer. To fulfill a large need for TCR with high affinity and specificity for various tumor entities, we sought to identify parameters for rapid selection of CTL clones with suitable characteristics. Twelve CTL clones displaying different Ag sensitivities for the same peptide-MHC epitope of the melanoma-associated Ag tyrosinase were analyzed in detail. Better MHC-multimer binding and slower multimer release are thought to reflect stronger TCR-peptide-MHC interactions; thus, these parameters would seem well suited to identify higher avidity CTL. However, large disparities were found comparing CTL multimer binding with peptide sensitivity. In contrast, CD8(+) CTL with superior Ag sensitivity mediated good tumor cytotoxicity and also secreted the triple combination of IFN-γ, IL-2, and TNF-α, representing a Th1 pattern often missing in lower avidity CTL. Furthermore, recipient lymphocytes were imbued with high Ag sensitivity, superior tumor recognition, as well as capacity for Th1 polycytokine secretion after transduction with the TCR of a high-avidity CTL. Thus, Th1 polycytokine secretion served as a suitable parameter to rapidly demark cytotoxic CD8(+) T cell clones for further TCR evaluation.
Collapse
Affiliation(s)
- Susanne Wilde
- Institute of Molecular Immunology, Helmholtz Center Munich, German
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Liu Y, Moxley KM, Golden-Mason L, Hughes MG, Liu T, Heemskerk MHM, Rosen HR, Nishimura MI. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 2010; 6:e1001018. [PMID: 20686664 PMCID: PMC2912399 DOI: 10.1371/journal.ppat.1001018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 06/25/2010] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C Virus (HCV) is a major public health concern, with no effective vaccines currently available and 3% of the world's population being infected. Despite the existence of both B- and T-cell immunity in HCV-infected patients, chronic viral infection and HCV-related malignancies progress. Here we report the identification of a novel HCV TCR from an HLA-A2-restricted, HCV NS3:1073-1081-reactive CTL clone isolated from a patient with chronic HCV infection. We characterized this HCV TCR by expressing it in human T cells and analyzed the function of the resulting HCV TCR-transduced cells. Our results indicate that both the HCV TCR-transduced CD4(+) and CD8(+) T cells recognized the HCV NS3:1073-1081 peptide-loaded targets and HCV(+) hepatocellular carcinoma cells (HCC) in a polyfunctional manner with cytokine (IFN-gamma, IL-2, and TNF-alpha) production as well as cytotoxicity. Tumor cell recognition by HCV TCR transduced CD8(-) Jurkat cells and CD4(+) PBL-derived T cells indicated this TCR was CD8-independent, a property consistent with other high affinity TCRs. HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Yeuying Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Kelly M. Moxley
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael G. Hughes
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Tongxin Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Mirjam H. M. Heemskerk
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center Leiden, the Netherlands
| | - Hugo R. Rosen
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael I. Nishimura
- Division of General Surgery, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| |
Collapse
|
11
|
Öling V, Geubtner K, Ilonen J, Reijonen H. A low antigen dose selectively promotes expansion of high-avidity autoreactive T cells with distinct phenotypic characteristics: A study of human autoreactive CD4+T cells specific for GAD65. Autoimmunity 2010; 43:573-82. [DOI: 10.3109/08916930903540424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Moore TV, Lyons GE, Brasic N, Roszkowski JJ, Voelkl S, Mackensen A, Kast WM, Le Poole IC, Nishimura MI. Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition. Cancer Immunol Immunother 2009; 58:719-28. [PMID: 18836717 PMCID: PMC2773431 DOI: 10.1007/s00262-008-0594-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022]
Abstract
Effective immunotherapy using T cell receptor (TCR) gene-modified T cells requires an understanding of the relationship between TCR affinity and functional avidity of T cells. In this study, we evaluate the relative affinity of two TCRs isolated from HLA-A2-restricted, gp100-reactive T cell clones with extremely high functional avidity. Furthermore, one of these T cell clones, was CD4- CD8- indicating that antigen recognition by this clone was CD8 independent. However, when these TCRs were expressed in CD8- Jurkat cells, the resulting Jurkat cells recognized gp100:209-217 peptide loaded T2 cells and had high functional avidity, but could not recognize HLA-A2+ melanoma cells expressing gp100. Tumor cell recognition by Jurkat cells expressing these TCRs could not be induced by exogenously loading the tumor cells with the native gp100:209-217 peptide. These results indicate that functional avidity of a T cell does not necessarily correlate with TCR affinity and CD8-independent antigen recognition by a T cell does not always mean its TCR will transfer CD8-independence to other effector cells. The implications of these findings are that T cells can modulate their functional avidity independent of the affinity of their TCRs.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD/analysis
- Antigens, Neoplasm/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor/immunology
- Clone Cells/immunology
- Clone Cells/metabolism
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Gene Rearrangement, T-Lymphocyte
- HLA-A2 Antigen/immunology
- Humans
- Immunophenotyping
- Immunotherapy, Active
- Jurkat Cells
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma/blood
- Melanoma/immunology
- Melanoma/therapy
- Membrane Glycoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Fusion Proteins/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Cytotoxic/immunology
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Tamson V. Moore
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
| | - Gretchen E. Lyons
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
| | - Natasha Brasic
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
| | | | - Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen, 91054 Erlangen, Germany
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033 USA
- Departments of Molecular Microbiology & Immunology and Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033 USA
| | - I. Caroline Le Poole
- Departments of Pathology and Microbiology & Immunology, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Michael I. Nishimura
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Suite 512H, P.O. Box 250613, Charleston, USA
| |
Collapse
|
13
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
14
|
Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, Wooldridge L, Roederer M, Sewell AK, Price DA. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A 2008; 73:1001-9. [PMID: 18836993 PMCID: PMC2586006 DOI: 10.1002/cyto.a.20642] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to quantify and characterize antigen-specific CD8+ T cells irrespective of functional readouts using fluorochrome-conjugated peptide-major histocompatibility complex class I (pMHCI) tetramers in conjunction with flow cytometry has transformed our understanding of cellular immune responses over the past decade. In the case of prevalent CD8+ T cell populations that engage cognate pMHCI tetramers with high avidities, direct ex vivo identification and subsequent data interpretation is relatively straightforward. However, the accurate identification of low frequency antigen-specific CD8+ T cell populations can be complicated, especially in situations where T cell receptor-mediated tetramer binding occurs at low avidities. Here, we highlight a few simple techniques that can be employed to improve the visual resolution, and hence the accurate quantification, of tetramer binding CD8+ T cell populations by flow cytometry. These methodological modifications enhance signal intensity, especially in the case of specific CD8+ T cell populations that bind cognate antigen with low avidities, minimize background noise, and enable improved discrimination of true pMHCI tetramer binding events from nonspecific uptake.
Collapse
Affiliation(s)
- Pratip K. Chattopadhyay
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Joseph Melenhorst
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Ladell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Emma Gostick
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Philip Scheinberg
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. John Barrett
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Mario Roederer
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew K. Sewell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - David A. Price
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Lissina A, Gostick E, Cole DK, Wooldridge L, van den Berg HA, Bornstein E, Hensel NF, Douek DC, Roederer M, Sewell AK, Barrett AJ, Price DA. Detection of low avidity CD8(+) T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. J Immunol Methods 2008; 338:31-9. [PMID: 18675271 PMCID: PMC2714739 DOI: 10.1016/j.jim.2008.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/08/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
The development of soluble recombinant peptide-major histocompatibility complex class I (pMHCI) molecules conjugated in multimeric form to fluorescent labels has enabled the physical quantification and characterization of antigen-specific CD8(+) T cell populations by flow cytometry. Several factors determine the binding threshold that enables visualization of cognate CD8(+) T cells with these reagents; these include the affinity of the T cell receptor (TCR) for pMHCI antigen. Here, we show that multimers constructed from peptide-human leukocyte antigen (pHLA) A0201 monomers engineered in the heavy chain alpha2 domain to enhance CD8 binding (K(D) approximately 85 microM) without impacting the TCR binding platform can detect cognate CD8(+) T cells bearing low affinity TCRs that are not visible with the corresponding wildtype pHLA A0201 multimeric complexes. Mechanistically, this effect is mediated by a disproportionate enhancement of the TCR/pMHCI association rate. In direct ex vivo applications, these coreceptor-enhanced multimers exhibit faithful cognate binding properties; concomitant increases in background staining within the non-cognate CD8(+) T cell population can be resolved phenotypically using polychromatic flow cytometry as a mixture of naïve and memory cells. These findings provide the first validation of a novel approach to the physical detection of low avidity antigen-specific CD8(+) T cell populations; such coreceptor-enhanced multimeric reagents are likely to be useful in a multitude of settings for the detection of auto-immune, tumor-specific and cross-reactive CD8(+) T cells.
Collapse
Affiliation(s)
- J. Joseph Melenhorst
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pratip K. Chattopadhyay
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Lissina
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Emma Gostick
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - David K. Cole
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Ethan Bornstein
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy F. Hensel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew K. Sewell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - A. John Barrett
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
16
|
Hou Y, Kavanagh B, Fong L. Distinct CD8+ T cell repertoires primed with agonist and native peptides derived from a tumor-associated antigen. THE JOURNAL OF IMMUNOLOGY 2008; 180:1526-34. [PMID: 18209048 DOI: 10.4049/jimmunol.180.3.1526] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heteroclitic peptides are used to enhance the immunogenicity of tumor-associated Ags to break T cell tolerance to these self-proteins. One such altered peptide ligand (Cap1-6D) has been derived from an epitope in human carcinoembryonic Ag, CEA(605-613) (Cap1). Clinical responses have been seen in colon cancer patients receiving a tumor vaccine comprised of this altered peptide. Whether Cap1-6D serves as a T cell agonist for Cap1-specific T cells or induces different T cells is unknown. We, therefore, examined the T cell repertoires elicited by Cap1-6D and Cap1. Human CTL lines and clones were generated with either Cap1-6D peptide (6D-CTLs) or Cap1 peptide (Cap1-CTLs). The TCR Vbeta usage and functional avidity of the T cells induced in parallel against these target peptides were assessed. The predominant CTL repertoire induced by agonist Cap1-6D is limited to TCR Vbeta1-J2 with homogenous CDR3 lengths. In contrast, the majority of Cap1-CTLs use different Vbeta1 genes and also had diverse CDR3 lengths. 6D-CTLs produce IFN-gamma in response to Cap1-6D peptide with high avidity, but respond with lower avidity to the native Cap1 peptide when compared with the Cap1-CTLs. Nevertheless, 6D-CTLs could still lyse targets bearing the native epitope. Consistent with these functional results, 6D-CTLs possess TCRs that bind Cap-1 peptide/MHC tetramer with higher intensity than Cap1-CTLs but form less stable interactions with peptide/MHC as measured by tetramer decay. These results demonstrate that priming with this CEA-derived altered peptide ligand can induce distinct carcinoembryonic Ag-reactive T cells with different functional capacities.
Collapse
Affiliation(s)
- Yafei Hou
- Division of Hematology/Oncology, Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
17
|
Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-59. [PMID: 17973257 PMCID: PMC4943456 DOI: 10.1002/ijc.23252] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for "proof of concept" studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in preclinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
18
|
Engels B, Uckert W. Redirecting T lymphocyte specificity by T cell receptor gene transfer – A new era for immunotherapy. Mol Aspects Med 2007; 28:115-42. [PMID: 17307249 DOI: 10.1016/j.mam.2006.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/16/2022]
Abstract
The therapeutic efficacy of adoptively transferred cytotoxic T lymphocytes (CTL) has been demonstrated in clinical trials for the treatment of chronic myelogenous leukemia, cytomegalovirus-mediated disease, and Epstein-Barr virus-positive B cell lymphomas. It is however limited by the difficulty of generating sufficient amounts of CTLs in vitro, especially for the treatment of solid tumors. Recent gene therapy approaches, including two clinical trials, successfully apply genetic engineering of T cell specificity by T cell receptor (TCR) gene transfer. In this review we want to elucidate several principles of the redirection of T cell specificity. We cover basic aspects of retroviral gene transfer, regarding transduction efficacy and transgene expression levels. It was demonstrated that the number of TCR molecules on a T cell is important for its function. Therefore, an efficient transfer system that yields high transduction efficiency and strong and stable transgene expression is a prerequisite to achieve effector function by redirected T cells. Furthermore, we consider more recent aspects of T cell specificity engineering. These include the possibility of co-transferring coreceptors to create for example functional T helper cells by engrafting CD4(+) T cells with a MHC class I restricted TCR and the CD8 coreceptor and vice versa. Also, risks related to the adoptive transfer of TCR gene-modified T cells and possible safety mechanisms are discussed. Finally, we summarize recent findings describing transferred TCRs capable of displacing endogenous TCRs from the cell surface.
Collapse
Affiliation(s)
- Boris Engels
- Humboldt-University Berlin, Institute of Biology, Department of Molecular Cell Biology and Gene Therapy, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | |
Collapse
|
19
|
Lyons GE, Moore T, Brasic N, Li M, Roszkowski JJ, Nishimura MI. Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells. Cancer Res 2007; 66:11455-61. [PMID: 17145893 DOI: 10.1158/0008-5472.can-06-2379] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CD8 coreceptor on T cells has two functions. Namely, CD8 acts to stabilize the binding of the T-cell receptor (TCR) to the peptide-MHC complex while localizing p56(lck) (lck) to the TCR/CD3 complex to facilitate early signaling events. Although both functions may be critical for efficient activation of a CTL, little is known about how the structural versus signaling roles of CD8, together with the relative strength of the TCR, influences T-cell function. We have addressed these issues by introducing full-length and truncated versions of the CD8alpha and CD8beta chains into CD8(-) Jurkat cell clones expressing cloned TCRs with known antigen specificity and relative affinities. Using a combination of antigen recognition and tetramer-binding assays, we find that the intracellular lck-binding domain of CD8 is critical for enhanced T-cell activation regardless of the relative strength of the TCR. In contrast, the extracellular domain of CD8 seems to be critical for TCRs with lower affinity but not those with higher affinity. Based on our results, we conclude that there are different requirements for CD8 to enhance T-cell function depending on the strength of its TCR.
Collapse
Affiliation(s)
- Gretchen E Lyons
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|