1
|
The Roles of Tumor-Associated Macrophages in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8580043. [PMID: 36117852 PMCID: PMC9473905 DOI: 10.1155/2022/8580043] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
The morbidity of prostate cancer (PCa) is rising year by year, and it has become the primary cause of tumor-related mortality in males. It is widely accepted that macrophages account for 50% of the tumor mass in solid tumors and have emerged as a crucial participator in multiple stages of PCa, with the huge potential for further treatment. Oftentimes, tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) behave like M2-like phenotypes that modulate malignant hallmarks of tumor lesions, ranging from tumorigenesis to metastasis. Several clinical studies indicated that mean TAM density was higher in human PCa cores versus benign prostatic hyperplasia (BPH), and increased biopsy TAM density potentially predicts worse clinicopathological characteristics as well. Therefore, TAM represents a promising target for therapeutic intervention either alone or in combination with other strategies to halt the “vicious cycle,” thus improving oncological outcomes. Herein, we mainly focus on the fundamental aspects of TAMs in prostate adenocarcinoma, while reviewing the mechanisms responsible for macrophage recruitment and polarization, which has clinical translational implications for the exploitation of potentially effective therapies against TAMs.
Collapse
|
2
|
Liu Z, Yang W, Yang S, Cai K. The close association between IL‑12Rβ2 and p38MAPK, and higher expression in the early stages of NSCLC, indicates a good prognosis for survival. Mol Med Rep 2018; 18:2307-2313. [PMID: 29956791 DOI: 10.3892/mmr.2018.9206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/16/2018] [Indexed: 11/05/2022] Open
Abstract
Interleukin‑12 receptor (IL‑12R) and p38 mitogen‑activated protein kinase (p38MAPK) serve an important role in non‑small cell lung cancer (NSCLC). It has previously been suggested that IL‑12Rβ2 may be involved in key regulatory pathways and interacts with the p38MAPK signaling pathway. The present study aimed to elucidate the possible association and roles of IL‑12Rβ2 and p38MAPK in NSCLC. The protein expression levels of IL‑12Rβ2 and p38MAPK were measured in 230 NSCLC tissue samples by immunohistochemistry (IHC) and western blot analyses. In addition, an immunofluorescence assay was used to observe the expression levels of these proteins in A549 and H358 cells. The associations between IL‑12Rβ2, p38MAPK and clinical characteristics, were evaluated by Pearson χ2 and Spearman correlation tests. Kaplan‑Meier plots (log‑rank test) and Cox proportional hazard models were used to analyze overall survival (OS). Compared with in benign pulmonary tissues, the expression levels of IL‑12Rβ2 and p38MAPK were not demonstrated to be significantly different in I+II pathological tumor‑node‑metastasis (pTNM) stage NSCLC tissues; however, reduced expression was detected in III+IV pTNM stage NSCLC tissues. Analysis of the association between advanced stage pTNM and the expression of both proteins demonstrated a significantly decreased Allred score (both P<0.0001), which was confirmed by IHC and western blot analyses. The IHC results demonstrated a significant correlation between IL‑12Rβ2 and p38MAPK expression (r=0.415, P=0.0143). By analyzing IL‑12Rβ2, p38MAPK expression and clinical characteristics, it was identified that IL‑12Rβ2 was significantly associated with gender (P=0.0168), age (P=0.0341), histological type (P<0.0001) and pTNM stage (P<0.0001). p38MAPK demonstrated a strong association with gender (P=0.0082) and pTNM stage (P<0.0001). The results of a Kaplan‑Meier analysis indicated that positive IL‑12Rβ2 and p38MAPK expression was associated with increased OS compared with negative protein expression. The Cox proportional hazard models revealed that IL‑12Rβ2 and p38MAPK predicted a long OS. To the best of our knowledge, the present study is the first to reveal a close association between IL‑12Rβ2 and p38MAPK, and their possible function in NSCLC progression. It further demonstrated that expression of both proteins was lower with advanced pTNM staging, whereas a high expression of both proteins was associated with improved prognosis in NSCLC.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Weilin Yang
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Shibin Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Kaican Cai
- Department of Cardio‑Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510089, P.R. China
| |
Collapse
|
3
|
Liu ZG, Jiao XY, Chen ZG, Feng K, Luo HH. Estrogen receptorβ2 regulates interlukin-12 receptorβ2 expression via p38 mitogen-activated protein kinase signaling and inhibits non-small-cell lung cancer proliferation and invasion. Mol Med Rep 2015; 12:248-54. [PMID: 25695486 DOI: 10.3892/mmr.2015.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most common types of cancer and is the leading cause of cancer-related mortality worldwide. Estrogens are known to be involved in the development and progression of non-small-cell lung cancer (NSCLC). These effects are initially mediated through binding of estrogen to estrogen receptors (ERs), in particular ERβ2. Our preliminary studies demonstrated that ERβ2 and interleukin-12 receptorβ2 (IL-12Rβ2) expression are correlated in NSCLC. The present study investigated the expression of these proteins in NSCLC cells and how changes in their expression affected cell proliferation and invasion. In addition, it aimed to explore whether p38 mitogen-activated protein kinase (p38MAPK) is involved in the regulation of IL-12Rβ2 expression by ERβ2. An immunocytochemical array was used to observe the distribution of ERβ2 and IL-12Rβ2. Co-immuoprecipitation was employed to observe the interaction between p38MAPK and IL-12Rβ2, by varying the expression of ERβ2 and p38MAPK. Western-blot analysis and reverse transcription-polymerase chain reaction assays were used to investigate the mechanism underlying ERβ2 regulation of IL-12Rβ2 expression. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, scratch wound healing and Transwell assays were used to investigate the impact of ERβ2 on proliferative, invasive and migratory abilities of NSCLC cells. ERβ2 was predominantly found in the cytoplasm and nucleus, whilst IL-12Rβ2 was largely confined to the cytoplasm, although a degree of expression was observed in the nucleus. Compared with normal bronchial epithelial cells, IL-12Rβ2 and ERβ2 were overexpressed in the NSCLC cell groups. Coimmuoprecipitation demonstrated an interaction between p38MAPK and IL-12Rβ2. ERβ2 appeared to upregulate IL-12Rβ2 expression and inhibition of p38MAPK attenuated this effect. ERβ2 and IL-12Rβ2 expression inhibited the proliferation, metastasis and invasion of NSCLC cell lines, but knockout of IL-12Rβ2, even in the presence of ERβ2, led to an increase in NSCLC cell proliferation and invasiveness. In conclusion, to the best of our knowledge this study is the first to demonstrate that IL-12Rβ2 may be important in the mechanisms underlying ERβ2 inhibition of NSCLC development, and that this interaction may be mediated via p38MAPK.
Collapse
Affiliation(s)
- Zhao-Guo Liu
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Xing-Yuan Jiao
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhen-Guang Chen
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Ke Feng
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Hong-He Luo
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| |
Collapse
|
4
|
Pan XQ. The mechanism of the anticancer function of M1 macrophages and their use in the clinic. CHINESE JOURNAL OF CANCER 2012; 31:557-63. [PMID: 23149314 PMCID: PMC3777460 DOI: 10.5732/cjc.012.10046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 01/14/2023]
Abstract
M1-type macrophages are capable of inducing lysis in various types of cancer cells, but the mechanism of action is unclear. It has been noted that an "unknown protein" produced together with protease by activated macrophages is responsible for this action. Activated M1 macrophages have been recently reported to produce family 18 chitinases, all of which have been named chitotriosidase. Our experiments have demonstrated that family 18 chitinases work together with proteases and can damage various cancer cells both in vitro and in vivo. Thus, in this article, we suggest that the 50-kDa chitotriosidase is the reported "unknown protein". In addition, we discuss how to properly stimulate activated M1 macrophages to produce 50-kDa chitotriosidases and proteases for destroying cancer cells. Because family 19 chitinase has recently been reported to kill cancer cells, we also discuss the possibility of directly using human family 18 chitotriosidase and the humanized plant family 19 chitinase for cancer treatment.
Collapse
Affiliation(s)
- Xing-Qing Pan
- College of Pharmacy, Ohio State University, Columbus, OH 43215, USA.
| |
Collapse
|
5
|
Xiaoxiao W, Sibiao Y, Xiaopeng X, Ping Z, Gang C. Neutrophils Induce the Maturation of Immature Dendritic Cells: A Regulatory Role of Neutrophils in Adaptive Immune Responses. Immunol Invest 2009; 36:337-50. [PMID: 17558715 DOI: 10.1080/08820130601109719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Th1-type immune cytokines are essential to establish adaptive immunity against various microbial pathogens, including Escherichia coli, which cause most urinary tract infections (UTIs). Dendritic cells (DCs) are vital to initiate Th1 immunity, while neutrophils, also referred to here as polymorphonuclear leukocytes (PMN) are reported to be involved in Th1 immunity initiation by secreting several chemokines and cytokines. We found that lipopolysaccharide (LPS)-triggered PMN (LPS-PMN) in vitro induced strong up-regulation of DCs surface markers CD40, CD80, MHC-II (Iab), and CD86 either by secreting soluble factors, such as TNF-alpha, or by PMN-DC cellular contact. LPS-PMN also stimulated DCs to produce IL-12 and TNF-alpha. Furthermore, purified DCs activated by LPS-PMN were able to present specific antigen to T cells and drive Th1 differentiation by producing large amount of IFN-gamma but low amount of IL-4. Our results suggest a regulatory role of PMN for DCs function in adaptive immune responses, thereby providing a link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Wan Xiaoxiao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
6
|
Tavri S, Jha P, Meier R, Henning TD, Müller T, Hostetter D, Knopp C, Johansson M, Reinhart V, Boddington S, Sista A, Wels WS, Daldrup-Link HE. Optical Imaging of Cellular Immunotherapy against Prostate Cancer. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Benatar T, Cao MY, Lee Y, Li H, Feng N, Gu X, Lee V, Jin H, Wang M, Der S, Lightfoot J, Wright JA, Young AH. Virulizin induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother 2008; 57:1757-69. [PMID: 18351336 PMCID: PMC11030271 DOI: 10.1007/s00262-008-0502-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/03/2008] [Indexed: 01/21/2023]
Abstract
Virulizin has demonstrated strong antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. Our previous studies have demonstrated that macrophages, NK cells, and cytokines are important in the antitumor mechanism of Virulizin. Virulizin treatment of tumor bearing mice results in the expansion as well as increased activity of monocytes/macrophages and production of cytokines IL-12 and TNFalpha and activation of NK cells. In this study we show that the inflammatory cytokine IL-17E (IL-25) is induced by Virulizin treatment and is part of its antitumor mechanism. IL-17E is a proinflammatory cytokine, which induces a T(H)2 type immune response, associated with eosinophil expansion and infiltration into mucosal tissues. IL-17E was increased in sera of Virulizin-treated mice bearing human melanoma xenografts, compared to saline-treated controls, as shown by 2D gel electrophoresis and ELISA. Treatment of splenocytes in vitro with Virulizin resulted in increased IL-17E mRNA expression, which peaked between 24 and 32 h post-stimulation. Both in vitro and in vivo experiments demonstrated that B cells produced IL-17E in response to Virulizin treatment. Furthermore, Virulizin treatment in vivo resulted in increased blood eosinophilia and eosinophil infiltration into tumors. Finally, injection of recombinant IL-17E showed antitumor activity towards xenografted tumors, which correlated with increased eosinophilia in blood and tumors. Taken together, these results support another antitumor mechanism mediated by Virulizin, through induction of IL-17E by B cells, leading to recruitment of eosinophils into tumors, which may function in parallel with macrophages and NK cells in mediating tumor destruction.
Collapse
Affiliation(s)
- Tania Benatar
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Ming Y. Cao
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
- BGTD, Health Canada, 100 Eglantine Dr., Room 1452-H, A/L 0603B2, Tunny’s Pasture, Ottawa, ON Canada K1A 0K9
| | - Yoon Lee
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Hui Li
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Ningping Feng
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Xiaoping Gu
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Vivian Lee
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Hongnan Jin
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Ming Wang
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Sandy Der
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of Toronto, 1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - Jeff Lightfoot
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Jim A. Wright
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| | - Aiping H. Young
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON Canada M9W 4Z7
| |
Collapse
|
8
|
Abstract
Pancreatic cancer is a lethal disease and notoriously difficult to treat. Only a small proportion is curative by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Clearly there is a need for the continual development of novel therapeutic agents to improve the current situation. Improvement of our understanding of the disease has generated a large number of studies on biological approaches targeting the molecular abnormalities of pancreatic cancer, including gene therapy and signal transduction inhibition, antiangiogenic and matrix metalloproteinase inhibition, oncolytic viral therapy and immunotherapy. This article provides a review of these approaches, both investigated in the laboratories and in subsequent clinical trials.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
9
|
Horton HM, Lalor PA, Rolland AP. IL-2 plasmid electroporation: from preclinical studies to phase I clinical trial. Methods Mol Biol 2008; 423:361-372. [PMID: 18370214 DOI: 10.1007/978-1-59745-194-9_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Electroporation (EP)-assisted intralesional delivery of Interleukin-2 (IL-2) plasmid (pDNA) has the potential to increase the local concentration of the expressed cytokine for an extended time in the injected tumors while minimizing its systemic concentration, in comparison with systemic delivery of the recombinant cytokine. Nonclinical Investigational New Drug application-enabling studies were performed in mice to evaluate the effect of intratumoral administration of murine IL-2 pDNA on local expression and systemic distribution of IL-2 transgene as well as the inhibition of established tumor growth. The safety of repeated administrations of a human IL-2 pDNA product candidate with EP was evaluated in rats. Following the nonclinical safety and efficacy studies, a human IL-2 pDNA product candidate intralesionally administered with EP to metastatic melanoma patients is currently being investigated in a phase I clinical trial.
Collapse
|
10
|
Li H, Cao MY, Lee Y, Benatar T, Lee V, Feng N, Gu X, Liu P, Jin H, Wang M, Der S, Lightfoot J, Wright JA, Young AH. Virulizin, a novel immunotherapy agent, stimulates TNFalpha expression in monocytes/macrophages in vitro and in vivo. Int Immunopharmacol 2007; 7:1350-9. [PMID: 17673150 DOI: 10.1016/j.intimp.2007.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 05/17/2007] [Accepted: 06/04/2007] [Indexed: 11/26/2022]
Abstract
Virulizin, a novel biological response modifier, has demonstrated broad antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. Previous studies have demonstrated a significant role of macrophages and NK cells in the antitumor mechanism of Virulizin. Increased activity and expansion of macrophages and NK cells has been observed in mice treated with Virulizin. In the present study, the effects of Virulizin on TNFalpha expression were investigated in vitro and in vivo. CD-1 nude mice were treated with Virulizin daily for 5 days. Quantitative RT-PCR demonstrated that the level of TNFalpha mRNA increased in peritoneal macrophages isolated from Virulizin-treated mice as compared to the control group. An increase in TNFalpha protein expression was also observed, as assessed by flow cytometric analysis. Increased levels of TNFalpha mRNA were seen in human tumor xenografts following treatment of tumor-bearing mice with Virulizin. In the presence of LPS, Virulizin also stimulated TNFalpha protein secretion and mRNA expression in human monocytic U937 cells and mouse macrophage RAW264.7 cells in vitro in a time- and dose-dependent manner. U937 cells treated with Virulizin showed a significantly enhanced cytotoxicity that was eliminated upon neutralization of TNFalpha. Virulizin also induced the phosphorylation of IkappaB, suggesting that induction of TNFalpha expression by Virulizin is mediated by activation of NFkappaB. The results indicate that Virulizin-induced TNFalpha expression contributes to modulation of immune responses and antitumor activities.
Collapse
Affiliation(s)
- Hui Li
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hussein MR. Tumour-associated macrophages and melanoma tumourigenesis: integrating the complexity. Int J Exp Pathol 2006; 87:163-76. [PMID: 16709225 PMCID: PMC2517364 DOI: 10.1111/j.1365-2613.2006.00478.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
When the body discovers a tumour cell (foreign antigen), several kinds of mechanisms and cells operate in what is called an immune response. The latter has evolved into two mechanisms: non-specific immunity and specific immunity, which are closely linked to and influence each other. The former represents the first line of defence against neoplastic cells. The adaptive (specific) immunity is orchestrated by antigen-specific T and B lymphocytes. The effector cells of innate immunity include granulocytes, macrophages and natural killer cells. Among these cells, macrophages represent the most important part of innate immunity against tumours. Tumour-associated macrophages (TAMs) are important antigen-presenting cells and as such an understanding of their interactions with tumour cells gives insights into novel therapeutic strategies. In tumours, the effect of TAMs is the outcome of their two concomitantly competing interactions: tumour growth reduction and tumour growth promotion. The macrophage (TAMs) content of melanoma ranges from 0 to 30% and their density increases with increasing tumour thickness. The melanoma cells and TAMs seem to interact with each other through the release of soluble factors that either prevent or enhance tumour growth. For instance, syngeneic macrophages from tumour-bearing mice can inhibit melanoma growth in the nude mice more than the control macrophages. Alternatively, metastatic B16 melanoma cells can produce some macrophage cytotoxic substances that help tumour cells not only escape the host immunosurveillance system but also prevent distant metastasis. Together, these observations suggest opposing effects for these soluble factors in melanoma. To date, little is available in the literature about the interactions between TAMs and melanoma cells. This viewpoint not only tries to examine these interactions but also provides relevant speculations.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- Department of Histopathology, Assuit University Hospitals, Faculty of Medicine, Assuit University, Assuit, Egypt.
| |
Collapse
|
12
|
|