1
|
Devi LS, Casadidio C, Gigliobianco MR, Di Martino P, Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int J Pharm 2024; 654:123976. [PMID: 38452831 DOI: 10.1016/j.ijpharm.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| | - Cristina Casadidio
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy; Department of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University 99, 3508 TB Utrecht, the Netherlands.
| | - Maria Rosa Gigliobianco
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy.
| | - Piera Di Martino
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, (CH), Italy
| | - Roberta Censi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| |
Collapse
|
2
|
Kostka L, Kotrchová L, Randárová E, Ferreira CA, Malátová I, Lee HJ, Olson AP, Engle JW, Kovář M, Cai W, Šírová M, Etrych T. Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. J Control Release 2023; 353:549-562. [PMID: 36470330 PMCID: PMC9892306 DOI: 10.1016/j.jconrel.2022.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Libor Kostka
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Lenka Kotrchová
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Iva Malátová
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Hye Jin Lee
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Aeli P Olson
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Marek Kovář
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Weibo Cai
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States; Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Milada Šírová
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic.
| |
Collapse
|
3
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|
4
|
Theodosis-Nobelos P, Charalambous D, Triantis C, Rikkou-Kalourkoti M. Drug Conjugates Using Different Dynamic Covalent Bonds and their Application in Cancer Therapy. Curr Drug Deliv 2021; 17:542-557. [PMID: 32384029 DOI: 10.2174/1567201817999200508092141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Polymer-drug conjugates are polymers with drug molecules chemically attached to polymer side chains through either a weak (degradable bond) or a dynamic covalent bond. These systems are known as pro-drugs in the inactive form when passing into the blood circulation system. When the prodrug reaches the target organ, tissue or cell, the drug is activated by cleavage of the bond between the drug and polymer, under certain conditions existing in the target organ. The advantages of polymer-drug conjugates compared to other controlled-release carriers and conventional pharmaceutical formulations are the increased drug loading capacity, prolonged in vivo; circulation time, enhanced intercellular uptake, better-controlled release, improved therapeutic efficacy, and enhanced permeability and retention effect. The aim of the present review is the investigation of polymer-drug conjugates bearing anti-cancer drugs. The polymer, through its side chains, is linked to the anti-cancer drugs via; dynamic covalent bonds, such as hydrazone/imine bonds, disulfide bonds, and boronate esters. These dynamic covalent bonds are cleaved in conditions existing only in cancer cells and not in healthy ones. Thus, ensuring the selective release of drug to the targeted tissue, reducing in this way, the frequent side effects of chemotherapy, leading to a more targeted application, despite the nature of the applied polymer, possessing the ability to aim tumors selectively via; incorporation of a relative ligand.
Collapse
Affiliation(s)
| | - Despina Charalambous
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | - Charalampos Triantis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | | |
Collapse
|
5
|
Recent Advances and Challenges in Controlling the Spatiotemporal Release of Combinatorial Anticancer Drugs from Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121156. [PMID: 33261219 PMCID: PMC7759840 DOI: 10.3390/pharmaceutics12121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. In this review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs are provided. To this end, the types of combinatorial drug release for various NFCDs are classified in terms of time and space, and the detailed programming techniques used for this are described. In addition, the advantages of the time and space differences in drug release in terms of anticancer efficacy are introduced in depth.
Collapse
|
6
|
Randárová E, Kudláčová J, Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. J Control Release 2020; 325:304-322. [DOI: 10.1016/j.jconrel.2020.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
|
7
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Braunová A, Chytil P, Laga R, Šírová M, Machová D, Parnica J, Říhová B, Janoušková O, Etrych T. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. J Control Release 2020; 321:718-733. [DOI: 10.1016/j.jconrel.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
9
|
Li L, Li Y, Yang CH, Radford DC, Wang J, Janát-Amsbury M, Kopeček J, Yang J. Inhibition of Immunosuppressive Tumors by Polymer-Assisted Inductions of Immunogenic Cell Death and Multivalent PD-L1 Crosslinking. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908961. [PMID: 33071706 PMCID: PMC7566519 DOI: 10.1002/adfm.201908961] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 05/13/2023]
Abstract
Checkpoint blockade immunotherapies harness the host's own immune system to fight cancer, but only work against tumors infiltrated by swarms of pre-existing T cells. Unfortunately, most cancers to date are immune-deserted. Here, we report a polymer-assisted combination of immunogenic chemotherapy and PD-L1 degradation for efficacious treatment in originally non-immunogenic cancer. "Priming" tumors with backbone-degradable polymer-epirubicin conjugates elicits immunogenic cell death and fosters tumor-specific CD8+ T cell response. Sequential treatment with a multivalent polymer-peptide antagonist to PD-L1 overcomes adaptive PD-L1 enrichment following chemotherapy, biases the recycling of PD-L1 to lysosome degradation via surface receptor crosslinking, and produces prolonged elimination of PD-L1 rather than the transient blocking afforded by standard anti-PD-L1 antibodies. Together, these findings established the polymer-facilitated tumor targeting of immunogenic drugs and surface crosslinking of PD-L1 as a potential new therapeutic strategy to propagate a long-term antitumor immunity, which might broaden the application of immunotherapy to immunosuppressive cancers.
Collapse
Affiliation(s)
- Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yachao Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chieh-Hsiang Yang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - D Christopher Radford
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Margit Janát-Amsbury
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
10
|
Kostka L, Kotrchová L, Šubr V, Libánská A, Ferreira CA, Malátová I, Lee HJ, Barnhart TE, Engle JW, Cai W, Šírová M, Etrych T. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials 2020; 235:119728. [DOI: 10.1016/j.biomaterials.2019.119728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/27/2019] [Accepted: 12/22/2019] [Indexed: 02/03/2023]
|
11
|
Nanomaterials and nanocomposite applications in veterinary medicine. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020. [PMCID: PMC7252256 DOI: 10.1016/b978-0-12-821354-4.00024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, nanotechnology has made huge, significant advancements in biotechnology and biomedicine related to human and animal science, including increasing health safety, production, and the elevation of national income. There are various fields of nanomaterial applications in veterinary medicine such as efficient diagnostic and therapeutic tools, drug delivery, animal nutrition, breeding and reproduction, and valuable additives. Additional benefits include the detection of pathogens, protein, biological molecules, antimicrobial agents, feeding additives, nutrient delivery, and reproductive aids. There are many nanomaterials and nanocomposites that can be used in nanomedicine such as metal nanoparticles, liposomes, carbon nanotubes, and quantum dots. In the near future, nanotechnology research will have the ability to produce novel tools for improving animal health and production. Therefore, this chapter was undertaken to spotlight novel methods created by nanotechnology for application in the improvement of animal health and production. In addition, the toxicity of nanomaterials is fully discussed to avoid the suspected health hazards of toxicity for animal health safety.
Collapse
|
12
|
Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19:ijms19113299. [PMID: 30352960 PMCID: PMC6274759 DOI: 10.3390/ijms19113299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoscience and nanotechnology shows immense interest in various areas of research and applications, including biotechnology, biomedical sciences, nanomedicine, and veterinary medicine. Studies and application of nanotechnology was explored very extensively in the human medical field and also studies undertaken in rodents extensively, still either studies or applications in veterinary medicine is not up to the level when compared to applications to human beings. The application in veterinary medicine and animal production is still relatively innovative. Recently, in the era of health care technologies, Veterinary Medicine also entered into a new phase and incredible transformations. Nanotechnology has tremendous and potential influence not only the way we live, but also on the way that we practice veterinary medicine and increase the safety of domestic animals, production, and income to the farmers through use of nanomaterials. The current status and advancements of nanotechnology is being used to enhance the animal growth promotion, and production. To achieve these, nanoparticles are used as alternative antimicrobial agents to overcome the usage alarming rate of antibiotics, detection of pathogenic bacteria, and also nanoparticles being used as drug delivery agents as new drug and vaccine candidates with improved characteristics and performance, diagnostic, therapeutic, feed additive, nutrient delivery, biocidal agents, reproductive aids, and finally to increase the quality of food using various kinds of functionalized nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, micellar nanoparticles, and metal nanoparticles. It seems that nanotechnology is ideal for veterinary applications in terms of cost and the availability of resources. The main focus of this review is describes some of the important current and future principal aspects of involvement of nanotechnology in Veterinary Medicine. However, we are not intended to cover the entire scenario of Veterinary Medicine, despite this review is to provide a glimpse at potential important targets of nanotechnology in the field of Veterinary Medicine. Considering the strong potential of the interaction between the nanotechnology and Veterinary Medicine, the aim of this review is to provide a concise description of the advances of nanotechnology in Veterinary Medicine, in terms of their potential application of various kinds of nanoparticles, secondly we discussed role of nanomaterials in animal health and production, and finally we discussed conclusion and future perspectives of nanotechnology in veterinary medicine.
Collapse
Affiliation(s)
- Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin-Yu Lin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi-Fan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
13
|
Coyne CP, Narayanan L. Anti-neoplastic cytotoxicity by complementary simultaneous selective “targeted” delivery for pulmonary adenocarcinoma: fludarabine-(5′-phosphoramidate)-[anti-IGF-1R] in dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0401-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
|
15
|
Šírová M, Horková V, Etrych T, Chytil P, Říhová B, Studenovský M. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics. J Drug Target 2017; 25:796-808. [PMID: 28726521 DOI: 10.1080/1061186x.2017.1358724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO donors were coupled to the polymer carrier either through a stable bond or through a hydrolytically degradable, pH sensitive, bond. In vivo, the co-administration of the polymer NO donor and HPMA copolymer-bound cytotoxic drug (doxorubicin; Dox) resulted in an improvement in the treatment of murine EL4 T-cell lymphoma. The polymer NO donors neither potentiated the in vitro toxicity of the cytotoxic drug nor exerted any effect on in vivo model without the EPR effect, such as BCL1 leukaemia. Thus, an increase in passive accumulation of the nanomedicine carrying cytotoxic drug via NO-enhanced EPR effect was the operative mechanism of action. The most significant improvement in the therapy was observed in a combination treatment with such a polymer conjugate of Dox, which is characterised by increased circulation in the blood and efficient accumulation in solid tumours. Notably, the combination treatment enabled the development of an anti-tumour immune response, which was previously demonstrated as an important feature of HPMA-based polymer cytotoxic drugs.
Collapse
Affiliation(s)
- Milada Šírová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Veronika Horková
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Tomáš Etrych
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Petr Chytil
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Blanka Říhová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Martin Studenovský
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| |
Collapse
|
16
|
Coyne CP, Narayanan L. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549). Chem Biol Drug Des 2017; 89:379-399. [PMID: 27561602 PMCID: PMC5396302 DOI: 10.1111/cbdd.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10-9 M and 10-7 M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
| | - Lakshmi Narayanan
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- Present address: Fishery and Wildlife Research CenterMississippi State UniversityLocksley Way 201Mississippi StateMSUSA
| |
Collapse
|
17
|
Šírová M, Strohalm J, Chytil P, Lidický O, Tomala J, Říhová B, Etrych T. The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. J Control Release 2017; 246:1-11. [DOI: 10.1016/j.jconrel.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|
18
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
19
|
Coyne CP, Narayanan L. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549). Drug Des Devel Ther 2016; 10:2575-97. [PMID: 27574398 PMCID: PMC4990379 DOI: 10.2147/dddt.s102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.
Collapse
Affiliation(s)
| | - Lakshmi Narayanan
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
20
|
Pola R, Pechar M, Ulbrich K, Fabra Fres À. Polymer—Doxorubicin Conjugate with a Synthetic Peptide Ligand Targeted on Prostate Tumor. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507084423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the synthesis, physico-chemical characterization, and antiproliferative effects of a polymer—doxorubicin conjugate targeted by the amide of peptide sequence CPLHQRPMC are described. This sequence is discovered using the phage display method to achieve high affinity to prostate cancer cell line PC3MM2. The peptide is bound to N-(2-hydroxypropyl)methacrylamide-based copolymer carrier via a hydrophilic undeca(ethylene oxide) spacer. Doxorubicin is attached to the polymer using a pH-sensitive hydrazone bond which proves to be stable at a physiological pH 7.4 but quickly hydrolyzes at pH 5.0. The polymer—drug conjugate exhibits significant antiproliferative activity against human metastatic prostate cancer cell line PC3MM2 in vitro. The addition of a second polymer with the targeting peptide but without doxorubicin to the incubation media leads to a decrease in the cytotoxicity of 32% induced by the first polymer. This finding indicates a receptor-specific endocytosis of the polymeric drug.
Collapse
Affiliation(s)
- Robert Pola
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic,
| | - Michal Pechar
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Àngels Fabra Fres
- Department of Cancer and Metastasis, Institut de Recerca Oncologica Hospital Duran y Reynals, Barcelona, Spain
| |
Collapse
|
21
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
22
|
Xie X, Luo S, Mukerabigwi JF, Mei J, Zhang Y, Wang S, Xiao W, Huang X, Cao Y. Targeted nanoparticles from xyloglucan–doxorubicin conjugate loaded with doxorubicin against drug resistance. RSC Adv 2016. [DOI: 10.1039/c6ra01779g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel targeted Xyloglucan–doxorubicin nanoparticle drug delivery systems (DOX nano-DDSs) exhibited improved cellular uptake, increased accumulation in tumor, higher cytotoxicity against drug resistant tumor cells and reduced side effects.
Collapse
Affiliation(s)
- Xuan Xie
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Shiying Luo
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jean Felix Mukerabigwi
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jian Mei
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yuannian Zhang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Shufang Wang
- Blood Transfusion Department
- The General Hospital of the People's Liberation Army
- Beijing 100853
- China
| | - Wang Xiao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xueying Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
23
|
Luo S, Gu Y, Zhang Y, Guo P, Mukerabigwi JF, Liu M, Lei S, Cao Y, He H, Huang X. Precise Ratiometric Control of Dual Drugs through a Single Macromolecule for Combination Therapy. Mol Pharm 2015; 12:2318-27. [DOI: 10.1021/mp500867g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiying Luo
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Gu
- Prenatal
Diagnosis Center, Lianyungang Maternal and Child Hospital, Lianyungang, 222002, P. R. China
| | - Yuannian Zhang
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pei Guo
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jean Felix Mukerabigwi
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Liu
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shaojun Lei
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Cao
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxuan He
- Key
Laboratory of Animal Ecology and Conservation Biology, Institute of
Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xueying Huang
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
24
|
Coyne CP, Jones T, Bear R. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. JOURNAL OF CANCER THERAPY 2015; 6:62-89. [PMID: 25821636 PMCID: PMC4376018 DOI: 10.4236/jct.2015.61009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective "targeted" delivery. The simultaneous dual selective "targeted" delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. MATERIALS AND METHODS A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. RESULTS Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Mississippi State, USA
| |
Collapse
|
25
|
Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf B Biointerfaces 2015; 126:631-48. [DOI: 10.1016/j.colsurfb.2014.12.041] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
|
26
|
Etrych T, Strohalm J, Šírová M, Tomalová B, Rossmann P, Říhová B, Ulbrich K, Kovář M. High-molecular weight star conjugates containing docetaxel with high anti-tumor activity and low systemic toxicity in vivo. Polym Chem 2015. [DOI: 10.1039/c4py01120a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The star polymer-docetaxel conjugates exert a much higher therapeutic activity and yet a lower systemic toxicity than free DTX.
Collapse
Affiliation(s)
- T. Etrych
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - J. Strohalm
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - M. Šírová
- Institute of Microbiology ASCR v.v.i
- Prague 4
- Czech Republic
| | - B. Tomalová
- Institute of Microbiology ASCR v.v.i
- Prague 4
- Czech Republic
| | - P. Rossmann
- Institute of Microbiology ASCR v.v.i
- Prague 4
- Czech Republic
| | - B. Říhová
- Institute of Microbiology ASCR v.v.i
- Prague 4
- Czech Republic
| | - K. Ulbrich
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - M. Kovář
- Institute of Microbiology ASCR v.v.i
- Prague 4
- Czech Republic
| |
Collapse
|
27
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C 3- amide)-[anti-HER2/ neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole. JOURNAL OF CANCER RESEARCH AND THERAPEUTIC ONCOLOGY 2014; 2:203. [PMID: 25844392 PMCID: PMC4381351 DOI: 10.17303/jcrto.2014.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Delineate the feasibility of simultaneous, dual selective "targeted" chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively "targeted" for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. METHODOLOGY Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it's potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. RESULTS Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. CONCLUSIONS The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively "targeted" anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].
Collapse
Affiliation(s)
- CP Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
28
|
Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng J. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew Chem Int Ed Engl 2013; 52:6435-9. [PMID: 23650111 PMCID: PMC3800742 DOI: 10.1002/anie.201300497] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/19/2013] [Indexed: 11/07/2022]
Abstract
Design of smart polymeric therapeutics We designed and synthesized trigger-responsive chain-shattering polymeric therapeutics (CSPTs) via condensation polymerization of a UV-or hydrogen peroxide-responsive domain and a bisfunctional drug as co-monomers. CSPTs have precisely controlled molecular composition and unique chain-shattering type of drug release mechanism. Drug release kinetics can be precisely controlled by means of the trigger treatment. Chemotherapeutic-containing CSPTs showed trigger-responsive in vitro and in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Liang Ma
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| |
Collapse
|
29
|
Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng J. Chain-Shattering Polymeric Therapeutics with On-Demand Drug-Release Capability. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Coyne CP, Jones T, Bear R. Synthesis of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3. ACTA ACUST UNITED AC 2012. [PMID: 26225216 DOI: 10.4236/jct.2012.325089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic gemcitabine promote decreases in neoplastic cell proliferation and apoptosis which is frequently found to be effective for the treatment of several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance restricts the utility of gemcit-abine in clinical oncology. Selective "targeted" delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing innocient tissues and organ systems exposure to chemotherapy. The molecular design and an organic chemistry based synthesis reaction is described that initially generates a UV-photoactivated gemcitabine intermediate. In a subsequent phase of the synthesis method the UV-photoactivated gemcitabine intermediate is covalently bonded to a monoclonal immunoglobulin yielding an end-product in the form of gemcitabine-(C4-amide)-[anti-HER2/neu]. Analysis by SDS-PAGE/chemiluminescent auto-radiography did not detect evidence of gemcitabine-(C4-amide)-[anti-HER2/neu] polymerization or degradative fragmentation while cell-ELISA demonstrated retained binding-avidity for HER2/neu trophic membrane receptor complexes highly over-expressed by chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Compared to chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), the covalent immunochemotherapeutic, gemcitabine-(C4-amide)-[anti-HER2/neu] is anticipated to exert greater levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epitheliod carcinoma, or leukemia/lymphoid neoplastic cell types based on their reported sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Oktibbeha County, USA
| |
Collapse
|
31
|
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161:175-87. [PMID: 21945285 DOI: 10.1016/j.jconrel.2011.09.063] [Citation(s) in RCA: 955] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/03/2011] [Accepted: 09/08/2011] [Indexed: 12/15/2022]
Abstract
Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings.
Collapse
Affiliation(s)
- Twan Lammers
- Department of Experimental Molecular Imaging, RWTH - Aachen University, Helmholtz Institute for Biomedical Engineering, Aachen, Germany.
| | | | | | | |
Collapse
|
32
|
Coyne CP, Jones T, Bear R. Synthesis of a covalent epirubicin-(C(3)-amide)-anti-HER2/neu immunochemotherapeutic utilizing a UV-photoactivated anthracycline intermediate. Cancer Biother Radiopharm 2012; 27:41-55. [PMID: 22191802 PMCID: PMC4361169 DOI: 10.1089/cbr.2011.1097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The C(3)-monoamine on the carbohydrate moiety (daunosamine -NH(2)-3') of epirubicin was reacted under anhydrous conditions with succinimidyl 4,4-azipentanoate to create a covalent UV-photoactivated epirubicin-(C(3)-amide) intermediate with primary amine-reactive properties. A synthetic covalent bond between the UV-photoactivated epirubicin-(C(3)-amide) intermediate and the ɛ-amine of lysine residues within the amino acid sequence of anti-HER2/neu monoclonal immunoglobulin was subsequently created by exposure to UV light (354 nm) for 15 minutes. Size-separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with immunodetection analysis and chemiluminescent autoradiographic imaging revealed a lack of IgG-IgG polymerization or degradative protein fragmentation of the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic. Retained binding-avidity of epirubicin-(C(3)-amide)-[anti-HER2/neu] was validated by cell-ELISA utilizing monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 which highly overexpress membrane-associated HER2/neu complexes. Between epirubicin-equivalent concentrations of 10(-10) to 10(-6) M the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic consistently evoked levels of cytotoxic anti-neoplastic potency that were highly analogous to chemotherapeutic-equivalent concentrations of epirubicin. Cytotoxic anti-neoplastic potency of epirubicin-(C(3)-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 challenged with epirubicin-(C(3)-amide)-[anti-HER2/neu] at an epirubicin-equivalent concentration of 10(-6) M was 88.5% (e.g., 11.5% residual survival). Between final epirubicin-equivalent concentrations of 10(-8) and 10(-7) M there was a marked threshold increase in the mean cytotoxic anti-neoplastic activity for epirubicin-(C(3)-amide)-[anti-HER2/neu] from 9.9% to 66.9% (90.2% to 33.1% residual survival).
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.
| | | | | |
Collapse
|
33
|
|
34
|
Kostková H, Etrych T, Říhová B, Ulbrich K. Synergistic effect of HPMA copolymer-bound doxorubicin and dexamethasone in vivo on mouse lymphomas. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511406326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer—drug conjugates bearing the antiinflammatory and anti-proliferative drug dexamethasone (DEX) and the anti-cancer drug doxorubicin (DOX) bound to either the polymer carrier separately or in combination, were synthesized. Both the in vitro and in vivo anti-cancer activity on mouse B-cell (38C13) and T-cell (EL4) lymphoma was studied. The conjugates were fairly stable in model buffers at pH 7.4, simulating blood pH, and the drug was released by chemical hydrolysis at pH values based on the endosomal and lysosomal environments in the target cells (pH 5—6). As a control, polymer conjugates containing only a single-drug (DOX or DEX) attached to the HPMA copolymer carrier were synthesized and tested. Contrary to the treatment with either single drug conjugate, where no significant long-term survival was observed, a synergistic effect of the two drugs was manifested in vivo. Treatment of mice bearing B-cell lymphoma 38C13 formulated as a mixture of both single drug-containing conjugates or a as a conjugate with both drugs in combination gave long-term survivors.
Collapse
Affiliation(s)
- Hana Kostková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic,
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Blanka Říhová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
35
|
Tomala J, Chmelova H, Strohalm J, Ulbrich K, Sirova M, Rihova B, Kovar M. Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that ofN-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity. Int J Cancer 2011; 129:2002-12. [DOI: 10.1002/ijc.25859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/19/2010] [Accepted: 11/09/2010] [Indexed: 11/06/2022]
|
36
|
Coyne CP, Jones T, Pharr T. Synthesis of a covalent gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic and its cytotoxic anti-neoplastic activity against chemotherapeutic-resistant SKBr-3 mammary carcinoma. Bioorg Med Chem 2010; 19:67-76. [PMID: 21169024 DOI: 10.1016/j.bmc.2010.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
Abstract
UNLABELLED Gemcitabine is a potent chemotherapeutic that exerts cytotoxic activity against several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance frequently limit the utility of gemcitabine in clinical oncology. Selective 'targeted' delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing exposure of innocent tissues and organ systems. MATERIALS AND METHODS Gemcitabine was combined in molar excess with N-[p-maleimidophenyl]-isocyanate (PMPI) so that the isocyanate moiety of PMPI which exclusively reacts with hydroxyl groups preferentially created a carbamate covalent bond at the terminal C(5)-methylhydroxy group of gemcitabine. Monoclonal immunoglobulin with binding-avidity specifically for HER2/neu was thiolated with 2-iminothiolane at the terminal ε-amine group of lysine amino acid residues. The gemcitabine-(carbamate)-PMPI intermediate with a maleimide moiety that exclusively reacts with reduced sulfhydryl groups was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to delineate the molecular weight profile for gemcitabine-(carbamate)-[anti-HER2/neu] while cell binding characteristics were determined by cell-ELISA utilizing SKBr-3 mammary carcinoma which highly over-expresses HER2/neu receptors. Cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] between the gemcitabine-equivalent concentrations of 10(-12) and 10(-6)M was determined utilizing vitality staining analysis of chemotherapeutic-resistant SKBr-3 mammary carcinoma. RESULTS Gemcitabine-(carbamate)-[anti-HER2/neu] was synthesized at a molar incorporation index of 1:1.1 (110%) and had a molecular weight of 150kDa that was indistinguishable from reference control immunoglobulin fractions. Cell-ELISA detected progressive increases in SKBr-3 mammary carcinoma associated immunoglobulin with corresponding increases in covalent gemcitabine immunochemotherapeutic concentrations. The in vitro cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] was approximately 20% and 32% at 10(-7) and 10(-6)M (gemcitabine-equivalent concentrations) after a 182-h incubation period. DISCUSSION The investigations describes for the first time a methodology for synthesizing a gemcitabine anti-HER2/neu immunochemotherapeutic by creating a covalent bond structure between the C(5)-methylhydroxy group of gemcitabine and thiolated lysine amino acid residues of monoclonal antibody or other biologically active protein fractions. Gemcitabine-(carbamate)-[anti-HER2/neu] possessed binding-avidity at HER2/neu receptors highly over-expressed by chemotherapeutic-resistant SKBr-3 mammary carcinoma. Alternatively, gemcitabine can be covalently linked at its C(5)-methylhydroxy group to monoclonal immunoglobulin fractions that possess binding-avidity for other receptors and membrane complexes uniquely highly over-expressed by a variety of neoplastic cell types. Compared to chemotherapeutic-resistant SKBr-3 mammary carcinoma, gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic is anticipated to exert higher levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epithelioid carcinoma, or leukemia/lymphoid neoplastic cell types based on their reportedly greater sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States.
| | | | | |
Collapse
|
37
|
Říhová B, Etrych T, Šírová M, Kovář L, Hovorka O, Kovář M, Benda A, Ulbrich K. Synergistic Action of Doxorubicin Bound to the Polymeric Carrier Based on N-(2-Hydroxypropyl)methacrylamide Copolymers through an Amide or Hydrazone Bond. Mol Pharm 2010; 7:1027-40. [DOI: 10.1021/mp100121g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- B. Říhová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - T. Etrych
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - M. Šírová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - L. Kovář
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - O. Hovorka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - M. Kovář
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - A. Benda
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - K. Ulbrich
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic, and J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
38
|
Etrych T, Šírová M, Starovoytova L, Říhová B, Ulbrich K. HPMA Copolymer Conjugates of Paclitaxel and Docetaxel with pH-Controlled Drug Release. Mol Pharm 2010; 7:1015-26. [DOI: 10.1021/mp100119f] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tomáš Etrych
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, and Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Milada Šírová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, and Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - L. Starovoytova
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, and Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Blanka Říhová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, and Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Karel Ulbrich
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, and Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
39
|
Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells. Tumour Biol 2010; 31:233-42. [PMID: 20556593 DOI: 10.1007/s13277-010-0019-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 01/16/2010] [Indexed: 12/14/2022] Open
Abstract
To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.
Collapse
|
40
|
Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009; 61:1203-13. [PMID: 19699247 DOI: 10.1016/j.addr.2009.05.006] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/14/2009] [Indexed: 11/23/2022]
Abstract
The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer-drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the therapeutic potential of this application but raised new challenges (namely, drug loading and drugs ratio, characterisation, and development of suitable carriers) that need to be addressed for a successful optimisation of the system towards clinical applications.
Collapse
|
41
|
Rihova B. Clinical experience with anthracycline antibiotics-HPMA copolymer-human immunoglobulin conjugates. Adv Drug Deliv Rev 2009; 61:1149-58. [PMID: 19682512 DOI: 10.1016/j.addr.2008.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/19/2008] [Indexed: 10/20/2022]
Abstract
This paper reviews an early clinical experience with anthracycline (epirubicin; Epi or doxorubicin; Dox) containing an N-(2-hydroyxypropyl)methacrylamide copolymer carrier targeted with autologous or commercial human immunoglobulin in six patients aged 28-55 suffering from therapy-resistant metastatic cancer. More than 100 biochemical, hematological and immunological parameters, including nine tumor markers, were tested in blood samples taken 24 h after the first and up to 10 months after the last application. The intravenous application proceeded without serious adverse or side effects and did not require hospitalization. Cardiotoxicity was not observed. Four of six monitored patients attained stabilization of disease (liver ultrasound scan and bone computer tomography) with a very good quality of life lasting from seven up to 18 months. Positive response to the treatment was, among others, evaluated as decreased CA 15-3 and CEA tumor markers. In three of five tested patients the serum level of C-reactive protein was temporarily increased 72 h after the treatment. A stable or elevated number of peripheral blood reticulocytes together with activation of natural killer (NK) cells and lymphokine-activated killer (LAK) cells supports the data previously obtained in experimental animals pointing to a dual role, i.e. the cytotoxic and immunomobilizing character of doxorubicin-HPMA conjugates.
Collapse
|
42
|
Preclinical Evaluation of Linear HPMA-Doxorubicin Conjugates with pH-Sensitive Drug Release: Efficacy, Safety, and Immunomodulating Activity in Murine Model. Pharm Res 2009; 27:200-8. [DOI: 10.1007/s11095-009-9999-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
|
43
|
Etrych T, Strohalm J, Kovář L, Kabešová M, Říhová B, Ulbrich K. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J Control Release 2009; 140:18-26. [DOI: 10.1016/j.jconrel.2009.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/27/2022]
|
44
|
Yang N, Ye Z, Li F, Mahato RI. HPMA polymer-based site-specific delivery of oligonucleotides to hepatic stellate cells. Bioconjug Chem 2009; 20:213-21. [PMID: 19133717 PMCID: PMC2682209 DOI: 10.1021/bc800237t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective was to determine whether bioconjugation of type I collagen specific triplex forming oligonucleotide (TFO) to N-(2-hydroxypropyl) methacrylamide (HPMA) containing tetrapeptide Gly-Phe-Leu-Gly (GFLG) and mannose 6-phosphate (M6P) can provide their targeted delivery to hepatic stellate cells (HSCs). Following bioconjugation, M6P-GFLG-HPMA-GFLG-32P-TFO was characterized by PAGE, HPLC, and GPC, and then its biodistribution was determined. TFO was dissociated from the conjugate when incubated with papain and formed triplex with the target DNA duplex. Type 1 collagen gene expression was significantly inhibited when HSC-T6 cells were transfected with this conjugate. Following tail vein injection into rats, M6P-GFLG-HPMA-GFLG-(32)P-TFO was rapidly cleared from the circulation and accumulated mainly in the liver. The plasma concentration versus time profile was biphasic, with 12.37 min as t(1/2) of distribution and 2886.48 min as t(1/2) of elimination. A large proportion of the injected M6P-GFLG-HPMA-GFLG-32P-TFO was taken up by the HSCs of both normal and fibrotic rats, which were isolated by liver perfusion at 30 min post-injection. Preinjection of M6P-GFLG-HPMA-GFLG-ONP into fibrotic rats decreased the liver uptake of the conjugates from 60% to 13%, suggesting M6P/TGFII receptor-mediated endocytosis of the conjugates by HSCs. Almost 80% of the total liver uptake in fibrotic rats was contributed by HSCs. In conclusion, conjugation with M6P-HPMA-GFLG significantly increased TFO delivery to the HSCs and could be potentially used for treating liver fibrosis.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, TN 38103
| | - Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, TN 38103
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, TN 38103
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, TN 38103
| |
Collapse
|
45
|
Kovar M, Tomala J, Chmelova H, Kovar L, Mrkvan T, Joskova R, Zakostelska Z, Etrych T, Strohalm J, Ulbrich K, Sirova M, Rihova B. Overcoming Immunoescape Mechanisms of BCL1 Leukemia and Induction of CD8+ T-Cell–Mediated BCL1-Specific Resistance in Mice Cured by Targeted Polymer-Bound Doxorubicin. Cancer Res 2008; 68:9875-83. [DOI: 10.1158/0008-5472.can-08-1979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Ríhová B, Kovár L, Kovár M, Hovorka O. Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics. Trends Biotechnol 2008; 27:11-7. [PMID: 19022512 DOI: 10.1016/j.tibtech.2008.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/29/2008] [Accepted: 10/08/2008] [Indexed: 12/22/2022]
Abstract
The successful treatment of cancer with conventional drugs is frequently complicated by the resistance of tumor cells to such a non-specific therapy. Over the last few years, immunotherapy has gained attention as a tumor-specific approach. Recent findings demonstrated that some conventional cytostatics stimulate local anticancer responses. New anticancer drugs, including their polymeric derivatives, are currently being developed with the aim of destroying tumors more effectively and more specifically. Among these, the water-soluble conjugates of doxorubicin with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carrier have emerged as efficient therapeutics because they are able to not only directly destroy cancer cells but also elicit systemic tumor-specific anticancer responses. Here, we discuss new insights into their mechanisms of immune surveillance, which could suggest novel approaches to cancer therapy.
Collapse
Affiliation(s)
- Blanka Ríhová
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
47
|
Chytil P, Etrych T, Koňák Č, Šírová M, Mrkvan T, Bouček J, Říhová B, Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release 2008; 127:121-30. [DOI: 10.1016/j.jconrel.2008.01.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/15/2008] [Accepted: 01/21/2008] [Indexed: 11/25/2022]
|
48
|
Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release 2007; 122:31-8. [DOI: 10.1016/j.jconrel.2007.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
|