1
|
Śmiłowicz D, Schlyer D, Boros E, Meimetis L. Evaluation of a Radio-IMmunoStimulant (RIMS) in a Syngeneic Model of Murine Prostate Cancer and ImmunoPET Analysis of T-cell Distribution. Mol Pharm 2022; 19:3217-3227. [PMID: 35895995 DOI: 10.1021/acs.molpharmaceut.2c00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunosuppressive tumor microenvironment and tumor heterogeneity have led to the resilience of metastatic castrate resistant prostate cancer (mCRPC) to current treatments. To address these challenges, we developed and evaluated a new drug paradigm, Radio-IMmunostimulant (RIMS), in a syngeneic model of murine prostate cancer. RIMS-1 was generated using a convergent synthesis employing solid phase peptide and solution chemistries. The prostate-specific membrane antigen (PSMA) inhibitory constant for natLu-RIMS-1 was determined, and radiolabeling with 177Lu generated 177Lu-RIMS-1. The TLR 7/8 agonist payload release from natLu-RIMS-1 was determined using a cathepsin B assay. The biodistribution of 177Lu-RIMS-1 was evaluated in a bilateral xenograft model in NCru nude mice bearing PSMA(+) (PC3-PiP) and PSMA(-) (PC3-Flu) tumors at 2, 24, and 72 h. The therapeutic effect of 177Lu-RIMS-1 was evaluated in C57BL/6J mice bearing RM1-PGLS (PSMA-positive, green fluorescent protein-positive, and luciferase-positive) tumors and compared to that of 177Lu-PSMA-617 at the same total administered radioactivity of 57 MBq and molar activity of 5.18 MBq/nmol. natLu-RIMS-1 and vehicle were evaluated as the controls. Immuno-positron emission tomography (PET) using 89Zr-DFO-anti-CD3 was used to visualize T-cell distribution during treatment. 177Lu-RIMS-1 was quantitatively radiolabeled at >99% radiochemical purity and maintained a high affinity toward PSMA (Ki = 3.77 ± 0.5 nM). Cathepsin B efficiently released the entire immunostimulant payload in 17.6 h. 177Lu-RIMS-1 displayed a sustained uptake in PSMA(+) tumor tissue up to 72 h (2.65 ± 1.03% ID/g) and was not statistically different (P = 0.1936) compared to 177Lu-PSMA-617 (3.65 ± 0.59% ID/g). All animals treated with 177Lu-RIMS-1 displayed tumor growth suppression and provided a median survival of 30 days (P = 0.0007) while 177Lu-PSMA-617 provided a median survival of 15 days, which was not statistically significant (P = 0.3548) compared to the vehicle group (14 days). ImmunoPET analysis revealed 2-fold more tumor infiltrating T-cells in 177Lu-RIMS-1-treated animals compared to 177Lu-PSMA-617-treated animals; 177Lu-RIMS-1 improves therapeutic outcomes in a syngeneic model of mouse prostate cancer and elicits greater T-cell infiltration to the tumor compared to 177Lu-PSMA-617. These results support further investigation of the RIMS paradigm as the first example of a single molecular entity combining radiotherapy and immunostimulation.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David Schlyer
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States.,Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Labros Meimetis
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
4
|
Neek M, Kim TI, Wang SW. Protein-based nanoparticles in cancer vaccine development. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:164-174. [PMID: 30291897 PMCID: PMC6289732 DOI: 10.1016/j.nano.2018.09.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Wilkinson A, Lattmann E, Roces CB, Pedersen GK, Christensen D, Perrie Y. Lipid conjugation of TLR7 agonist Resiquimod ensures co-delivery with the liposomal Cationic Adjuvant Formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated Resiquimod+CAF01. J Control Release 2018; 291:1-10. [PMID: 30291987 DOI: 10.1016/j.jconrel.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/12/2023]
Abstract
Pattern recognition receptors, including the Toll-like receptors (TLRs), are important in the induction and activation of two critical arms of the host defence to pathogens and microorganisms: the rapid innate immune response (as characterised by the production of Th1 promoting cytokines and type 1 interferons) and the adaptive immune response. Through this activation, ligands and agonists of TLRs can enhance immunotherapeutic efficacy. Resiquimod is a small (water-soluble) agonist of the endosome-located Toll-like receptors 7 and 8 (TLR7/8). However due to its molecular attributes it rapidly distributes throughout the body after injection. To circumvent this, these TLR agonists can be incorporated within delivery systems, such as liposomes, to promote the co-delivery of both antigen and agonists to antigen presenting cells. In this present study, resiquimod has been chemically conjugated to a lipid to form a lipid-TLR7/8 agonist conjugate which can be incorporated within immunogenic cationic liposomes composed of dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory glycolipid trehalose 6,6' - dibehenate (TDB). This DDA:TDB-TLR7/8 formulation offers similar vesicle characteristics to DDA:TDB (size and charge) and offers high retention of both resiquimod and the electrostatically adsorbed TB subunit antigen Ag85B-ESAT6-Rv2660c (H56). Following immunisation through the intramuscular (i.m.) route, these cationic DDA:TDB-TLR7/8 liposomes form a vaccine depot at the injection site. However, immunisation studies have shown that this biodistribution does not translate into notably increased antibody nor Th1 responses at the spleen and draining popliteal lymph node compared to DDA:TDB liposomes. This work demonstrates that the conjugation of TLR7/8 agonists to cationic liposomes can promote co-delivery but the immune responses stimulated do not merit the added complexity considerations of the formulation.
Collapse
Affiliation(s)
| | - Eric Lattmann
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Gabriel K Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK.
| |
Collapse
|
6
|
The adjuvant effect of TLR7 agonist conjugated to a meningococcal serogroup C glycoconjugate vaccine. Eur J Pharm Biopharm 2016; 107:110-9. [DOI: 10.1016/j.ejpb.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/11/2016] [Accepted: 07/03/2016] [Indexed: 02/03/2023]
|
7
|
Lebold KM, Jacoby DB, Drake MG. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease. Transfus Med Hemother 2016; 43:114-9. [PMID: 27226793 DOI: 10.1159/000445324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 01/01/2023] Open
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases.
Collapse
Affiliation(s)
- Katie M Lebold
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - David B Jacoby
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Matthew G Drake
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
8
|
Lee J, Martinez N, West K, Kornfeld H. Differential adjuvant activities of TLR7 and TLR9 agonists inversely correlate with nitric oxide and PGE2 production. PLoS One 2015; 10:e0123165. [PMID: 25875128 PMCID: PMC4395302 DOI: 10.1371/journal.pone.0123165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/18/2015] [Indexed: 01/17/2023] Open
Abstract
Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-γ in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
9
|
|
10
|
Conjugation of a TLR7 agonist and antigen enhances protection in the S. pneumoniae murine infection model. Eur J Pharm Biopharm 2014; 87:310-7. [PMID: 24434202 DOI: 10.1016/j.ejpb.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022]
Abstract
Next generation vaccine adjuvants include Toll like receptor agonists, which are mostly extracted from microorganisms, but synthetic small molecule TLR agonists have also been identified. However, their delivery systems have not been optimized for effective administration in conjunction with antigens. Here, we describe a novel approach in which a small molecule TLR agonist was directly conjugated to antigen to ensure effective co-delivery. We describe the conjugation of a recombinant protective antigen from Streptococcus pneumoniae linked to a TLR7 agonist. Following thorough characterization to ensure no aggregation, the conjugate was evaluated in a murine infection model. Results showed that the conjugate extended the animals' survival after lethal challenge with S. pneumoniae. Comparable results were obtained with a dose 10-fold lower than that of the native unconjugated antigen. Notably, the animals immunized with the same dose of unconjugated TLR7 agonist and antigen showed no adjuvant effect. The increased immunogenicity was likely a consequence of the co-localization of TLR7 agonist and antigen by chemical binding and was more effective than simple co-administration. This approach can be adopted to increase potency of a broad variety of antigens and reduce the dose of antigen required to induce protective immunity.
Collapse
|
11
|
Zhou CX, Li D, Chen YL, Lu ZJ, Sun P, Cao YM, Bao HF, Fu YF, Li PH, Bai XW, Xie BX, Liu ZX. Resiquimod and polyinosinic-polycytidylic acid formulation with aluminum hydroxide as an adjuvant for foot-and-mouth disease vaccine. BMC Vet Res 2014; 10:2. [PMID: 24386990 PMCID: PMC3892093 DOI: 10.1186/1746-6148-10-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptor (TLR) agonists reportedly have potent antiviral and antitumor activities and may be a new kind of adjuvant for enhancing immune efficacy. Resiquimod (R848) is an imidazoquinoline compound with potent antiviral activity and functions through the TLR7/TLR8 MyD88-dependent signaling pathway. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of double-stranded RNA that induces the production of pro-inflammatory cytokines by the activation of NF-κB through TLR3. This study investigated the potential of R848 and poly(I:C) as an adjuvant 146S foot-and-mouth disease virus (FMDV) vaccine formulated with aluminum hydroxide (Al(OH)3). Results Antibody titers to FMDV and CD8+ T cells were markedly enhanced in mice immunized to 146S FMDV + Al(OH)3 + R848 + poly(I:C) compared with mice immunized to FMDV + ISA206. IFN-γ secretion substantially increased compared with IL-4 secretion by splenic T cells stimulated with FMDV antigens in vitro, suggesting that R848, poly(I:C), and with Al(OH)3 together biased the immune response toward a Th1-type direction. Conclusions These results indicated that the R848 and poly(I:C) together with Al(OH)3 enhanced humoral and cellular immune responses to immunization with 146S FMDV antigens. Thus, this new vaccine formulation can be used for FMDV prevention.
Collapse
Affiliation(s)
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, OIE/National Foot-and-Mouth Disease Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gwinn WM, Johnson BT, Kirwan SM, Sobel AE, Abraham SN, Gunn MD, Staats HF. A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine 2013; 31:1480-9. [PMID: 23352329 DOI: 10.1016/j.vaccine.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Development of nasal immunization for human use is hindered by the lack of acceptable adjuvants. Although CT is an effective adjuvant, its toxicity will likely prevent its use in nasal vaccines. This study compared non-toxin adjuvants to CT for their ability to induce protective antibody responses with nasal immunization. C3H/HeN and C57BL/6 mice were immunized with rPA formulated with the following adjuvants: CT, IL-1α, LPS, CpG, Pam3CSK4, 3M-019, resiquimod/R848 or c48/80. Serum and nasal wash cytokine concentrations were monitored 6h post-vaccination as biomarkers for acute activation of the innate immune system. Not all of the adjuvants induced significant changes in innate serum or nasal wash cytokines, but when changes were observed, the cytokine signatures were unique for each adjuvant. All adjuvants except Pam3CSK4 induced significantly increased anti-rPA serum IgG titers in both strains of mice, while only IL-1α, c48/80 and CpG enhanced mucosal anti-rPA IgA. Pam3CSK4 was the only adjuvant unable to enhance the induction of serum LeTx-neutralizing antibodies in C3H/HeN mice while c48/80 was the only adjuvant to induce increased serum LeTx-neutralizing antibodies in C57BL/6 mice. Only CT enhanced total serum IgE in C3H/HeN mice while IL-1α enhanced total serum IgE in C57BL/6 mice. The adjuvant influenced antigen-specific serum IgG subclass and T cell cytokine profiles, but these responses did not correlate with the induction of LeTx-neutralizing activity. Our results demonstrate the induction of diverse innate and adaptive immune responses by non-toxin nasal vaccine adjuvants that lead to protective humoral immunity comparable to CT and that these responses may be influenced by the host strain.
Collapse
Affiliation(s)
- William M Gwinn
- Duke University Medical Center, Department of Pathology, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Liniger M, Summerfield A, Ruggli N. MDA5 can be exploited as efficacious genetic adjuvant for DNA vaccination against lethal H5N1 influenza virus infection in chickens. PLoS One 2012; 7:e49952. [PMID: 23227156 PMCID: PMC3515599 DOI: 10.1371/journal.pone.0049952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022] Open
Abstract
Chickens lack the retinoic acid-inducible gene I (RIG-I) and sense avian influenza virus (AIV) infections by means of the melanoma differentiation-associated gene 5 product (chMDA5). Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483)] triggers interferon-β responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483) expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483) were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA) of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483) expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483)-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Matthias Liniger
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | - Artur Summerfield
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Nouri-Shirazi M, Guinet E. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 188:2359-70. [PMID: 22279108 DOI: 10.4049/jimmunol.1102552] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Clinical Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
15
|
De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16:569-82. [PMID: 21570475 DOI: 10.1016/j.drudis.2011.04.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/10/2011] [Accepted: 04/20/2011] [Indexed: 12/22/2022]
Abstract
Subunit vaccines offer a safer alternative to traditional organism-based vaccines, but their immunogenicity is impaired. This hurdle might be overcome by the use of micro- and nanodelivery systems carrying the antigen(s). This review discusses the rationale for the use of particulate vaccines and provides an overview of antigen-delivery vehicles currently under investigation. It further highlights the cellular uptake, antigen processing and the presentation by antigen-presenting cells because these processes are partially governed by particle characteristics and eventually determine the immunological outcome. Finally, we address the attractive concept of concomitant delivery of antigens and immunopotentiators. The condensed knowledge could be an asset for rationally designing antigen-delivery vehicles to obtain safe and efficacious vaccines.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 2011; 29:294-306. [PMID: 21459467 DOI: 10.1016/j.tibtech.2011.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022]
Abstract
Vaccine development has progressed significantly and has moved from whole microorganisms to subunit vaccines that contain only their antigenic proteins. Subunit vaccines are often less immunogenic than whole pathogens; therefore, adjuvants must amplify the immune response, ideally establishing both innate and adaptive immunity. Incorporation of antigens into biomaterials, such as liposomes and polymers, can achieve a desired vaccine response. The physical properties of these platforms can be easily manipulated, thus allowing for controlled delivery of immunostimulatory factors and presentation of pathogen-associated molecular patterns (PAMPs) that are targeted to specific immune cells. Targeting antigen to immune cells via PAMP-modified biomaterials is a new strategy to control the subsequent development of immunity and, in turn, effective vaccination. Here, we review the recent advances in both immunology and biomaterial engineering that have brought particulate-based vaccines to reality.
Collapse
Affiliation(s)
- Stacey L Demento
- Department of Biomedical Engineering, Yale University, Malone Engineering Center, 55 Prospect Street, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
17
|
Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 2010; 28 Suppl 3:C25-36. [PMID: 20713254 DOI: 10.1016/j.vaccine.2010.07.021] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The key objective of vaccination is the induction of an effective pathogen-specific immune response that leads to protection against infection and/or disease caused by that pathogen, and that may ultimately result in its eradication from humanity. The concept that the immune response to pathogen antigens can be improved by the addition of certain compounds into the vaccine formulation was demonstrated about one hundred years ago when aluminium salts were introduced. New vaccine technology has led to vaccines containing highly purified antigens with improved tolerability and safety profiles, but the immune response they induce is suboptimal without the help of adjuvants. In parallel, the development of effective vaccines has been facing more and more important challenges linked to complicated pathogens (e.g. malaria, TB, HIV, etc.) and/or to subjects with conditions that jeopardize the induction or persistence of a protective immune response. A greater understanding of innate and adaptive immunity and their close interaction at the molecular level is yielding insights into the possibility of selectively stimulating immunological pathways to obtain the desired immune response. The better understanding of the mechanism of 'immunogenicity' and 'adjuvanticity' has prompted the research of new vaccine design based on new technologies, such as naked DNA or live vector vaccines and the new adjuvant approaches. Adjuvants can be used to enhance the magnitude and affect the type of the antigen-specific immune response, and the combination of antigens with more than one adjuvant, the so called adjuvant system approach, has been shown to allow the development of vaccines with the ability to generate effective immune responses adapted to both the pathogen and the target population. This review focuses on the adjuvants and adjuvant systems currently in use in vaccines, future applications, and the remaining challenges the field is facing.
Collapse
|
18
|
Li J, Jiang H, Wen W, Zheng J, Xu G. The dendritic cell mannose receptor mediates allergen internalization and maturation involving notch 1 signalling. Clin Exp Immunol 2010; 162:251-61. [PMID: 20819091 DOI: 10.1111/j.1365-2249.2010.04244.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have been shown recently to play a key role in inducing and mediating T helper type 2 (Th2) responses associated with atopic disease. These responses are mediated in part by ligation to different Toll-like receptors (TLRs) and C-type lectins, e.g. the mannose receptor (MR), depending upon the DC subset involved and the respective microenvironments. Because ovalbumin (OVA) (which is structurally related to various allergens) can engage the MR, we can use OVA stimulation as a model for understanding the roles of both TLRs and the MR in allergic inflammatory responses. We examined TLR- and MR-mediated responses from mouse bone marrow-derived DCs in the context of antigen recognition and presentation in addition to examining the relationship between notch 1, TLRs and MR signalling pathways. This work demonstrated that OVA-mediated signalling up-regulated both TLR-2 and MR and that MR RNA interference (RNAi) but not TLR2 RNAi inhibited DC internalization of fluorescein isothiocyanate-OVA. Furthermore, MR RNAi inhibited OVA- and house dust mite allergen extract-induced DC maturation and MR RNAi and TLR2 RNAi influenced DC interleukin-12 production independently. Finally, we demonstrated that blocking notch 1 signalling inhibited both notch 1 and TLR-2 expression but not MR expression levels. However, MR RNAi inhibited the expression of MR, TLR-2 and notch 1. These results indicate that MR is the primary receptor mediating the internalization of environmental allergen glycoproteins. In addition, TLR-2 and notch 1 play important roles in DC maturation and antigen presentation and signals originating from the MR and TLR-2 receptors converge with the notch 1 signalling pathway.
Collapse
Affiliation(s)
- J Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
19
|
Differential activation and maturation of two porcine DC populations following TLR ligand stimulation. Mol Immunol 2010; 47:2103-11. [DOI: 10.1016/j.molimm.2010.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/26/2023]
|
20
|
Bachelder EM, Beaudette TT, Broaders KE, Fréchet JMJ, Albrecht MT, Mateczun AJ, Ainslie KM, Pesce JT, Keane-Myers AM. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol Pharm 2010; 7:826-35. [PMID: 20230025 PMCID: PMC2882515 DOI: 10.1021/mp900311x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toll-like receptor (TLR) agonists induce potent innate immune responses and can be used in the development of novel vaccine adjuvants. However, access to TLRs can be challenging as exemplified by TLR 7, which is located intracellularly in endosomal compartments. To increase recognition and subsequent stimulatory effects of TLR 7, imiquimod was encapsulated in acetalated dextran (Ac-DEX) microparticles. Ac-DEX, a water-insoluble and biocompatible polymer, is relatively stable at pH 7.4, but degrades rapidly under acidic conditions, such as those found in lysosomal vesicles. To determine the immunostimulatory capacity of encapsulated imiquimod, we compared the efficacy of free versus encapsulated imiquimod in activating RAW 264.7 macrophages, MH-S macrophages, and bone marrow derived dendritic cells. Encapsulated imiquimod significantly increased IL-1 beta, IL-6, and TNF-alpha cytokine expression in macrophages relative to the free drug. Furthermore, significant increases were observed in classic macrophage activation markers (iNOS, PD1-L1, and NO) after treatment with encapsulated imiquimod over the free drug. Also, bone marrow derived dendritic cells produced significantly higher levels of IL-1 beta, IL-6, IL-12p70, and MIP-1 alpha as compared to their counterparts receiving free imiquimod. These results suggest that encapsulation of TLR ligands within Ac-DEX microparticles results in increased immunostimulation and potentially better protection from disease when used in conjunction with vaccine formulations.
Collapse
Affiliation(s)
- Eric M. Bachelder
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | | | - Kyle E. Broaders
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | - Jean MJ. Fréchet
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | - Mark T. Albrecht
- Vaccines and Medical Countermeasures Group, Biological Defense Research Directorate, Navy Medical Research Center, 12300 Washington Avenue, Rockville, MD 20852
| | - Alfred J. Mateczun
- Vaccines and Medical Countermeasures Group, Biological Defense Research Directorate, Navy Medical Research Center, 12300 Washington Avenue, Rockville, MD 20852
| | - Kristy M. Ainslie
- Vaccines and Medical Countermeasures Group, Biological Defense Research Directorate, Navy Medical Research Center, 12300 Washington Avenue, Rockville, MD 20852
| | - John T. Pesce
- Vaccines and Medical Countermeasures Group, Biological Defense Research Directorate, Navy Medical Research Center, 12300 Washington Avenue, Rockville, MD 20852
| | - Andrea M. Keane-Myers
- Vaccines and Medical Countermeasures Group, Biological Defense Research Directorate, Navy Medical Research Center, 12300 Washington Avenue, Rockville, MD 20852
| |
Collapse
|
21
|
Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157-73. [PMID: 20109027 DOI: 10.1586/erv.09.160] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considerable success has been made with many peptide antigen formulations, and peptide-based vaccines are emerging as the next generation of prophylactic and remedial immunotherapy. However, finding an optimal platform balancing all of the requirements for an effective, specific and safe immune response remains a major challenge for many infectious and chronic diseases. This review outlines how peptide immunogenicity is influenced by the way in which peptides are presented to the immune system, underscoring the need for multifunctional delivery systems that couple antigen and adjuvant into a single construct. Particular attention is given to the ability of Toll-like receptor agonists to act as adjuvants. A survey of recent approaches to developing peptide antigen delivery systems is given, many of which incorporate Toll-like receptor agonists into the design.
Collapse
Affiliation(s)
- Matthew Black
- University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
22
|
Vilalta A, Shlapobersky M, Wei Q, Planchon R, Rolland A, Sullivan S. Analysis of biomarkers after intramuscular injection of Vaxfectin®-formulated hCMV gB plasmid DNA. Vaccine 2009; 27:7409-17. [DOI: 10.1016/j.vaccine.2009.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/10/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
|
23
|
Koyama S, Coban C, Aoshi T, Horii T, Akira S, Ishii KJ. Innate immune control of nucleic acid-based vaccine immunogenicity. Expert Rev Vaccines 2009; 8:1099-1107. [PMID: 19627190 DOI: 10.1586/erv.09.57] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Optimal vaccine efficacy requires not only a protective antigen, but also a strong immune activator as an adjuvant. Most viral vaccines, such as influenza vaccines and nonviral genetic vaccines (e.g., DNA vaccines), contain nucleic acids, which appear to act as essential 'built-in' adjuvants. Specific receptors, including Toll-like receptors, retinoic acid-inducible protein-I-like receptors, and nucleotide-binding oligomerization domain-like receptors can detect specific nucleic acid patterns, depending on the immunized tissue, cell type and intracellular localization. The resulting immune activation is uniquely regulated by intra- and intercellular signaling pathways, which are indispensable for the ensuing vaccine immunogenicity, such as antigen-specific T- and B-cell responses. Thus, elucidation and manipulation of immune signaling and interactions by nucleic acid adjuvants are essential for maximizing the immunogenicity and safety of viral and DNA vaccines.
Collapse
Affiliation(s)
- Shohei Koyama
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine 2008; 26:6777-6783. [PMID: 18835576 DOI: 10.1016/j.vaccine.2008.09.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/07/2008] [Accepted: 09/16/2008] [Indexed: 12/31/2022]
Abstract
Toll like receptors (TLRs) are a family of conserved pattern recognition receptors that recognizes specific microbial patterns and allow the cell to distinguish between self and non-self materials. The very property of the TLRs to link innate and adaptive immunity offers a novel prospect to develop vaccines engaging TLR signaling. The presence of TLR ligands as adjuvant in conjunction with the vaccine is shown to increase the efficacy and response to the immunization with a particular antigen. For infectious as well as for noninfectious diseases, TLR activation have been used in both established and experimental vaccines. The choice of the TLR agonist to be used, the subsequent efficacy and the safety profile of the vaccine is thus a crucial step in vaccine development. Recent studies also suggest the involvement of other non-TLR immune receptors to control vaccine immunogenicity. Here we focus on the findings dealing with TLR ligands as adjuvant and discuss the importance of these studies to develop an optimal vaccine.
Collapse
Affiliation(s)
- Amit Lahiri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
25
|
Meyer T, Stockfleth E. Clinical investigations of Toll-like receptor agonists. Expert Opin Investig Drugs 2008; 17:1051-65. [PMID: 18549341 DOI: 10.1517/13543784.17.7.1051] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLR) represent a family of surface molecules that function as primary sensors of the innate immune system to recognize microbial pathogens. Ligand binding to TLR results in activation of cellular signaling pathways that regulate expression of genes involved in inflammation and immunity. OBJECTIVE Use of synthetic TLR ligands (agonists) for treatment and prevention of infectious and neoplastic diseases. METHODS Review of literature about clinical investigations of agonists of TLR 4, 7, 8, and 9. RESULTS/CONCLUSIONS Imiquimod was the first TLR agonist approved for treatment of anogenital warts, actinic keratosis and superficial basal cell carcinoma in humans. Several other agonists of TLRs 4, 7, 8 and 9 were also shown to be effective for treatment of infections and cancers and, furthermore, were used as adjuvants for vaccination. Based on safety and efficacy of the TLR agonists used to date, applications are likely to increase in the future.
Collapse
Affiliation(s)
- Thomas Meyer
- University of Hamburg, University Hospital Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
26
|
TLR agonists regulate alloresponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. Blood 2008; 112:3508-16. [PMID: 18614760 DOI: 10.1182/blood-2007-09-113670] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODNs) are synthetic ODNs with unmethylated DNA sequences that mimic viral and bacterial DNA and protect against infectious agents and tumor challenge. We show that CpG ODNs markedly accelerated graft-versus-host disease (GVHD) lethality by Toll-like receptor 9 (TLR9) ligation of host antigen-presenting cells (APCs), dependent upon host IFNgamma but independent of host IL-12, IL-6, or natural killer (NK) cells. Imaging studies showed significantly more green fluorescent protein-positive (GFP(+)) effector T cells in lymphoid and nonlymphoid organs. In engraftment studies, CpG ODNs promoted allogeneic donor bone marrow (BM) rejection independent of host IFNgamma, IL-12, or IL-6. During the course of these studies, we uncovered a previously unknown and critical role of donor BM APCs in modulating the rejection response. CpG ODNs promoted BM rejection by ligation of donor BM, but not host, TLR9. CpG ODNs did not impair engraftment of TLR9(-/-) BM unless wild-type myeloid (CD11b(+)) but not B-lineage (CD19(+)) BM cells were added to the donor inoculum. The importance of donor BM APCs in modulating the strength of the host antidonor rejection response was underscored by the finding that B7-1/B7-2(-/-) BM was less likely than wild-type BM to be rejected. Collectively, these data offer new insight into the mechanism of alloresponses regulating GVHD and BM rejection.
Collapse
|
27
|
Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM. TLR Agonists Promote Marginal Zone B Cell Activation and Facilitate T-Dependent IgM Responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:3882-8. [DOI: 10.4049/jimmunol.180.6.3882] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Schmitz F, Heit A. Protective cancer immunotherapy: what can the innate immune system contribute? Expert Opin Biol Ther 2008; 8:31-43. [PMID: 18081535 DOI: 10.1517/14712598.8.1.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite significant efforts to induce protection against malignant diseases, the clinical effects of antitumour vaccines are poor. However, recent studies on a quadrivalent human papilloma virus vaccine suggest that protection against secondary tumour development is feasible. While this scenario benefits rather from antiviral protection than from direct antitumour responses, immunisation against cancers of non-viral origin demands strategies that rely on the circumvention of intrinsic regulatory mechanisms. Strong activation of innate immune cells seems to be key and, thus, the choice of adjuvant determines vaccination efficacy. The recently acquired knowledge about molecular and cellular recognition of microbial molecules suggests how one can modulate innate and adaptive immune reactions to potentially induce robust T- and B-cell reactions capable of prohibiting tumour development and progression. Here, the authors review the present knowledge of innate immune reactions, which may help to define rationales on the design of novel antitumour vaccines.
Collapse
Affiliation(s)
- Frank Schmitz
- Technical University Munich, Institute of Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, 81675 Munich, Germany.
| | | |
Collapse
|