1
|
Zhou C, Dong X, Chen G, Wang Z, Wu X, Yao Y, Zhang Y, Cheng Y, Pan H, Zhang X, Cui J, Wang L, Chen X, Li X, Wang Z, Wang Q, He J, Wang M, Yan I, Qian L, Xu M, Huang X, Sun C, Cai J, Wu Q, Ballinger M, Kaul M, Srivastava MK. Atezolizumab plus bevacizumab and chemotherapy in metastatic nonsquamous NSCLC: the randomized double-blind phase 3 IMpower151 trial. Nat Med 2025:10.1038/s41591-025-03658-y. [PMID: 40379995 DOI: 10.1038/s41591-025-03658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/18/2025] [Indexed: 05/19/2025]
Abstract
After the global approval of atezolizumab plus bevacizumab and chemotherapy as first-line metastatic nonsquamous non-small-cell lung cancer (nsqNSCLC) treatment, the IMpower151 ( NCT04194203 ) trial was conducted in China to address regional differences. Chemotherapy-naive patients with metastatic nsqNSCLC (N = 305) were randomized 1:1 to receive either atezolizumab, bevacizumab, carboplatin and paclitaxel or pemetrexed (ABCPem/Pac; n = 152) or placebo plus bevacizumab, carboplatin and pemetrexed or paclitaxel (BCPem/Pac; n = 153). The primary endpoint was investigator-assessed progression-free survival (INV-PFS); secondary endpoints included subgroup analyses of INV-PFS, independent review facility-assessed PFS, overall survival, and investigator-assessed objective response rate and duration of response per RECIST v.1.1. Most patients (97%) received pemetrexed, and 53% had EGFR+ tumors. Median INV-PFS for ABCPem/Pac versus BCPem/Pac was 9.5 versus 7.1 months (stratified hazard ratio: 0.84; 95% confidence interval: 0.65, 1.09; P = 0.184). INV-PFS across subgroups and independent review facility-assessed PFS were consistent with INV-PFS in the intention-to-treat population. Median overall survival was 20.7 versus 18.7 months in the ABCPem/Pac versus BCPem/Pac arms, respectively (stratified hazard ratio: 0.93; 95% confidence interval: 0.67, 1.28). Confirmed objective response rate with ABCPem/Pac versus BCPem/Pac was 48% versus 50%, respectively; median duration of response was 11.3 versus 8.3 months. Adverse events of special interest for atezolizumab were observed in 68% (grades 3 and 4: 11%) and 71% (grades 3 and 4: 7%) of patients receiving ABCPem/Pac and BCPem/Pac, respectively. The most common adverse events of special interest for atezolizumab in the ABCPem/Pac and BCPem/Pac arms were hepatitis (driven by laboratory abnormalities; mostly low grade), hypothyroidism and rash. Overall, IMpower151 did not meet its primary endpoint (INV-PFS) in metastatic nsqNSCLC. ABCPem/Pac was generally well tolerated, with no new safety signals. Trial registration number: ClinicalTrials.gov, NCT02366143.
Collapse
Affiliation(s)
- Caicun Zhou
- Department of Oncology, Shanghai East Hospital/Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiaorong Dong
- Cancer Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gongyan Chen
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Zhehai Wang
- Proton Center, Shandong Cancer Hospital, Jinan, PR China
| | - Xianghua Wu
- Department of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Yu Yao
- Department of Internal Medicine Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yiping Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, PR China
| | - Ying Cheng
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, PR China
| | - Hongming Pan
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, PR China
| | - Xiaodong Zhang
- Department of Respiratory Medicine, Nan Tong Tumor Hospital, Nantong, PR China
| | - Jiuwei Cui
- Department of Oncology, The First Hospital of Jilin University, Changchun, PR China
| | - Lifeng Wang
- Department of Oncology, Nanjing Drum Tower Hospital and The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Xi Chen
- Department of Oncology, Fuzhou General Hospital, PLA Nanjing Military Area Command, Fuzhou, Fujian, PR China
| | - Xiaoling Li
- Department of Thoracic Medicine, Liaoning Cancer Hospital and Institute, Shenyang, PR China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Qiming Wang
- Department of Respiratory Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, PR China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, PR China
| | - Iris Yan
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Li Qian
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Miao Xu
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Xiayu Huang
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Chun Sun
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Jun Cai
- Roche (China) Holding Ltd, Shanghai, PR China
| | - Qiong Wu
- Roche (China) Holding Ltd, Shanghai, PR China
| | | | - Monika Kaul
- Genentech Inc., South San Francisco, CA, USA
| | | |
Collapse
|
2
|
Chou MY, Yang MH. Immunomodulation on tumor immune microenvironment in acquired targeted therapy resistance and implication for immunotherapy resistance. Transl Oncol 2025; 54:102353. [PMID: 40058234 PMCID: PMC11929932 DOI: 10.1016/j.tranon.2025.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025] Open
Abstract
The emergence of molecularly targeted therapies and immunotherapies has revolutionized cancer treatment, yet the optimal sequencing of these modalities remains debated. While targeted therapies often induce initial immunostimulatory effects, the development of resistance is accompanied by dynamic alterations in the tumor-immune microenvironment. These changes can promote tumor growth, hinder immune surveillance, and contribute to subsequent immunotherapy resistance. This review focuses on solid tumors and summarizes the immunomodulatory effects arising in the context of targeted therapy resistance, highlighting the challenges they pose for the subsequent immunotherapy efficacy.
Collapse
Affiliation(s)
- Ming-Yu Chou
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
| |
Collapse
|
3
|
Kato Y. Lenvatinib enhances antitumor immunity of anti-PD-1 antibody. Int J Clin Oncol 2025; 30:666-673. [PMID: 39985645 PMCID: PMC11946938 DOI: 10.1007/s10147-025-02721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Lenvatinib is an orally available multi-tyrosine kinase inhibitor that mainly targets vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling. These inhibitory activities of lenvatinib exhibit antitumor efficacy, mainly due to their repressive effects on angiogenesis. In addition, a recent non-clinical evaluation using mouse tumor models revealed that lenvatinib causes immunomodulatory effects, including activation of effector T-cells and regulation of tumor-associated macrophages (TAMs). Combined treatment with lenvatinib and anti-programmed cell death-1 antibody (anti-PD-1) resulted in enhanced antitumor activity relative to monotreatment with anti-PD-1 or lenvatinib. This review summarizes the antitumor mechanisms of lenvatinib and of lenvatinib plus anti-PD-1 combination therapy.
Collapse
Affiliation(s)
- Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Guo H, Miao L, Yu C. The efficacy of targeted therapy and/or immunotherapy with or without chemotherapy in patients with colorectal cancer: A network meta-analysis. Eur J Pharmacol 2025; 988:177219. [PMID: 39716565 DOI: 10.1016/j.ejphar.2024.177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The use of targeted drugs and immunotherapy has significantly impacted the treatment of Colorectal Cancer. However, horizontal comparison among various regimens is extremely rare. Therefore, we evaluated the survival efficacy of multiple treatment regimens of targeted therapy and/or immunotherapy with or without chemotherapy in patients with Colorectal Cancer. METHODS A systematic search was conducted in PubMed, EMBASE, and Cochrane databases, covering the period from the establishment of the databases to October 29, 2024. To obtain articles that met the inclusion and exclusion criteria and contained the required data for conducting a network meta-analysis (NMA). The NMA evaluated overall survival (OS) and progression-free survival (PFS). RESULTS A total of 90 studies were identified, comprising a sample size of 33,167 subjects. In terms of PFS, compared with simple chemotherapy strategies, most of the other single or combined strategies are significantly effective, among which targeted therapy strategies have more advantages. Encorafenib + Binimetinib + Cetuximab (ENC-BIN-CET) shows significant benefits in all comparisons except when compared with Chemotherapy + Cetuximab + Dalotuzumab (Chemo-CET-DAL), Encorafenib + Cetuximab (ENC-CET), and Panitumumab + Sotorasib (PAN-SOT). The ENC-CET and PAN-SOT targeted strategies also show significant benefits. Pembrolizumab (PEM) monotherapy has advantages over all others except when it is not superior to some targeted strategies. Chemotherapy + Bevacizumab + Atezolizumab is only inferior to some strategies. In terms of OS, the combinations of Chemotherapy + Bevacizumab, ENC-CET, Chemotherapy + Panitumumab, and ENC-BIN-CET are superior to simple chemotherapy regimens. ENC-BIN-CET shows OS benefits in all comparisons except some. ENC-CET significantly improves OS in most cases, and PEM also significantly improves OS in some regimens. In the probability ranking of OS and PFS, ENC-BIN-CET has the best effect, followed by ENC-CET. CONCLUSIONS In conclusion, pembrolizumab is still effective in prolonging survival. Dual- and triple-drug targeted strategies are the best in terms of OS and PFS, and the combination of targeted immunotherapy and chemotherapy also works. However, not all combinations are beneficial. As targeted drugs play an active role, specific drugs for colorectal cancer regimens should be carefully selected.
Collapse
Affiliation(s)
- Haoyan Guo
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, No.16, Guicheng South Fifth Road, Foshan, Guangdong, 528200, China; Jinan University, Guangzhou, 510632, China
| | - Longjie Miao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518104, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chengdong Yu
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, No.16, Guicheng South Fifth Road, Foshan, Guangdong, 528200, China; Jinan University, Guangzhou, 510632, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
6
|
Masuda C, Onishi S, Yorozu K, Kurasawa M, Morinaga M, Wakita D, Sugimoto M. PD-L1 and VEGF dual blockade enhances anti-tumor effect on brain metastasis in hematogenous metastasis model. Clin Exp Metastasis 2024; 41:909-924. [PMID: 39231916 PMCID: PMC11607052 DOI: 10.1007/s10585-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy improves survival outcomes in cancer patients, but there is still an unmet clinical need in the treatment of brain metastases. Here, we used a mouse model to investigate the antitumor effect of programmed death-ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) dual blockade on metastatic brain tumors and evaluated immune responses during treatment. After establishing hematogenous brain metastasis by transplanting murine bladder carcinoma MBT2 cells stably expressing secNLuc reporter via the internal carotid artery of C3H/HeNCrl mice, we observed the formation of metastases not only in the brain parenchyma but also in the ventricles. The observed pathological areas showed that metastases in the ventricle were histologically larger than that in the brain parenchyma. Regarding the total tumor burden in the whole brain as revealed by Nluc activities, the combination of anti-PD-L1 antibody and anti-VEGF antibody showed a stronger anti-tumor effect than each single agent. Anti-PD-L1 antibody alone enhanced CD8+ T cell priming in regional lymph nodes, increased the proportion of activated CD8+ T cells in whole brain, and increased the density of CD8+ cells in the brain parenchyma. Furthermore, anti-VEGF antibody alone decreased microvessel density (MVD) in ventricular metastases, and the combination treatment increased intratumoral CD8+ cell density in the brain parenchyma and ventricular metastases. These results suggest that PD-L1 blockade enhanced cancer immunity not only in brain metastases lesions but also in the regional lymph nodes of the metastases, and that the addition of VEGF blockade increased the antitumor effect by increasing the infiltration of activated CD8+ T cell and decreasing MVD.
Collapse
Affiliation(s)
- Chinami Masuda
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Shinichi Onishi
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Keigo Yorozu
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Mitsue Kurasawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Mamiko Morinaga
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Daiko Wakita
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Masamichi Sugimoto
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| |
Collapse
|
7
|
Li G, Li Z, Shen J, Ma X, Zheng S, Zheng Y, Cao K, Dong N. Identifying and validating angiogenesis-related genes remodeling tumor microenvironment and suppressing immunotherapy response in gastric cancer. Gene 2024; 928:148796. [PMID: 39067544 DOI: 10.1016/j.gene.2024.148796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Angiogenesis significantly correlates with tumor microenvironment remodeling and immunotherapy response. Our study aimed to construct a prognostic angiogenesis-related model for gastric cancer. Using public database, a angiogenetic related five-gene (FGF1, GRB14, PAK3, PDGFRA, and PRKD1) model was identified. The top 25 % of patients were defined as high-risk, and the remaining as low-risk. The area under the curve for 1-, 3-, and 5-year overall survival (OS) were 0.646, 0.711, and 0.793, respectively. Survival analysis showed a better 10-year OS in low-risk patients in the construction (HR = 0.57, p = 0.002) and validation cohorts. GO and GSEA revealed that DEGs were enriched in extracellular matrix receptor interactions, dendritic cell antigen processing/presentation regulation, and angiogenesis pathways. CIBERSORT analysis revealed abundant naïve B cells, resting mast cells, resting CD4+ memory T cells, M2 macrophages, and monocytes in high-risk subgroups. The TIMER database showed strong positive correlations between PAK3, FGF1, PRKD1, and PDGFRA expression levels and the infiltration of CD4+ T cells and macrophages. The IOBR analysis revealed an immunosuppressive environment in the high-risk subgroup. Low-risk patients show a higher response rate to anti-PD1 treatment. TMA showed that FGF1 overexpression was associated with poor prognosis and CD4+ T cells and macrophage infiltration. In vivo study based on the 615 mice indicated that inhibiting FGF1 function could suppress tumor growth and enhance anti-PD1 therapeutic efficacy. In summary, we established a five-angiogenesis-related gene model to predict survival outcomes and immunotherapy responses in patients with gastric cancer and identified FGF1 as a prognostic gene and potential target for improving immune treatment.
Collapse
Affiliation(s)
- Guiyuan Li
- Department of Oncology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jing Shen
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaoqiang Zheng
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunlu Zheng
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - KaiMing Cao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ningxin Dong
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Zhao C, Zeng Y, Kang N, Liu Y. A new perspective on antiangiogenic antibody drug resistance: Biomarkers, mechanisms, and strategies in malignancies. Drug Dev Res 2024; 85:e22257. [PMID: 39245913 DOI: 10.1002/ddr.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance of malignant tumor leads to disease progression be the bottleneck in clinical treatment. Antiangiogenic therapy, which aims to "starve" the tumor by inhibiting angiogenesis, is one of the key strategies in clinical oncology treatments. Recently, dozens of investigational antibody drugs and biosimilars targeting angiogenesis have obtained regulatory approval for the treatment of various malignancies. Moreover, a new generation of bispecific antibodies based on the principle of antiangiogenesis are being advanced for clinical trial to overcome antiangiogenic resistance in tumor treatment or enhance the efficacy of monotherapy. Tumors often develop resistance to antiangiogenesis therapy, presenting as refractory and sometimes even resistant to new therapies, for which there are currently no effective management strategies. Thus, a detailed understanding of the mechanisms mediating resistance to antiangiogenesis antibodies is crucial for improving drug effectiveness and achieving a durable response to antiangiogenic therapy. In this review, we provide a novel perspective on the tumor microenvironment, including antibody structure, tumor stroma, and changes within tumor cells, to analyze the multifactorial reasons underlying resistance to antiangiogenesis antibodies. The review also enumerates biomarkers that indicate resistance and potential strategies for monitoring resistance. Furthermore, based on recent clinical and preclinical studies, we summarize potential strategies and translational clinical trials aimed at overcoming resistance to antiangiogenesis antibodies. This review provides a valuable reference for researchers and clinical practitioners involved in the development of new drugs or therapeutic strategies to overcome antiangiogenesis antibodies resistance.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yuan Zeng
- Department of Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd., Shanghai, People's Republic of China
| | - Nannan Kang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu Liu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
12
|
Singh M, Morris VK, Bandey IN, Hong DS, Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024; 10:598-609. [PMID: 38821852 DOI: 10.1016/j.trecan.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irfan N Bandey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Fujiwara M, Shimada W, Yokoyama M, Koyanagi A, Shintaku H, Fukuda S, Waseda Y, Tanaka H, Yoshida S, Fujii Y. Durable response to nivolumab rechallenge in a patient with metastatic clear cell renal cell carcinoma. IJU Case Rep 2024; 7:293-296. [PMID: 38966764 PMCID: PMC11221937 DOI: 10.1002/iju5.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction While immune checkpoint inhibitors represent the mainstream treatment for metastatic renal cell carcinoma, a standardized approach following immune checkpoint inhibitors remains unclear. We report a case of metastatic renal cell carcinoma treated with nivolumab rechallenge. Case presentation A 60-year-old male with metastatic melanoma was referred to the urology division due to right renal cancer. He was undergoing nivolumab treatment for metastatic melanoma. Radical nephrectomy revealed clear cell renal cell carcinoma, pT3a. Two months post-surgery, multiple metastases were identified. Despite subsequent administration of interferon-α, axitinib, and temsirolimus, the metastases progressed. Consequently, nivolumab rechallenge and palliative radiotherapy were initiated, resulting in a durable response for 20 months. However, disease progression occurred, and he died of cancer 4 years after nephrectomy. Conclusion This is the first report of nivolumab rechallenge in metastatic renal cell carcinoma. Although the utility remains unclear, this case suggests that some patients may benefit from nivolumab rechallenge.
Collapse
Affiliation(s)
| | - Wataru Shimada
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Minato Yokoyama
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Anri Koyanagi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroshi Shintaku
- Division of Surgical PathologyTokyo Medical and Dental University HospitalTokyoJapan
| | - Shohei Fukuda
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yuma Waseda
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Hajime Tanaka
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Soichiro Yoshida
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yasuhisa Fujii
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
14
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
15
|
Su J, Zhang J, Wu Y, Ni C, Ding Y, Cai Z, Xu M, Lai M, Wang J, Lin S, Lu J. Cabozantinib in combination with immune checkpoint inhibitors for renal cell carcinoma: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1322473. [PMID: 38694912 PMCID: PMC11061414 DOI: 10.3389/fphar.2024.1322473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Context Cabozantinib combined with immune checkpoint inhibitors (ICIs) has brought a new therapeutic effect for the medical treatment of renal cell carcinoma (RCC). Objectives We performed a meta-analysis of randomized controlled trials and single-arm trials to evaluate the efficacy and safety of cabozantinib plus ICIs in RCC. Methods We extracted data from PubMed, Cochrane, Medline and Embase databases, and rated literature quality through Cochrane risk of bias tool and MINORS. RevMan5.3 software was used to analyze the results of randomized controlled trials and single-arm trials. Results A total of 7 studies were included. Treatment with cabozantinib plus ICIs improved PFS [HR 0.75, (95%CI: 0.52, 1.08), p = 0.12] and the OS [HR 0.80, (95%CI: 0.60, 1.07), p = 0.13] in randomized controlled trials. Meanwhile, the result of the ORR in randomized controlled trials was [risk ratio (RR) 1.37, (95%CI: 1.21, 1.54), p < 0.00001] and in single-arm trials was [risk difference (RD) 0.49, (95%CI: 0.26, 0.71), p < 0.0001]. Conclusion Cabozantinib plus ICIs prolonged the PFS and OS, and improved ORR in patients with RCC. Our recommendation is to use cabozantinib plus ICIs to treat advanced RCC, and to continuous monitor and manage the drug-related adverse events. Systematic Review Registration identifier CRD42023455878.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jialin Zhang
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Ni
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyue Ding
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zelin Cai
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Xu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mingyang Lai
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jue Wang
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Li J, Li XL, Li CQ. Immunoregulation mechanism of VEGF signaling pathway inhibitors and its efficacy on the kidney. Am J Med Sci 2023; 366:404-412. [PMID: 37699444 DOI: 10.1016/j.amjms.2023.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Angiogenesis and immunosuppression are closely related pathophysiologic processes. Widely prescribed in malignant tumor and proliferative retinal lesions, VEGF signaling pathway inhibitors may cause hypertension and renal injury in some patients, presenting with proteinuria, nephrotic syndrome, renal failure and thrombotic microangiopathy. VEGF signaling pathway inhibitors block the action of both VEGF-A and VEGF-C. However, VEGF-A and VEGF-C produced by podocytes are vital to maintain the physiological function of glomerular endothelial cells and podocytes. There is still no effective treatment for kidney disease associated with VEGF signaling pathway inhibitors and some patients have progressive renal failure even after withdrawal of the drug. Recent studies reveal that blocking of VEGF-A and VEGF-C can activate CD4 +and CD8+ T cells, augment antigen-presenting function of dendritic cells, enhance cytotoxicity of macrophages and initiate complement cascade activation. VEGF and VEGFR are expressed in immune cells, which are involved in the immunosuppression and cross-talk among immune cells. This review summarizes the expression and function of VEGF-A and VEGF-C in the kidney. The current immunoregulation mechanisms of VEGF signaling pathway inhibitors are reviewed. Finally, combinate strategies are summarized to highlight the proposal for VEGF signaling pathway inhibitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| | - Xiao-Lin Li
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Chun-Qing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China
| |
Collapse
|
19
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
20
|
Park J, Kim JC, Lee M, Lee J, Kim YN, Lee YJ, Kim S, Kim SW, Park SH, Lee JY. Frequency of peripheral PD-1 +regulatory T cells is associated with treatment responses to PARP inhibitor maintenance in patients with epithelial ovarian cancer. Br J Cancer 2023; 129:1841-1851. [PMID: 37821637 PMCID: PMC10667217 DOI: 10.1038/s41416-023-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPis) are becoming the standard of care for epithelial ovarian cancer (EOC). Recently, clinical trials of triple maintenance therapy (PARPi+anti-angiogenic agent+anti-PD-1/L1) are actively ongoing. Here, we investigated the immunological effects of PARPi or triple maintenance therapy on T cells and their impact on clinical responses. METHODS We collected serial blood from EOC patients receiving PARPi therapy (cohort 1: PARPi, n = 49; cohort 2: olaparib+bevacizumab+pembrolizumab, n = 31). Peripheral T cells were analyzed using flow cytometry and compared according to the PARPi response. Progression-free survival (PFS) was assessed according to prognostic biomarkers identified in a comparative analysis. RESULTS Regulatory T cells (Tregs) were suppressed by PARPi therapy, whereas PD-1 was not significantly changed. Short PFS group exhibited a higher percentage of baseline PD-1+Tregs than long PFS group, and the patients with high percentage of PD-1+Tregs before treatment showed poor PFS in cohort 1. However, the expression of PD-1 on Tregs significantly decreased after receiving triple maintenance therapy, and the reduction in PD-1+Tregs was associated with superior PFS in cohort 2 (P = 0.0078). CONCLUSION PARPi suppresses Tregs, but does not affect PD-1 expression. Adding anti-PD-1 to PARPi decreases PD-1+Tregs, which have negative prognostic value for PARPi monotherapy.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHyang Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
22
|
Arrieta O, Bolaño-Guerra LM, Caballé-Pérez E, Lara-Mejía L, Turcott JG, Gutiérrez S, Lozano-Ruiz F, Cabrera-Miranda L, Arroyave-Ramírez AM, Maldonado-Magos F, Corrales L, Martín C, Gómez-García AP, Cacho-Díaz B, Cardona AF. Perilesional edema diameter associated with brain metastases as a predictive factor of response to radiotherapy in non-small cell lung cancer. Front Oncol 2023; 13:1251620. [PMID: 37916162 PMCID: PMC10616784 DOI: 10.3389/fonc.2023.1251620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Background Different prognostic scales exist in patients with brain metastasis, particularly in lung cancer. The Graded Prognostic Assessment for lung cancer using molecular markers (Lung-molGPA index) for brain metastases is a powerful prognostic tool that effectively identifies patients at different risks. However, these scales do not include perilesional edema diameter (PED) associated with brain metastasis. Current evidence suggests that PED might compromise the delivery and efficacy of radiotherapy to treat BM. This study explored the association between radiotherapy efficacy, PED extent, and gross tumor diameter (GTD). Aim The aim of this study was to evaluate the intracranial response (iORR), intracranial progression-free survival (iPFS), and overall survival (OS) according to the extent of PED and GT. Methods Out of 114 patients with BM at baseline or throughout the disease, 65 were eligible for the response assessment. The GTD and PED sum were measured at BM diagnosis and after radiotherapy treatment. According to a receiver operating characteristic (ROC) curve analysis, cutoff values were set at 27 mm and 17 mm for PED and GT, respectively. Results Minor PED was independently associated with a better iORR [78.8% vs. 50%, OR 3.71 (95% CI 1.26-10.99); p = 0.018] to brain radiotherapy. Median iPFS was significantly shorter in patients with major PED [6.9 vs. 11.8 months, HR 2.9 (95% CI 1.7-4.4); p < 0.001] independently of other prognostic variables like the Lung-molGPA and GTD. A major PED also negatively impacted the median OS [18.4 vs. 7.9 months, HR 2.1 (95% CI 1.4-3.3); p = 0.001]. Conclusion Higher PED was associated with an increased risk of intracranial progression and a lesser probability of responding to brain radiotherapy in patients with metastatic lung cancer. We encourage prospective studies to confirm our findings.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Laura Margarita Bolaño-Guerra
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Enrique Caballé-Pérez
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Luis Lara-Mejía
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Jenny G. Turcott
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Salvador Gutiérrez
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | | | - Luis Cabrera-Miranda
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | | | | | - Luis Corrales
- Oncology Department, Hospital San Juan de Dios, San José, Costa Rica
| | - Claudio Martín
- Thoracic Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina
| | - Ana Pamela Gómez-García
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Andrés F. Cardona
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center - Cancer Treatment and Research Cente (CTIC), Bogotá, Colombia
| |
Collapse
|
23
|
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 2023; 56:2218-2230. [PMID: 37708889 PMCID: PMC10591862 DOI: 10.1016/j.immuni.2023.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; AGORA Cancer Center, Swiss Cancer Center Leman, Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| | - Mauro Di Pilato
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
24
|
Wang L, Du C, Jiang B, Chen L, Wang Z. Adjusting the dose of traditional drugs combined with immunotherapy: reshaping the immune microenvironment in lung cancer. Front Immunol 2023; 14:1256740. [PMID: 37901223 PMCID: PMC10600379 DOI: 10.3389/fimmu.2023.1256740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Immunotherapy is currently the most promising clinical treatment for lung cancer, not only revolutionizing second-line therapy but now also approved for first-line treatment. However, its clinical efficiency is not high and not all patients benefit from it. Thus, finding the best combination strategy to expand anti-PD-1/PD-L1-based immunotherapy is now a hot research topic. The conventional use of chemotherapeutic drugs and targeted drugs inevitably leads to resistance, toxic side effects and other problems. Recent research, however, suggests that by adjusting the dosage of drugs and blocking the activation of mutational mechanisms that depend on acquired resistance, it is possible to reduce toxic side effects, activate immune cells, and reshape the immune microenvironment of lung cancer. Here, we discuss the effects of different chemotherapeutic drugs and targeted drugs on the immune microenvironment. We explore the effects of adjusting the dosing sequence and timing, and the mechanisms of such responses, and show how the effectiveness and reliability of combined immunotherapy provide improved treatment outcomes.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Changqi Du
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Bing Jiang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Brest P, Mograbi B, Pagès G, Hofman P, Milano G. Checkpoint inhibitors and anti-angiogenic agents: a winning combination. Br J Cancer 2023; 129:1367-1372. [PMID: 37735244 PMCID: PMC10628191 DOI: 10.1038/s41416-023-02437-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The combination of immune checkpoint inhibitors and anti-angiogenic agents is a promising new approach in cancer treatment. Immune checkpoint inhibitors block the signals that help cancer cells evade the immune system, while anti-angiogenic agents target the blood vessels that supply the tumour with nutrients and oxygen, limiting its growth. Importantly, this combination triggers synergistic effects based on molecular and cellular mechanisms, leading to better response rates and longer progression-free survival than treatment alone. However, these combinations can also lead to increased side effects and require close monitoring.
Collapse
Affiliation(s)
- Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France.
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Gilles Pagès
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
- Université Côte d'Azur, CHU-Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Scientific Valorisation Department, Nice, France
| |
Collapse
|
26
|
Eralp Y, Ates U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines (Basel) 2023; 11:1545. [PMID: 37896948 PMCID: PMC10610904 DOI: 10.3390/vaccines11101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.
Collapse
Affiliation(s)
- Yesim Eralp
- Maslak Acıbadem Hospital, Acıbadem University, Istanbul 34398, Turkey
| | - Utku Ates
- Biotech4life Tissue and Cell R&D Center, Stembio Cell and Tissue Technologies, Inc., Istanbul 34398, Turkey
| |
Collapse
|
27
|
Attili I, Passaro A, Corvaja C, Trillo Aliaga P, Del Signore E, Spitaleri G, de Marinis F. Immune checkpoint inhibitors in EGFR-mutant non-small cell lung cancer: A systematic review. Cancer Treat Rev 2023; 119:102602. [PMID: 37481836 DOI: 10.1016/j.ctrv.2023.102602] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Since their first introduction in clinical practice, immune checkpoint inhibitors showed limited benefit in patients with NSCLC harboring EGFR mutations. With the rationale of increasing immune activation, combinatorial ICI strategies have been evaluated also in this subgroup of patients. METHODS We performed a systematic review on efficacy of ICI-based strategies in EGFR-mutant NSCLC according to most updated evidence. RESULTS Overall, ICI monotherapy and ICI plus chemotherapy confirm to be ineffective in EGFR-mutant NSCLC, whereas the combination of ICI with antiangiogenic and chemotherapy showed promising results. Limited data are available with alternative ICI combination strategies, driven by strong biological rationale of modulating the tumor immune microenvironment. CONCLUSIONS To date, the available evidence do not support the use of ICI in patients with NSCLC harboring EGFR mutations. Clinical trials are ongoing to define which is the best timing and exploring novel combinations with ICI in this specific disease.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy.
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
28
|
Sammarco E, Manfredi F, Nuzzo A, Ferrari M, Bonato A, Salfi A, Serafin D, Zatteri L, Antonuzzo A, Galli L. Immune Checkpoint Inhibitor Rechallenge in Renal Cell Carcinoma: Current Evidence and Future Directions. Cancers (Basel) 2023; 15:3172. [PMID: 37370782 DOI: 10.3390/cancers15123172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitor-based therapies represent the current standard of care in the first-line treatment of advanced renal cell carcinoma. Despite a clear benefit in survival outcomes, a considerable proportion of patients experience disease progression; prospective data about second-line therapy after first-line treatment with immune checkpoint inhibitors are limited to small phase II studies. As with other solid tumors (such as melanoma and non-small cell lung cancer), preliminary data about the clinical efficacy of rechallenge of immunotherapy (alone or in combination with other drugs) in renal cell carcinoma are beginning to emerge. Nevertheless, the role of rechallenge in immunotherapy in this setting of disease remains unclear and cannot be considered a standard of care; currently some randomized trials are exploring this approach in patients with metastatic renal cell carcinoma. The aim of our review is to summarize main evidence available in the literature concerning immunotherapy rechallenge in renal carcinoma, especially focusing on biological rationale of resistance to immune checkpoint inhibitors, on the published data of clinical efficacy and on future perspectives.
Collapse
Affiliation(s)
- Enrico Sammarco
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Fiorella Manfredi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Marco Ferrari
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Alessia Salfi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Debora Serafin
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Zatteri
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Andrea Antonuzzo
- Unit of Medical Oncology 1, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Galli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| |
Collapse
|
29
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
30
|
Hagiwara S, Nishida N, Kudo M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2070. [PMID: 37046727 PMCID: PMC10093619 DOI: 10.3390/cancers15072070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) aim to induce immune responses against tumors and are less likely to develop drug resistance than molecularly targeted drugs. In addition, they are characterized by a long-lasting antitumor effect. However, since its effectiveness depends on the tumor's immune environment, it is essential to understand the immune environment of hepatocellular carcinoma to select ICI therapeutic indications and develop biomarkers. A network of diverse cellular and humoral factors establishes cancer immunity. By analyzing individual cases and classifying them from the viewpoint of tumor immunity, attempts have been made to select the optimal therapeutic drug for immunotherapy, including ICIs. ICI treatment is discussed from the viewpoints of immune subclass of HCC, Wnt/β-catenin mutation, immunotherapy in NASH-related HCC, the mechanism of HPD onset, and HBV reactivation.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | | | | |
Collapse
|
31
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
32
|
Tumor Vasculature as an Emerging Pharmacological Target to Promote Anti-Tumor Immunity. Int J Mol Sci 2023; 24:ijms24054422. [PMID: 36901858 PMCID: PMC10002465 DOI: 10.3390/ijms24054422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor vasculature abnormality creates a microenvironment that is not suitable for anti-tumor immune response and thereby induces resistance to immunotherapy. Remodeling of dysfunctional tumor blood vessels by anti-angiogenic approaches, known as vascular normalization, reshapes the tumor microenvironment toward an immune-favorable one and improves the effectiveness of immunotherapy. The tumor vasculature serves as a potential pharmacological target with the capacity of promoting an anti-tumor immune response. In this review, the molecular mechanisms involved in tumor vascular microenvironment-modulated immune reactions are summarized. In addition, the evidence of pre-clinical and clinical studies for the combined targeting of pro-angiogenic signaling and immune checkpoint molecules with therapeutic potential are highlighted. The heterogeneity of endothelial cells in tumors that regulate tissue-specific immune responses is also discussed. The crosstalk between tumor endothelial cells and immune cells in individual tissues is postulated to have a unique molecular signature and may be considered as a potential target for the development of new immunotherapeutic approaches.
Collapse
|
33
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
34
|
Brackenier C, Kinget L, Cappuyns S, Verslype C, Beuselinck B, Dekervel J. Unraveling the Synergy between Atezolizumab and Bevacizumab for the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:348. [PMID: 36672297 PMCID: PMC9856647 DOI: 10.3390/cancers15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) with antiangiogenic properties, such as sorafenib, have been the standard choice to systemically treat hepatocellular carcinoma for over a decade. More recently, encouraging results were obtained using immune checkpoint inhibitors, although head-to-head comparisons with sorafenib in phase 3 trials could not demonstrate superiority in terms of overall survival. The IMbrave150 was a breakthrough study that resulted in atezolizumab/bevacizumab, a combination of an antiangiogenic and an immune checkpoint inhibitor, as a new standard of care for advanced HCC. This review discusses the mode of action, clinical efficacy, and biomarker research for both drug classes and for the combination therapy. Moreover, the synergy between atezolizumab and bevacizumab is highlighted, unraveling pathophysiological mechanisms underlying an enhanced anticancer immunity by changing the immunosuppressed to a more immunoreactive tumor microenvironment (TME). This is achieved by upregulation of antigen presentation, upregulation of T-cell proliferation, trafficking and infiltration, impairing recruitment, and proliferation of immunosuppressive cells in the TME. However, more insights are needed to identify biomarkers of response that may improve patient selection and outcome.
Collapse
Affiliation(s)
- Cedric Brackenier
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Sarah Cappuyns
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chris Verslype
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Dekervel
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Chen M, Xu Y, Zhao J, Liu X, Liu X, Zhang D, Shi Y, Zhang L, Zhong W, Wang M. Comparison of Chemotherapy Plus Pembrolizumab vs. Chemotherapy Alone in EGFR-Mutant Non-small-Cell Lung Cancer Patients. Clin Lung Cancer 2022; 24:278-286. [PMID: 36635116 DOI: 10.1016/j.cllc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Platinum doublet chemotherapy is the standard of care in patients with non-small-cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutation who had disease progression after tyrosine kinase inhibitor (TKI). We aimed to assess immune checkpoint inhibitors efficacy in EGFR-mutant advanced NSCLC. MATERIALS AND METHODS We retrospectively reviewed the data of sensitive EGFR-mutant NSCLC patients who progressed after EGFR-TKIs and received platinum doublet chemotherapy plus immunotherapy between 2015 and 2021. Efficacy outcomes, including overall response rate, progression-free survival, and overall survival, were assessed and compared with those of patients who had received platinum-based doublet chemotherapy. RESULTS Of the total 869 patients, 82 treated with pembrolizumab and chemotherapy and 82 with only chemotherapy were selected. The median progression-free survival in patients administered pembrolizumab was significantly longer than those not administered pembrolizumab (6.7 months; 95% confidence interval [CI] 5.0-8.5 vs. 4.2 months; 95% CI 3.3-5.0, hazard ratio [HR] 0.64, 95% CI 0.46-0.89, P = .0076). Improved median overall survival was also observed in patients receiving pembrolizumab plus chemotherapy (26.7 [95% CI 22.6-30.8] vs. 13.4 months [95% CI 10.4-16.4], HR, 0.49 [95% CI 0.31-0.75], P = .0052). In addition, the overall response rate was higher in patients treated with than patients treated without pembrolizumab (34.1% and 20.7%, respectively). CONCLUSION The combination of pembrolizumab with chemotherapy is associated with improved efficacy and survival in patients with EGFR-mutant NSCLC after TKI resistance, but these findings need to be confirmed in further prospective studies.
Collapse
Affiliation(s)
- Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Xiangning Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Dongming Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Yuequan Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China..
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Cheng District, Beijing, China
| |
Collapse
|
36
|
Yuan M, Zhai Y, Hui Z. Application basis of combining antiangiogenic therapy with radiotherapy and immunotherapy in cancer treatment. Front Oncol 2022; 12:978608. [PMID: 36439496 PMCID: PMC9681994 DOI: 10.3389/fonc.2022.978608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/24/2022] [Indexed: 10/01/2023] Open
Abstract
How to further optimize the combination of radiotherapy and immunotherapy is among the current hot topics in cancer treatment. In addition to adopting the preferred dose-fractionation of radiotherapy or the regimen of immunotherapy, it is also very promising to add antiangiogenic therapy to this combination. We expound the application basis of cancer radiotherapy combined with immunotherapy and antiangiogenic therapy.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Saoudi González N, Castet F, Élez E, Macarulla T, Tabernero J. Current and emerging anti-angiogenic therapies in gastrointestinal and hepatobiliary cancers. Front Oncol 2022; 12:1021772. [PMID: 36300092 PMCID: PMC9589420 DOI: 10.3389/fonc.2022.1021772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Gastrointestinal tumours are a heterogeneous group of neoplasms that arise in the gastrointestinal tract and hepatobiliary system. Their incidence is rising globally and they currently represent the leading cause of cancer-related mortality worldwide. Anti-angiogenic agents have been incorporated into the treatment armamentarium of most of these malignancies and have improved survival outcomes, most notably in colorectal cancer and hepatocellular carcinoma. New treatment combinations with immunotherapies and other agents have led to unprecedented benefits and are revolutionising patient care. In this review, we detail the mechanisms of action of anti-angiogenic agents and the preclinical rationale underlying their combinations with immunotherapies. We review the clinical evidence supporting their use across all gastrointestinal tumours, with a particular emphasis on colorectal cancer and hepatocellular carcinoma. We discuss available biomarkers of response to these therapies and their utility in routine clinical practice. Finally, we summarise ongoing clinical trials in distinct settings and highlight the preclinical rationale supporting novel combinations.
Collapse
Affiliation(s)
| | | | | | - Teresa Macarulla
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
38
|
Ribatti D. Immunosuppressive effects of vascular endothelial growth factor (Review). Oncol Lett 2022; 24:369. [PMID: 36238855 PMCID: PMC9494354 DOI: 10.3892/ol.2022.13489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) serves a critical role in vasculogenesis, angiogenesis, tumor, inflammatory angiogenesis and lymphangiogenesis. Since 2004, bevacizumab (Avastin), a humanized anti-VEGFA monoclonal antibody, has been approved for the treatment of non-small cell lung, breast, kidney and ovarian cancer in combination with standard chemotherapy. VEGF has been demonstrated to be important in the clinic as a therapeutic target in the anti-angiogenic approach to cancer therapy. The targeting of VEGF, together with immunotherapy, has been reported to be able to reverse the immunosuppressive effects of VEGF. A positive correlation between VEGF expression and the reduced survival rates of patients with cancer has also been demonstrated. Furthermore, increased VEGF expression can lead to immune suppression via the inhibition of dendritic cell maturation, the reduction of T-cell tumor infiltration and the promotion of inhibitory cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari Medical School, I-70124 Bari, Italy
| |
Collapse
|
39
|
Al-Mterin MA, Elkord E. Myeloid-derived suppressor cells in colorectal cancer: prognostic biomarkers and therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:497-510. [PMID: 36081407 PMCID: PMC9448663 DOI: 10.37349/etat.2022.00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells, which are expanded in most cancer patients. MDSCs suppress host immune responses, leading to cancer growth and progression. Several studies demonstrated that there was a relationship between levels of MDSCs and tumorigenesis in colorectal cancer (CRC) patients. MDSCs are now being investigated for their role as possible therapeutic targets in cancer treatment. This review summarizes available studies that investigated MDSC expansion in CRC patients, as well as their role in CRC tumorigenesis, prognosis, and targeting. Based on the available studies, there is a possible relationship between high levels of MDSCs and CRC progression. Additionally, targeting MDSCs in CRC patients selectively represents a significant challenge for the development of targeted treatments. Targeting of MDSCs could be exploited in different ways including MDSC depletion, inhibition of MDSC function and recruitment, and enhancing MDSC differentiation. Overall, MDSCs could be exploited as prognostic biomarkers and potential therapeutic targets in CRC.
Collapse
Affiliation(s)
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, M5 4WT Manchester, UK
| |
Collapse
|
40
|
Nakagawa N, Kawakami M. Choosing the optimal immunotherapeutic strategies for non-small cell lung cancer based on clinical factors. Front Oncol 2022; 12:952393. [PMID: 36033471 PMCID: PMC9414869 DOI: 10.3389/fonc.2022.952393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of advanced non-small cell lung cancer (NSCLC) has changed dramatically since the emergence of immune checkpoint inhibitors (ICIs). Although some patients achieve long survival with relatively mild toxicities, not all patients experience such benefits from ICI treatment. There are several ways to use ICIs in NSCLC patients, including monotherapy, combination immunotherapy, and combination chemoimmunotherapy. Decision-making in the selection of an ICI treatment regimen for NSCLC is complicated partly because of the absence of head-to-head prospective comparisons. Programmed death-ligand 1 (PD-L1) expression is currently considered a standard biomarker for predicting the efficacy of ICIs, although some limitations exist. In addition to the PD-L1 tumor proportion score, many other clinical factors should also be considered to determine the optimal treatment strategy for each patient, including age, performance status, histological subtypes, comorbidities, status of oncogenic driver mutation, and metastatic sites. Nevertheless, evidence of the efficacy and safety of ICIs with some specific conditions of these factors is insufficient. Indeed, patients with poor performance status, oncogenic driver mutations, or interstitial lung disease have frequently been set as ineligible in randomized clinical trials of NSCLC. ICI use in these patients is controversial and remains to be discussed. It is important to select patients for whom ICIs can benefit the most from these populations. In this article, we review previous reports of clinical trials or experience in using ICIs in NSCLC, focusing on several clinical factors that are associated with treatment outcomes, and then discuss the optimal ICI treatment strategies for NSCLC.
Collapse
|
41
|
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 2022; 72:372-401. [PMID: 35472088 DOI: 10.3322/caac.21728] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents approximately 10% of all cancers and is the second most common cause of cancer deaths. Initial clinical presentation as metastatic CRC (mCRC) occurs in approximately 20% of patients. Moreover, up to 50% of patients with localized disease eventually develop metastases. Appropriate clinical management of these patients is still a challenging medical issue. Major efforts have been made to unveil the molecular landscape of mCRC. This has resulted in the identification of several druggable tumor molecular targets with the aim of developing personalized treatments for each patient. This review summarizes the improvements in the clinical management of patients with mCRC in the emerging era of precision medicine. In fact, molecular stratification, on which the current treatment algorithm for mCRC is based, although it does not completely represent the complexity of this disease, has been the first significant step toward clinically informative genetic profiling for implementing more effective therapeutic approaches. This has resulted in a clinically relevant increase in mCRC disease control and patient survival. The next steps in the clinical management of mCRC will be to integrate the comprehensive knowledge of tumor gene alterations, of tumor and microenvironment gene and protein expression profiling, of host immune competence as well as the application of the resulting dynamic changes to a precision medicine-based continuum of care for each patient. This approach could result in the identification of individual prognostic and predictive parameters, which could help the clinician in choosing the most appropriate therapeutic program(s) throughout the entire disease journey for each patient with mCRC. CA Cancer J Clin. 2022;72:000-000.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Division of Medical Oncology, IRCCS Foundation Home for the Relief of Suffering, San Giovanni Rotondo, Italy
| | - Giulia Martini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Institute of Oncology, University of Vic/Central University of Catalonia, Barcelona, Spain
- Oncology Institute of Barcelona-Quironsalud, Biomedical Research Center in Cancer, Barcelona, Spain
| | - Andres Cervantes
- Medical Oncology Department, Instituto de Investigación Sanitaria Valencia Biomedical Research Institute, University of Valencia, Valencia, Spain
- Carlos III Institute of Health, Biomedical Research Center in Cancer, Madrid, Spain
| |
Collapse
|
42
|
Complementary roles of surgery and systemic treatment in clear cell renal cell carcinoma. Nat Rev Urol 2022; 19:391-418. [PMID: 35546184 DOI: 10.1038/s41585-022-00592-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Standard-of-care management of renal cell carcinoma (RCC) indisputably relies on surgery for low-risk localized tumours and systemic treatment for poor-prognosis metastatic disease, but a grey area remains, encompassing high-risk localized tumours and patients with metastatic disease with a good-to-intermediate prognosis. Over the past few years, results of major practice-changing trials for the management of metastatic RCC have completely transformed the therapeutic options for this disease. Treatments targeting vascular endothelial growth factor (VEGF) have been the mainstay of therapy for metastatic RCC in the past decade, but the advent of immune checkpoint inhibitors has revolutionized the therapeutic landscape in the metastatic setting. Results from several pivotal trials have shown a substantial benefit from the combination of VEGF-directed therapy and immune checkpoint inhibition, raising new hopes for the treatment of high-risk localized RCC. The potential of these therapeutics to facilitate the surgical extirpation of the tumour in the neoadjuvant setting or to improve disease-free survival in the adjuvant setting has been investigated. The role of surgery for metastatic RCC has been redefined, with results of large trials bringing into question the paradigm of upfront cytoreductive nephrectomy, inherited from the era of cytokine therapy, when initial extirpation of the primary tumour did show clinical benefits. The potential benefits and risks of deferred surgery for residual primary tumours or metastases after partial response to checkpoint inhibitor treatment are also gaining interest, considering the long-lasting effects of these new drugs, which encourages the complete removal of residual masses.
Collapse
|
43
|
Borchiellini D, Maillet D. Clinical activity of immunotherapy-based combination first-line therapies for metastatic renal cell carcinoma: the right treatment for the right patient. Bull Cancer 2022; 109:2S4-2S18. [DOI: 10.1016/s0007-4551(22)00234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Zhang Y, Brekken RA. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol 2022; 111:1269-1286. [DOI: 10.1002/jlb.5ru0222-082r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
- Current affiliation: Department of Medical Oncology Dana‐Farber Cancer Institute Boston Massachusetts USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
45
|
Ben Khaled N, Seidensticker M, Ricke J, Mayerle J, Oehrle B, Rössler D, Teupser D, Ehmer U, Bitzer M, Waldschmidt D, Fuchs M, Reuken PA, Lange CM, Wege H, Kandulski A, Dechêne A, Venerito M, Berres ML, Luedde T, Kubisch I, Reiter FP, De Toni EN. Atezolizumab and bevacizumab with transarterial chemoembolization in hepatocellular carcinoma: the DEMAND trial protocol. Future Oncol 2022; 18:1423-1435. [PMID: 35081747 DOI: 10.2217/fon-2021-1261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The combination of the anti-PD-L1 antibody atezolizumab and the anti-VEGF bevacizumab is the first approved immunotherapeutic regimen for first-line therapy in patients with unresectable hepatocellular carcinoma (HCC), currently approved in more than 80 countries. The efficacy and tolerability of this regimen suggest that the use of atezolizumab + bevacizumab could be extended to the treatment of patients with intermediate-stage HCC in combination with transarterial chemoembolization (TACE). The authors describe the rationale and design of the DEMAND study. This investigator-initiated, multicenter, randomized phase II study is the first trial to evaluate the safety and efficacy of atezolizumab + bevacizumab prior to or in combination with TACE in patients with intermediate-stage HCC. The primary end point is the 24-month survival rate; secondary end points include objective response rate, progression-free survival, safety and quality of life. Clinical Trial Registration: NCT04224636 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Bettina Oehrle
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Daniel Rössler
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Ursula Ehmer
- Internal Medicine II, Klinikum rechts der Isar, TU München, Munich, 81675, Germany
| | - Michael Bitzer
- Department for Internal Medicine I & Center for Personalized Medicine, Eberhard-Karls University, Tübingen, 72016, Germany
| | - Dirk Waldschmidt
- Department of Gastroenterology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Martin Fuchs
- Department of Gastroenterology, Hepatology & GI-Oncology, Munich Hospital Bogenhausen, Munich, 81925, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Jena, 07743, Germany
| | - Christian M Lange
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
- Department of Gastroenterology & Hepatology, University Hospital Essen, Essen, 45147, Germany
| | - Henning Wege
- Cancer Center Esslingen, Medical Center Esslingen, Esslingen, 73730, Germany
| | - Arne Kandulski
- Department of Gastroenterology, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Alexander Dechêne
- Department of Gastroenterology, Hepatology & Endocrinology, General Hospital Nuremberg, Nuremberg, 90419, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology & Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, 39120, Germany
| | - Marie-Luise Berres
- Medical Department III, University Hospital of Aachen, Aachen, 52074, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology & Infectious Diseases, University Hospital of Düsseldorf, Düsseldorf, 40225, Germany
| | - Ilja Kubisch
- Department of Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, Metabolic Disorders, Oncology, Klinikum Chemnitz gGmbH, Chemnitz, 09116, Germany
| | - Florian P Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Enrico N De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| |
Collapse
|
46
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
47
|
Fucikova J, Palova-Jelinkova L, Klapp V, Holicek P, Lanickova T, Kasikova L, Drozenova J, Cibula D, Álvarez-Abril B, García-Martínez E, Spisek R, Galluzzi L. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 2022; 8:426-444. [PMID: 35181272 DOI: 10.1016/j.trecan.2022.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
At odds with other solid tumors, epithelial ovarian cancer (EOC) is poorly sensitive to immune checkpoint inhibitors (ICIs), largely reflecting active immunosuppression despite CD8+ T cell infiltration at baseline. Accumulating evidence indicates that both conventional chemotherapeutics and targeted anticancer agents commonly used in the clinical management of EOC not only mediate a cytostatic and cytotoxic activity against malignant cells, but also drive therapeutically relevant immunostimulatory or immunosuppressive effects. Here, we discuss such an immunomodulatory activity, with a specific focus on molecular and cellular pathways that can be harnessed to develop superior combinatorial regimens for clinical EOC care.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| | - Lenka Palova-Jelinkova
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Peter Holicek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Tereza Lanickova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Beatriz Álvarez-Abril
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain; Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Mettu NB, Ou FS, Zemla TJ, Halfdanarson TR, Lenz HJ, Breakstone RA, Boland PM, Crysler OV, Wu C, Nixon AB, Bolch E, Niedzwiecki D, Elsing A, Hurwitz HI, Fakih MG, Bekaii-Saab T. Assessment of Capecitabine and Bevacizumab With or Without Atezolizumab for the Treatment of Refractory Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2149040. [PMID: 35179586 PMCID: PMC8857687 DOI: 10.1001/jamanetworkopen.2021.49040] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Cotargeting vascular endothelial growth factor and programmed cell death 1 or programmed cell death ligand 1 may produce anticancer activity in refractory metastatic colorectal cancer (mCRC). The clinical benefit of atezolizumab combined with chemotherapy and bevacizumab remains unclear for the treatment of mCRC. OBJECTIVES To assess whether the addition of atezolizumab to capecitabine and bevacizumab therapy improves progression-free survival (PFS) among patients with refractory mCRC and to perform exploratory analyses among patients with microsatellite-stable (MSS) disease and liver metastasis. DESIGN, SETTING, AND PARTICIPANTS This double-blind phase 2 randomized clinical trial enrolled 133 patients between September 25, 2017, and June 28, 2018 (median duration of follow-up for PFS, 20.9 months), with data cutoff on May 4, 2020. The study was conducted at multiple centers through the Academic and Community Cancer Research United network. Adult patients with mCRC who experienced disease progression while receiving fluoropyrimidine, oxaliplatin, irinotecan, bevacizumab, and anti-epidermal growth factor receptor antibody therapy (if the patient had a RAS wild-type tumor) were included. INTERVENTIONS Patients were randomized (2:1) to receive capecitabine (850 or 1000 mg/m2) twice daily on days 1 to 14 and bevacizumab (7.5 mg/kg) on day 1 plus either atezolizumab (1200 mg; investigational group) or placebo (placebo group) on day 1 of each 21-day cycle. MAIN OUTCOMES AND MEASURES The primary end point was PFS; 110 events were required to detect a hazard ratio (HR) of 0.65 with 80% power (1-sided α = .10). Secondary end points were objective response rate, overall survival (OS), and toxic effects. RESULTS Of 133 randomized patients, 128 individuals (median age, 58.0 years [IQR, 51.0-65.0 years]; 77 men [60.2%]) were assessed for efficacy (82 in the investigational group and 46 in the placebo group). Overall, 15 patients (11.7%) self-identified as African American or Black, 8 (6.3%) as Asian, 1 (0.8%) as Pacific Islander, 101 (78.9%) as White, 1 (0.8%) as multiple races (Asian, Native Hawaiian/Pacific Islander, and White), and 2 (1.6%) as unknown race or unsure of race. Microsatellite-stable disease was present in 110 patients (69 in the investigational group and 41 in the placebo group). Median PFS was 4.4 months (95% CI, 4.1-6.4 months) in the investigational group and 3.6 months (95% CI, 2.2-6.2 months) in the placebo group (1-sided log-rank P = .07, a statistically significant result; HR, 0.75; 95% CI, 0.52-1.09). Among patients with MSS and proficient mismatch repair, the HR for PFS was 0.66 (95% CI, 0.44-0.99). The most common grade 3 or higher treatment-related adverse events in the investigational vs placebo groups were hypertension (6 patients [7.0%] vs 2 patients [4.3%]), diarrhea (6 patients [7.0%] vs 2 patients [4.3%]), and hand-foot syndrome (6 patients [7.0%] vs 2 patients [4.3%]). One treatment-related death occurred in the investigational group. In the investigational group, the response rate was higher among patients without liver metastasis (3 of 13 individuals [23.1%]) vs with liver metastasis (4 of 69 individuals [5.8%]). The benefit of atezolizumab for PFS and OS was greater among patients without vs with liver metastasis (primary analysis of PFS: HR, 0.63 [95% CI, 0.27-1.47] vs 0.77 [95% CI, 0.51-1.17]; OS: HR, 0.33 [95% CI, 0.11-1.02] vs 1.14 [95% CI, 0.72-1.81]). CONCLUSIONS AND RELEVANCE In this randomized clinical trial, the addition of atezolizumab to capecitabine and bevacizumab therapy provided limited (ie, not clinically meaningful) clinical benefit. Patients with MSS and proficient mismatch repair tumors and those without liver metastasis benefited more from dual inhibition of the vascular endothelial growth factor and programmed cell death 1 or programmed cell death ligand 1 pathways. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02873195.
Collapse
Affiliation(s)
- Niharika B. Mettu
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Fang-Shu Ou
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Tyler J. Zemla
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | - Rimini A. Breakstone
- Department of Medical Oncology, Lifespan Cancer Institute, Brown University, Providence, Rhode Island
| | - Patrick M. Boland
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Oxana V. Crysler
- Department of Medical Oncology, University of Michigan, Ann Arbor
| | - Christina Wu
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Andrew B. Nixon
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Emily Bolch
- Department of Gastrointestinal Oncology Clinical Research, Duke University Medical Center, Durham, North Carolina
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Alicia Elsing
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Herbert I. Hurwitz
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Product Development Oncology, Genentech Inc, South San Francisco, California
| | - Marwan G. Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | | |
Collapse
|
49
|
PD-L1: Can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer? Int Immunopharmacol 2021; 103:108484. [PMID: 34954558 DOI: 10.1016/j.intimp.2021.108484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common in the female genital tract and remains a leading cause that threatens the health and lives of women worldwide, although preventive vaccines and early diagnosis have reduced mortality. While treatment by operation and chemoradiotherapy for early-stage patients achieve good outcomes, the great majority of cervical cancers caused by the human papilloma virus (HPV) make immunotherapy realizable for patients with advanced and recurrent cervical cancer. To date, some clinical trials of checkpoint immunotherapy in cervical cancer have indicated significant benefits of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors, providing strong evidence for PD-1/PD-L1 as a therapeutic target. In this review article, we discuss the role of PD-L1 and the application of PD-L1 inhibitors in cervical cancer, with the aim of providing direction for future research.
Collapse
|
50
|
Chen Y, Zheng X, Wu C. The Role of the Tumor Microenvironment and Treatment Strategies in Colorectal Cancer. Front Immunol 2021; 12:792691. [PMID: 34925375 PMCID: PMC8674693 DOI: 10.3389/fimmu.2021.792691] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) has the second highest mortality rate among all cancers worldwide. Surgery, chemotherapy, radiotherapy, molecular targeting and other treatment methods have significantly prolonged the survival of patients with CRC. Recently, the emergence of tumor immunotherapy represented by immune checkpoint inhibitors (ICIs) has brought new immunotherapy options for the treatment of advanced CRC. As the efficacy of ICIs is closely related to the tumor immune microenvironment (TME), it is necessary to clarify the relationship between the immune microenvironment of CRC and the efficacy of immunotherapy to ensure that the appropriate drugs are selected. We herein review the latest research progress in the immune microenvironment and strategies related to immunotherapy for CRC. We hope that this review helps in the selection of appropriate treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Yaping Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|