1
|
Emmers M, Welters MJP, Dietz MV, Santegoets SJ, Boekesteijn S, Stolk A, Loof NM, Dumoulin DW, Geel AL, Steinbusch LC, Valentijn ARPM, Cohen D, de Miranda NFCC, Smit EF, Gelderblom H, van Hall T, Aerts JG, van der Burg SH. TEIPP-vaccination in checkpoint-resistant non-small cell lung cancer: a first-in-human phase I/II dose-escalation study. Nat Commun 2025; 16:4958. [PMID: 40436854 PMCID: PMC12119936 DOI: 10.1038/s41467-025-60281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Functional loss of the intracellular peptide Transporter associated with Antigen Processing (TAP) fosters resistance to T-cell based immunotherapy. We discovered the presentation of an alternative set of shared tumor antigens on such escaped cancers and developed a LRPAP1 synthetic long peptide vaccine (TEIPP24) to stimulate T-cell immunity. In this first-in-human multicenter dose-escalation study with extension cohort, HLA-A*0201-positive patients with non-small cell lung cancer progressive after checkpoint blockade were treated with TEIPP24 (NCT05898763). Dose escalation followed an adapted 3 + 3 scheme where in each cohort six patients received the TEIPP24 peptide emulsified in Montanide ISA-51 at either 20, 40, 100 µg of peptide, subcutaneously injected three times every three weeks in alternating limbs. The extension cohort of six patients received the highest safe dose of TEIPP24 combined with the PD-1 checkpoint blocker pembrolizumab. The primary objectives of the study were safety, tolerability and immunogenicity of the TEIPP24 vaccine. Secondary objectives included the evaluation of specificity and immune modulatory effects of the vaccine, antigen and immune status of the patients, progression free (PFS) and overall survival (OS) and radiological tumor response rate and duration. A total of 26 patients were enrolled across 2 institutions. Treatment was well tolerated, and vaccine-induced LRPAP1-specific CD8+ T cells were detected in 20 of 24 evaluable patients (83%). In 13 of 21 tested cases (62%) vaccine-specific CD4+ T cells were also detected. The increase in activated polyfunctional CD8+ effector T cells was influenced by vaccine dose, number of vaccines administered, induction of a CD4+ T-cell response, and the pre-existing frequency of monocytic cells. Co-administration of pembrolizumab resulted in the ex-vivo detection of activated (HLA-DR+ , PD-1+ , ICOS+ ) LRPAP1-specific CD8+ T cells. The observation of one PR, 8 stable diseases and 2 mixed responses in 24 evaluable patients after vaccination, correlated with a stronger vaccine-induced CD8+ T-cell response to this single epitope from this new class of cancer antigens.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- Female
- Male
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Middle Aged
- Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antigens, Neoplasm/immunology
- Vaccination/methods
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Oleic Acids
- Mannitol/analogs & derivatives
- CD8-Positive T-Lymphocytes/immunology
- Immunotherapy/methods
Collapse
Affiliation(s)
- Mitchell Emmers
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Michelle V Dietz
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Boekesteijn
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk Stolk
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikki M Loof
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie L Geel
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lauri C Steinbusch
- Department of Pulmonary Disease, Leiden University Medical Center, Leiden, The Netherlands
| | - A Rob P M Valentijn
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Egbert F Smit
- Department of Pulmonary Disease, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Shiota M, Tanegashima T, Tatarano S, Kamoto T, Matsuyama H, Sakai H, Igawa T, Kamba T, Fujimoto N, Yokomizo A, Naito S, Eto M. The effect of human leukocyte antigen genotype on survival in advanced prostate cancer treated with primary androgen deprivation therapy: the KYUCOG-1401-A study. Prostate Cancer Prostatic Dis 2025; 28:193-201. [PMID: 38368501 DOI: 10.1038/s41391-024-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Immune editing, in which human leukocyte antigens (HLA) have critical roles, has been suggested to shape the landscape of human cancer. This study prospectively investigated whether HLA gene zygosity is associated with the prognosis of primary androgen deprivation therapy in advanced prostate cancer. METHODS KYUCOG-1401-A was conducted in conjunction with a prospective clinical trial (KYUCOG-1401). Among the patients enrolled in KYUCOG-1401 and treated with primary androgen deprivation therapy, only Japanese patients were included. HLA genotypes of HLA-A, B, C, DRB1, DQB1, and DPB1 were determined. The effect of divergence of HLA genotypes on time to progression, prostate cancer-specific survival, and overall survival was evaluated. RESULTS Among 127 patients, homozygosity for HLA-DRB1 (HR, 95% CI; 4.05, 1.54-10.7, P = 0.0047) and HLA-DQB1 (HR, 95% CI; 3.75, 1.47-9.58, P = 0.0058) was associated with an increased risk of prostate cancer-specific mortality. Patients with higher HLA evolutionary divergence scores at HLA-DQB1 (HR, 95% CI; 0.90, 0.82-0.97, P = 0.0093) had lower risks of prostate cancer-specific mortality. Androgen-responsive gene sets were upregulated in CD4low and CD8low tumors in the prostate cancer cohort, but not in the bladder and kidney cancer cohorts. CONCLUSIONS This study suggested that the diversity of HLA-II loci including HLA-DRB1 and HLA-DQB1 plays an important role in advanced prostate cancer survival, contributing to improved risk stratification in advanced prostate cancer. Moreover, it was shown that CD4+ T cells play an important role in androgen deprivation therapy, suggesting that immunotherapy targeting CD4+ T cells is promising for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsukasa Igawa
- Department of Urology, School of Medicine, Kurume University, Kurume, Japan
| | - Tomomi Kamba
- Department of Urology, Kumamoto University, Kumamoto, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akira Yokomizo
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Garrido MA, Navarro-Ocón A, Ronco-Díaz V, Olea N, Aptsiauri N. Loss of Heterozygosity (LOH) Affecting HLA Genes in Breast Cancer: Clinical Relevance and Therapeutic Opportunities. Genes (Basel) 2024; 15:1542. [PMID: 39766811 PMCID: PMC11675875 DOI: 10.3390/genes15121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells. Loss of heterozygosity (LOH) is a common irreversible genetic alteration that occurs in the great majority of human tumors, including breast cancer. LOH at chromosome 6, which involves HLA genes (LOH-HLA), leads to the loss of an HLA haplotype and is linked to cancer progression and a weak response to cancer immunotherapy. Therefore, the loss of genes or an entire chromosomal region which are critical for antigen presentation is of particular importance in the search for novel prognostic and clinical biomarkers in breast cancer. Here, we review the role of LOH-HLA in breast cancer, its contribution to an understanding of cancer immune escape and tumor progression, and discuss how it can be targeted in cancer therapy.
Collapse
Affiliation(s)
- María Antonia Garrido
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
| | - Alba Navarro-Ocón
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Ronco-Díaz
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain
| | - Nicolás Olea
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERSP), 28034 Madrid, Spain
| | - Natalia Aptsiauri
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
4
|
Gupta R, Das CK, Nair SS, Pedraza-Bermeo AM, Zahalka AH, Kyprianou N, Bhardwaj N, Tewari AK. From foes to friends: rethinking the role of lymph nodes in prostate cancer. Nat Rev Urol 2024; 21:687-700. [PMID: 39095580 DOI: 10.1038/s41585-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Clinically localized prostate cancer is often treated with radical prostatectomy combined with pelvic lymph node dissection. Data suggest that lymph node dissection does improve disease staging, but its therapeutic value has often been debated, with few studies showing that lymph node removal directly improves oncological outcomes; however, lymph nodes are an important first site of antigen recognition and immune system activation and the success of many currently used immunological therapies hinges on this dogma. Evidence, particularly in the preclinical setting, has demonstrated that the success of immune checkpoint inhibitors is dampened by the removal of tumour-draining lymph nodes. Thus, whether lymph nodes are truly 'foes' or whether they are actually 'friends' in oncological care is an important idea to discuss.
Collapse
Affiliation(s)
- Raghav Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan K Das
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sujit S Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ali H Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Ye D, Zhou S, Dai X, Xu H, Tang Q, Huang H, Bi F. Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189161. [PMID: 39096977 DOI: 10.1016/j.bbcan.2024.189161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Di Ye
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xinyu Dai
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
6
|
Huang X, Yang J, Xi H, Zhang M, Oh Y, Jin Z, Zheng Z. Implication of Amyloid Precursor-like Protein 2 Expression in Cutaneous Squamous Cell Carcinoma Pathogenesis. In Vivo 2024; 38:399-408. [PMID: 38148084 PMCID: PMC10756465 DOI: 10.21873/invivo.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Regulatory functions of amyloid precursor-like protein 2 (APLP2) expression in intracellular trafficking of major histocompatibility complex class I (MHC-I) and biological behavior of tumor cells have been reported in various types of malignancies but not in cutaneous squamous cell carcinoma (CSCC). This study aimed to investigate the role of APLP2 expression in the pathogenesis of CSCC. PATIENTS AND METHODS The expression of APLP2 and a key modulator of cancer immune escape, MHC-I, were determined in CSCC tissue samples obtained from 141 patients using immunohistochemistry. The regulatory effects of APLP2 expression on the biological behavior and surface expression of MHC-I in CSCC cells were investigated by trypan blue assay, Matrigel invasion assay, and in vivo xenograft analysis. RESULTS APLP2 immunoreactivity was high in 73 (51.8%) tissue samples from patients with CSCC and was significantly related to subcutaneous fat invasion and poor prognosis in our cohort. Moreover, proliferation of and invasion by CSCC cells were significantly reduced after APLP2 knockdown in CSCC cells both in vitro and in vivo. A significant association was found between APLP2 and membrane MHC-I expression in patients with CSCC. In vivo xenograft analysis showed that APLP2 knockdown increased membrane MHC-I expression in CSCC cells. CONCLUSION APLP2 not only acts as an oncogene in CSCC progression but also as a possible modulator of cancer immune escape by influencing MHC-I expression on the cell surface. APLP2 may serve as a novel molecular biomarker and therapeutic target for patients with CSCC.
Collapse
Affiliation(s)
- Xiaodi Huang
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China
| | - Jihye Yang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Haoran Xi
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Meilan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yeongjoo Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhehu Jin
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China;
| | - Zhenlong Zheng
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China;
| |
Collapse
|
7
|
James LM, Georgopoulos AP. Immunogenetic Profiles and Associations of Breast, Cervical, Ovarian, and Uterine Cancers. Cancer Inform 2023; 22:11769351221148588. [PMID: 36684415 PMCID: PMC9846304 DOI: 10.1177/11769351221148588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
It is increasingly recognized that the human immune response influences cancer risk, progression, and survival; consequently, there is growing interest in the role of human leukocyte antigen (HLA), genes that play a critical role in initiating the immune response, on cancer. Recent evidence documented clustering of cancers based on immunogenetic profiles such that breast and ovarian cancers clustered together as did uterine and cervical cancers. Here we extend that line of research to evaluate the HLA profile of those 4 cancers and their associations. Specifically, we evaluated the associations between the frequencies of 127 HLA alleles and the population prevalences of breast, ovarian, cervical, and uterine cancer in 14 countries in Continental Western Europe. Factor analysis and hierarchical clustering were used to evaluate groupings of cancers based on their immunogenetic profiles. The results documented highly similar immunogenetic profiles for breast and ovarian cancers that were characterized predominantly by protective HLA effects. In addition, highly similar immunogenetic profiles for cervical and uterine cancers were observed that were, conversely, characterized by susceptibility effects. In light of the role of HLA in host immune system protection against non-self antigens, these findings suggest that certain cancers may be associated with similar contributory factors such as viral oncoproteins or neoantigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health
Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN,
USA,Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA,Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health
Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN,
USA,Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA,Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA,Department of Neurology, University of
Minnesota Medical School, Minneapolis, MN, USA,Apostolos P Georgopoulos, Department of
Neuroscience, University of Minnesota Medical School, Brain Sciences Center
(11B), Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN 55417, USA.
| |
Collapse
|
8
|
Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A, Nguyen J, Castro P, Ittmann MM, Rahmatpanah F. Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers (Basel) 2022; 14:cancers14194923. [PMID: 36230846 PMCID: PMC9562240 DOI: 10.3390/cancers14194923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a crucial role in both the development and progression of prostate cancer. Furthermore, identifying protein and gene expression differences between different regions is valuable for treatment development. We applied Digital Spatial Profiling multiplex analysis to formalin-fixed paraffin embedded prostatectomy tissue blocks to investigate protein and transcriptome differences between tumor, tumor-adjacent stroma (TAS), CD45+ tumor, and CD45+ TAS tissue. Differential expression of an immunology/oncology protein panel (n = 58) was measured. OX40L and CTLA4 were expressed at higher levels while 22 other proteins, including CD11c, were expressed at lower levels (FDR < 0.2 and p-value < 0.05) in TAS as compared to tumor epithelia. A tissue microarray analysis of 97 patients with 1547 cores found positive correlations between high expression of CD11c and increased time to recurrence in tumor and TAS, and inverse relationships for CTLA4 and OX40L, where higher expression in tumor correlated with lower time to recurrence, but higher time to recurrence in TAS. Spatial transcriptomic analysis using a Cancer Transcriptome Atlas panel (n = 1825 genes) identified 162 genes downregulated and 69 upregulated in TAS versus tumor, 26 downregulated and 6 upregulated in CD45+ TAS versus CD45+ tumor. We utilized CIBERSORTx to estimate the relative immune cell fractions using CD45+ gene expression and found higher average fractions for memory B, naïve B, and T cells in TAS. In summary, the combination of protein expression differences, immune cell fractions, and correlations of protein expression with time to recurrence suggest that closely examining the tumor microenvironment provides valuable data that can improve prognostication and treatment techniques.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Robert Bilodeau
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Michael McClelland
- Department of Molecular and Microbiology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Patricia Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
9
|
Fan Z, Zheng Y, Li X, Deng X, Ba Y, Feng K, Su J, Wang H, Suo Z, Li L. Promoting role of pentraxin-3 in esophageal squamous cell carcinoma. Mol Ther Oncolytics 2022; 24:772-787. [PMID: 35317523 PMCID: PMC8908267 DOI: 10.1016/j.omto.2022.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Pentraxin 3 (PTX3) is an inflammatory molecule that is closely related to the proliferation, invasion, and metastasis of cancer. In order to explore the role of PTX3 in the occurrence and development of esophageal carcinoma (ESCA), we modified the PTX3 gene in ESCA cell lines to obtain the model of gene knockout and overexpression and studied cell proliferation, cycle, apoptosis, migration ability, energy metabolism, and sensitivity to chemotherapy and radiotherapy. We observed the increase in cell proliferation, cycle, apoptosis, migration ability, and sensitivity to chemotherapy and radiotherapy in the PTX3 knockout model, while in the PTX3 overexpression model, these phenomena were significantly reduced. Knockout of the PTX3 also resulted in decreased cell glycolysis and increased oxidative phosphorylation, which is consistent with other findings that PTX3 affects the tumorigenic ability of cells and their sensitivity to docetaxel. In ESCA, SOX9 directly regulates the expression of PTX3, while human leukocyte antigen (HLA)-system-related genes are significantly up-regulated when lacking PTX3. These results indicate that SOX9 may play a crucial role in regulating PTX3 and affecting the HLA system in ESCA.
Collapse
Affiliation(s)
- Zhirui Fan
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuanyuan Zheng
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaoli Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaoming Deng
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yan Ba
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kun Feng
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jin Su
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Wang
- Department of Chinese and Western Integrative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenhe Suo
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, 999026 Montebello, Oslo, Norway
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
10
|
Overexpression of immunoproteasome low-molecular-mass polypeptide 7 and inhibiting role of next-generation proteasome inhibitor ONX 0912 on cell growth in glioma. Neuroreport 2021; 30:1031-1038. [PMID: 31503210 DOI: 10.1097/wnr.0000000000001320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The aim of this study was to determine the expression level of immunoproteasome and its clinical significance in glioma preliminarily. Furthermore, we studied the function and molecular mechanism of proteasome inhibitor ONX 0912 on glioma cell. MATERIALS AND METHODS The expression of immunoproteasome in glioma and tumor-adjacent brain tissues was detected by western blot. Immunohistochemical technique was used to detect the expression of low-molecular-mass polypeptide 7 in 55 cases of glioma tissues and 6 cases of tumor-adjacent brain tissues. Chi-square test was used to analyze the relationship between the expression level of low-molecular-mass polypeptide 7 and clinical characteristics. Kaplan-Meier method and Cox regression analysis were applied to analyze the correlation between low-molecular-mass polypeptide 7 expression and prognosis of patients. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium) (MTS) proliferation assay was introduced to detect the impact of ONX 0912 on proliferation of glioma cells. Western blot was used to detect the apoptosis- and autophagy-related protein in glioma cell treated with ONX 0912. RESULTS Our results showed that only low-molecular-mass polypeptide 7 expression was notably upregulated in gliomas in comparison with tumor-adjacent brain tissues and further increased in malignant gliomas compared with benign gliomas (P < 0.01). In the multivariate Cox proportional regression analyses, it was evident that low-molecular-mass polypeptide 7 was an independent unfavorable prognostic factor (P < 0.05). The results of MTS assay showed that ONX 0912 could inhibit the proliferation of glioma cell. Besides, we found that ONX 0912 could prompt apoptosis and autophagosome accumulation, which may be responsible for inhibiting glioma cell proliferation. CONCLUSION In conclusion, our results indicated that low-molecular-mass polypeptide 7 might be a candidate prognostic biomarker, and proteasome inhibitor ONX 0912 might act as a potential treatment agent for glioma.
Collapse
|
11
|
Einstein DJ, Arai S, Calagua C, Xie F, Voznesensky O, Capaldo BJ, Luffman C, Hecht JL, Balk SP, Sowalsky AG, Russo JW. Metastatic Castration-Resistant Prostate Cancer Remains Dependent on Oncogenic Drivers Found in Primary Tumors. JCO Precis Oncol 2021; 5:PO.21.00059. [PMID: 34568716 PMCID: PMC8457789 DOI: 10.1200/po.21.00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Metastatic prostate cancer is initially sensitive to androgen receptor inhibition, but eventually becomes castration-resistant prostate cancer (mCRPC). Early use of more intensive therapies targeting androgen receptor and other oncogenic drivers in treatment-naïve primary prostate cancer (PC) may be more effective than that in advanced mCRPC. However, analysis of primary tumors may not reveal targetable metastatic drivers that are subclonal in the primary tumor or acquired at metastatic sites. METHODS PC samples spanning one patient's clinical course: diagnostic biopsies, pre- or post-enzalutamide metastatic biopsies, and rapid autopsy samples including a patient-derived xenograft (PDX) were analyzed by targeted exome sequencing followed by phylogenetic analysis. RESULTS Left- and right-lobe primary PC tumors appeared to diverge, with the right acquiring additional shared mutations and striking differences in copy number alterations that later appeared in metastatic samples during the treatment course and at autopsy, whereas the left base tumor maintained a quiet copy number alteration landscape and partitioned into a dead-end node. RB1 loss, a common finding in advanced castration-resistant disease, was identified throughout mCRPC samples, but not in the primary tumor. Significantly, a truncal EGFR-activating mutation (R108K) was identified in the primary tumor and was also found to be maintained in the mCRPC samples and in a PDX model. Furthermore, the PDX model remained sensitive to the EGFR inhibitor erlotinib, despite the presence of both RB1 and BRCA2 losses. CONCLUSION These findings indicate that truncal alterations identified in primary PC can drive advanced mCRPC, even in the presence of additional strong oncogenic drivers (ie, RB1 and BRCA2 loss), and suggest that earlier detection and targeting of these truncal alterations may be effective at halting disease progression.
Collapse
Affiliation(s)
- David J. Einstein
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seiji Arai
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Urology, Gunma University Hospital, Maebashi, Japan
| | - Carla Calagua
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Fang Xie
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Olga Voznesensky
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Brian J. Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD
| | - Christina Luffman
- Department of Pathology, University of Massachusetts Medical Center, Worcester, MA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Steven P. Balk
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD
| | - Joshua W. Russo
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Joshua W. Russo, MD, PhD, Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, CLS 432, Boston, MA 02215; e-mail:
| |
Collapse
|
12
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
13
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
16
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
17
|
Lund ME, Howard CB, Thurecht KJ, Campbell DH, Mahler SM, Walsh BJ. A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer 2020; 20:1214. [PMID: 33302918 PMCID: PMC7727117 DOI: 10.1186/s12885-020-07562-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab® sequence. Miltuximab® is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS The single chain variable fragment (scFv) of Miltuximab® and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development.
Collapse
Affiliation(s)
- Maria E Lund
- Glytherix Ltd, Suite 2 Ground Floor, 75 Talavera Road Macquarie Park, Sydney, NSW, 2113, Australia.
| | - Christopher B Howard
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.,ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, 4072, Australia
| | - Douglas H Campbell
- Glytherix Ltd, Suite 2 Ground Floor, 75 Talavera Road Macquarie Park, Sydney, NSW, 2113, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.,ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, 4072, Australia
| | - Bradley J Walsh
- Glytherix Ltd, Suite 2 Ground Floor, 75 Talavera Road Macquarie Park, Sydney, NSW, 2113, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
18
|
Tsaur I, Brandt MP, Juengel E, Manceau C, Ploussard G. Immunotherapy in prostate cancer: new horizon of hurdles and hopes. World J Urol 2020; 39:1387-1403. [PMID: 33106940 PMCID: PMC8514362 DOI: 10.1007/s00345-020-03497-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Prostate cancer (PCa) is the most common malignancy in men and the cause for the second most common cancer-related death in the western world. Despite ongoing development of novel approaches such as second generation androgen receptor targeted therapies, metastatic disease is still fatal. In PCa, immunotherapy (IT) has not reached a therapeutic breakthrough as compared to several other solid tumors yet. We aimed at highlighting the underlying cellular mechanisms crucial for IT in PCa and giving an update of the most essential past and ongoing clinical trials in the field. Methods We searched for relevant publications on molecular and cellular mechanisms involved in the PCa tumor microenvironment and response to IT as well as completed and ongoing IT studies and screened appropriate abstracts of international congresses. Results Tumor progression and patient outcomes depend on complex cellular and molecular interactions of the tumor with the host immune system, driven rather dormant in case of PCa. Sipuleucel-T and pembrolizumab are the only registered immune-oncology drugs to treat this malignancy. A plethora of studies assess combination of immunotherapy with other agents or treatment modalities like radiation therapy which might increase its antineoplastic activity. No robust and clinically relevant prognostic or predictive biomarkers have been established yet. Conclusion Despite immunosuppressive functional status of PCa microenvironment, current evidence, based on cellular and molecular conditions, encourages further research in this field.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Maximilian P Brandt
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Cécile Manceau
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Guillaume Ploussard
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France.,Department of Urology, La Croix du Sud Hospital, Toulouse, France
| |
Collapse
|
19
|
Stokidis S, Fortis SP, Kogionou P, Anagnostou T, Perez SA, Baxevanis CN. HLA Class I Allele Expression and Clinical Outcome in De Novo Metastatic Prostate Cancer. Cancers (Basel) 2020; 12:cancers12061623. [PMID: 32570992 PMCID: PMC7352811 DOI: 10.3390/cancers12061623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
The prognostic value of human leukocyte antigen (HLA) class I molecules in prostate cancer (PCa) remains unclear. Herein, we investigated the prognostic relevance of the most frequently expressed HLA-A alleles in Greece (A*02:01 and HLA-A*24:02) in de novo metastatic hormone-sensitive PCa (mPCa), which is a rare and aggressive disease characterized by a rapid progression to castration-resistance (CR) and poor overall survival (OS), contributing to almost 50% of PCa-related deaths. We identified 56 patients who had either progressed to CR (these patients were retrospectively analyzed for the time to the progression of CR and prospectively for OS) or had at least three months’ follow-up postdiagnosis without CR progression and, thus, were prospectively analyzed for both CR and OS. Patients expressing HLA-A*02:01 showed poor clinical outcomes vs. HLA-A*02:01−negative patients. HLA-A*24:02−positive patients progressed slower to CR and had increased OS. Homozygous HLA-A*02:01 patients progressed severely to CR, with very short OS. Multivariate analyses ascribed to both HLA alleles significant prognostic values for the time to progression (TTP) to CR and OS. The presence of HLA-A*02:01 and HLA-A*24:02 alleles in de novo mPCa patients are significantly and independently associated with unfavorable or favorable clinical outcomes, respectively, suggesting their possible prognostic relevance for treatment decision-making in the context of precision medicine.
Collapse
Affiliation(s)
- Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Paraskevi Kogionou
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Theodoros Anagnostou
- Department of Urology, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece;
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522 Athens, Greece; (S.S.); (S.P.F.); (P.K.); (S.A.P.)
- Correspondence: ; Tel.: +30-210-640-9624
| |
Collapse
|
20
|
HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods Mol Biol 2020; 2055:325-350. [PMID: 31502159 DOI: 10.1007/978-1-4939-9773-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigen abnormalities have been shown to be one of the major immune escape mechanisms murine and human cancer cells utilize to avoid recognition and destruction by host immune system. This mechanism has clinical relevance, since it is associated with poor prognosis and/or reduced patients' survival in many types of malignant diseases. The recent impressive clinical responses to T cell-based immunotherapies triggered by checkpoint inhibitors have rekindled tumor immunologists and clinical oncologists' interest in the analysis of the human leukocyte antigen (HLA) class I antigen processing machinery (APM) expression and function in malignant cells. Abnormalities in the expression, regulation and/or function of components of this machinery have been associated with the development of resistances to T cell-based immunotherapies. In this review, following the description of the human leukocyte antigen (HLA) class I APM organization and function, the information related to the frequency of defects in HLA class I APM component expression in various types of cancer and the underlying molecular mechanisms is summarized. Then the impact of these defects on clinical response to T cell-based immunotherapies and strategies to revert this immune escape process are discussed.
Collapse
|
21
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
23
|
Lang JM. Understanding dynamic interactions in the prostate tumor microenvironment. Urol Oncol 2019; 37:532-534. [PMID: 31300353 DOI: 10.1016/j.urolonc.2019.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Complex and dynamic are 2 words that best explain the prostate tumor microenvironment (TME). These words also exemplify the challenges inherent in developing and translating the latest therapeutic advances into clinical benefit for patients with localized and advanced prostate cancer. This issue explores the various cell types and interactions in the prostate TME and how new research findings are being leveraged into therapeutic concepts for our patients.
Collapse
Affiliation(s)
- Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; Department of Medicine, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
24
|
Grizzi F, Borroni EM, Qehajaj D, Stifter S, Chiriva-Internati M, Cananzi FCM. The Complex Nature of Soft Tissue Sarcomas, Including Retroperitoneal Sarcomas. Updates Surg 2019:21-32. [DOI: 10.1007/978-88-470-3980-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
25
|
Next Generation Cancer Vaccines-Make It Personal! Vaccines (Basel) 2018; 6:vaccines6030052. [PMID: 30096953 PMCID: PMC6161279 DOI: 10.3390/vaccines6030052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Dramatic success in cancer immunotherapy has been achieved over the last decade with the introduction of checkpoint inhibitors, leading to response rates higher than with chemotherapy in certain cancer types. These responses are often restricted to cancers that have a high mutational burden and show pre-existing T-cell infiltrates. Despite extensive efforts, therapeutic vaccines have been mostly unsuccessful in the clinic. With the introduction of next generation sequencing, the identification of individual mutations is possible, enabling the production of personalized cancer vaccines. Combining immune check point inhibitors to overcome the immunosuppressive microenvironment and personalized cancer vaccines for directing the host immune system against the chosen antigens might be a promising treatment strategy.
Collapse
|
26
|
Mesiano G, Grignani G, Fiorino E, Leuci V, Rotolo R, D'Ambrosio L, Salfi C, Gammaitoni L, Giraudo L, Pisacane A, Butera S, Pignochino Y, Basiricó M, Capozzi F, Sapino A, Aglietta M, Sangiolo D. Cytokine Induced Killer cells are effective against sarcoma cancer stem cells spared by chemotherapy and target therapy. Oncoimmunology 2018; 7:e1465161. [PMID: 30393581 PMCID: PMC6208452 DOI: 10.1080/2162402x.2018.1465161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic bone and soft tissue sarcomas often relapse after chemotherapy (CHT) and molecular targeted therapy (mTT), maintaining a severe prognosis. A subset of sarcoma cancer stem cells (sCSC) is hypothesized to resist conventional drugs and sustain disease relapses. We investigated the immunotherapy activity of cytokine induced killer cells (CIK) against autologous sCSC that survived CHT and mTT. The experimental platform included two aggressive bone and soft tissue sarcoma models: osteosarcoma (OS) and undifferentiated-pleomorphic sarcoma (UPS). To visualize putative sCSC we engineered patient-derived sarcoma cultures (2 OS and 3 UPS) with a lentiviral sCSC-detector wherein the promoter of stem-gene Oct4 controls the expression of eGFP. We visualized a fraction of sCSC (mean 24.2 ± 5.2%) and confirmed their tumorigenicity in vivo. sCSC resulted relatively resistant to both CHT and mTT in vitro. Therapeutic doses of doxorubicin significantly enriched viable eGFP+sCSC in both OS (2.6 fold, n = 16) and UPS (2.3 fold, n = 29) compared to untreated controls. Treatment with sorafenib (for OS) and pazopanib (for UPS) also determined enrichment (1.3 fold) of viable eGFP+sCSC, even if less intense than what observed after CHT. Sarcoma cells surviving CHT and mTT were efficiently killed in vitro by autologous CIK even at minimal effector/target ratios (40:1 = 82%, 1:4 = 29%, n = 13). CIK immunotherapy did not spare sCSC that were killed as efficiently as whole sarcoma cell population. The relative chemo-resistance of sCSC and sensitivity to CIK immunotherapy was confirmed in vivo. Our findings support CIK as an innovative, clinically explorable, approach to eradicate chemo-resistant sCSC implicated in tumor relapse.
Collapse
Affiliation(s)
- Giulia Mesiano
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Giovanni Grignani
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Erika Fiorino
- Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Valeria Leuci
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Ramona Rotolo
- Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Lorenzo D'Ambrosio
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Chiara Salfi
- Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Loretta Gammaitoni
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Lidia Giraudo
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Alberto Pisacane
- Pathology Division, Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Sara Butera
- Department of Molecular Biotechnologies and Healthy Sciences, Haematology Division 1, University of Torino, Italy
| | - Ymera Pignochino
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Marco Basiricó
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Federica Capozzi
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy
| | - Anna Sapino
- Pathology Division, Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Medical Sciences, University of Torino, Italy
| | - Massimo Aglietta
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Oncology, University of Torino, Candiolo (Torino) Italy
| | - Dario Sangiolo
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCS. Str. Prov. 142, km 3.95, I-10060, Candiolo (To), Italy.,Department of Oncology, University of Torino, Candiolo (Torino) Italy
| |
Collapse
|
27
|
Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol 2018. [PMID: 29535070 DOI: 10.1016/j.biocel.2018.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, anti-tumor immunotherapy has shown promising results, and immune-oncology is now emerging as the fourth major wave in the treatment of tumors after radiotherapy, chemotherapy and molecular targeted therapy. Understanding the impact of the immune system on neoplastic cells is crucial to improve its effectiveness against cancer. The stratification of patients who might benefit from immunotherapy as well as the personalization of medicine have contributed to the discovery of new immunotherapeutic targets and molecules. In the present review, we discuss the mechanistic role of histone deacetylase inhibitors (HDACi) as potential immunomodulating agents to treat cancer. Our current understanding of the use of HDACi in combination with various immunotherapeutic approaches, such as immunomodulating agents and cancer vaccines, is also addressed. The potential clinical applications of the growing number of novel epigenetic drugs for cancer immunotherapy are widening, and some of these therapies are already in clinical trials.
Collapse
Affiliation(s)
| | - Raffaele De Palma
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
28
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
29
|
Perea F, Sánchez-Palencia A, Gómez-Morales M, Bernal M, Concha Á, García MM, González-Ramírez AR, Kerick M, Martin J, Garrido F, Ruiz-Cabello F, Aptsiauri N. HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget 2018; 9:4120-4133. [PMID: 29423109 PMCID: PMC5790526 DOI: 10.18632/oncotarget.23469] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
Immune-checkpoint inhibitors show encouraging results in cancer treatment, but the clinical benefit is limited exclusively to a subset of patients. We analyzed the density and composition of tumor T-cell infiltration in non-small-cell lung carcinoma (NSCLC) in relation to PD-L1 and HLA class I (HLA-I) expression. We found that positive HLA-I expression, independently on PD-L1 status, is the key factor determining the increased density of the immune infiltrate. When both markers were analyzed simultaneously, we identified four phenotypes of HLA-I and PD-L1 co-expression. They demonstrated different patterns of tumor infiltration and clinicopathologic characteristics, including the tumor size and lymphatic spread. All HLA-I+/PD-L1+ tumors had a high degree of intratumoral infiltration with CD8+T-lymphocytes, whereas HLA-I loss was associated with a significantly reduced number of tumor infiltrating T-lymphocytes mostly restrained in the stroma surrounding the tumor nest. HLA-I-negative/PD-L1-positive tumors had bigger size (T) and lower grade of infiltration with CD8+T-cells. It represents a cancer immune escape phenotype that combines two independent mechanisms of immune evasion: loss of HLA-I and upregulation of PD-L1. Using GCH-array analysis of human lung cancer cell lines we found that the loss of heterozygosity (LOH) with complete or partial deletion of HLA-I genes is the principal mechanism of HLA-I alterations. This irreversible defect, which could potentially decrease the clinical efficacy of lung cancer immunotherapy, appears to be underestimated. In conclusion, our results suggest that the analysis of HLA-I is very important for the selection of potential responders to cancer immunotherapy.
Collapse
Affiliation(s)
- Francisco Perea
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Abel Sánchez-Palencia
- Servicio de Cirugía Torácica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Mónica Bernal
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ángel Concha
- Servicio de Anatomía Patológica y Biobanco, Complejo Hospitalario Universitario, La Coruña, Spain
| | - Míguela Méndez García
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Amanda Rocío González-Ramírez
- Fundación de Investigación Biosanitaria Alejandro Otero, FIBAO, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Martin Kerick
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| |
Collapse
|
30
|
van Hateren A, Anderson M, Bailey A, Werner JM, Skipp P, Elliott T. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules. J Biol Chem 2017; 292:20255-20269. [PMID: 29021251 PMCID: PMC5724011 DOI: 10.1074/jbc.m117.809624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated β2-microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ
| | - Malcolm Anderson
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Alistair Bailey
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ; Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Jörn M Werner
- Institute for Life Sciences, Centre for Biological Sciences, and Faculty of Natural and Environmental Sciences, University of Southampton, Building 85, Southampton SO17 1BJ
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ.
| |
Collapse
|
31
|
Tao Z, Li S, Ichim TE, Yang J, Riordan N, Yenugonda V, Babic I, Kesari S. Cellular immunotherapy of cancer: an overview and future directions. Immunotherapy 2017; 9:589-606. [DOI: 10.2217/imt-2016-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clinical success of checkpoint inhibitors has led to a renaissance of interest in cancer immunotherapies. In particular, the possibility of ex vivo expanding autologous lymphocytes that specifically recognize tumor cells has attracted much research and clinical trial interest. In this review, we discuss the historical background of tumor immunotherapy using cell-based approaches, and provide some rationale for overcoming current barriers to success of autologous immunotherapy. An overview of adoptive transfer of lymphocytes, tumor infiltrating lymphocytes and dendritic cell therapies is provided. We conclude with discussing the possibility of gene-manipulating immune cells in order to augment therapeutic activity, including silencing of the immune-suppressive zinc finger orphan nuclear receptor, NR2F6, as an attractive means of overcoming tumor-associated immune suppression.
Collapse
Affiliation(s)
- Ziqi Tao
- The Affiliated XuZhou Center Hospital of Nanjing University of Chinese Medicine, The Affiliated XuZhou Hospital of Medical College of Southeast University, Jiangsu, China
| | - Shuang Li
- Department of Endocrinology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | | | - Junbao Yang
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Neil Riordan
- Medistem Panama, Inc., City of Knowledge, Clayton, Republic of Panama
| | - Venkata Yenugonda
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Ivan Babic
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| |
Collapse
|
32
|
Ylitalo EB, Thysell E, Jernberg E, Lundholm M, Crnalic S, Egevad L, Stattin P, Widmark A, Bergh A, Wikström P. Subgroups of Castration-resistant Prostate Cancer Bone Metastases Defined Through an Inverse Relationship Between Androgen Receptor Activity and Immune Response. Eur Urol 2017; 71:776-787. [DOI: 10.1016/j.eururo.2016.07.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
|
33
|
Increased ERp57 Expression in HBV-Related Hepatocellular Carcinoma: Possible Correlation and Prognosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1252647. [PMID: 28373975 PMCID: PMC5360968 DOI: 10.1155/2017/1252647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023]
Abstract
Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues (p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups (p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower (p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients.
Collapse
|
34
|
Kalina JL, Neilson DS, Comber AP, Rauw JM, Alexander AS, Vergidis J, Lum JJ. Immune Modulation by Androgen Deprivation and Radiation Therapy: Implications for Prostate Cancer Immunotherapy. Cancers (Basel) 2017; 9:cancers9020013. [PMID: 28134800 PMCID: PMC5332936 DOI: 10.3390/cancers9020013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer patients often receive androgen deprivation therapy (ADT) in combination with radiation therapy (RT). Recent evidence suggests that both ADT and RT have immune modulatory properties. First, ADT can cause infiltration of lymphocytes into the prostate, although it remains unclear whether the influx of lymphocytes is beneficial, particularly with the advent of new classes of androgen blockers. Second, in rare cases, radiation can elicit immune responses that mediate regression of metastatic lesions lying outside the field of radiation, a phenomenon known as the abscopal response. In light of these findings, there is emerging interest in exploiting any potential synergy between ADT, RT, and immunotherapy. Here, we provide a comprehensive review of the rationale behind combining immunotherapy with ADT and RT for the treatment of prostate cancer, including an examination of the current clinical trials that employ this combination. The reported outcomes of several trials demonstrate the promise of this combination strategy; however, further scrutiny is needed to elucidate how these standard therapies interact with immune modulators. In addition, we discuss the importance of synchronizing immune modulation relative to ADT and RT, and provide insight into elements that may impact the ability to achieve maximum synergy between these treatments.
Collapse
Affiliation(s)
- Jennifer L Kalina
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
| | - David S Neilson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Alexandra P Comber
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Jennifer M Rauw
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Abraham S Alexander
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Joanna Vergidis
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
35
|
Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 2016; 241:10-24. [PMID: 27770445 DOI: 10.1002/path.4832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The tumour microenvironment plays an instrumental role in cancer development, progression and treatment response/resistance. Accumulating evidence is underscoring the fundamental importance of epigenetic regulation in tumour immune evasion. Following many pioneering discoveries demonstrating malignant transformation through epigenetic anomalies ('epimutations'), there is also a growing emphasis on elucidating aberrant epigenetic mechanisms that reprogramme the milieu of tumour-associated immune and stromal cells towards an immunosuppressive state. Pharmacological inhibition of DNA methylation and histone modifications can augment the efficiency of immune checkpoint blockage, and unleash anti-tumour T-cell responses. However, these non-specific agents also represent a 'double-edged sword', as they can also reactivate gene transcription of checkpoint molecules, interrupting immune surveillance programmes. By understanding the impact of epigenetic control on the tumour microenvironment, rational combinatorial epigenetic and checkpoint blockage therapies have the potential to harness the immune system for the treatment of cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Jingying Zhou
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
36
|
Perea F, Bernal M, Sánchez-Palencia A, Carretero J, Torres C, Bayarri C, Gómez-Morales M, Garrido F, Ruiz-Cabello F. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 2016; 140:888-899. [PMID: 27785783 DOI: 10.1002/ijc.30489] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 01/07/2023]
Abstract
We wanted to analyze whether tumor HLA class I (HLA-I) expression influences the pattern of the immune cell infiltration and stromal cell reaction in the tumor microenvironment. Tumor tissues obtained from 57 patients diagnosed with lung carcinomas were analyzed for HLA expression and leukocyte infiltration. 28 patients out of the 57 were completely negative for HLA-I expression (49.1%) or showed a selective HLA-A locus downregulation (three patients, 5.2%). In 26 out of 57 tumors (47.8%) we detected a positive HLA-I expression but with a percentage of HLA-I negative cells between 10 and 25%. The HLA-I negative phenotype was produced by a combination of HLA haplotype loss and a transcriptional downregulation of β2-microglobulin (β2-m) and LMP2 and LMP7 antigen presentation machinery genes. The analysis and localization of different immune cell populations revealed the presence of two major and reproducible patterns. One pattern, which we designated "immune-permissive tumor microenvironment (TME)," was characterized by positive tumor HLA-I expression, intratumoral infiltration with cytotoxic T-CD8+ cells, M1-inflammatory type macrophages, and a diffuse pattern of FAP+ cancer-associated fibroblasts. In contrast, another pattern defined as "non-immune-permissive TME" was found in HLA-I negative tumors with strong stromal-matrix interaction, T-CD8+ cells surrounding tumor nests, a dense layer of FAP+ fibroblasts and M2/repair-type macrophages. In conclusion, this study revealed marked differences between HLA class I-positive and negative tumors related to tissue structure, the composition of leukocyte infiltration and stromal response in the tumor microenvironment.
Collapse
Affiliation(s)
- Francisco Perea
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Mónica Bernal
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Abel Sánchez-Palencia
- Servicio de Cirugía Torácica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Javier Carretero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Cristina Torres
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Clara Bayarri
- Servicio de Cirugía Torácica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| |
Collapse
|
37
|
Reeves E, James E. Antigen processing and immune regulation in the response to tumours. Immunology 2016; 150:16-24. [PMID: 27658710 DOI: 10.1111/imm.12675] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022] Open
Abstract
The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Edward James
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
38
|
Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58:52-8. [PMID: 27264839 DOI: 10.1016/j.oraloncology.2016.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Experimental as well as clinical studies demonstrate that the immune system plays a major role in controlling generation and progression of tumors. The cancer immunoediting theory supports the notion that tumor cell immunogenicity is dynamically shaped by the immune system, as it eliminates immunogenic tumor cells in the early stage of the disease and then edits their antigenicity. The end result is the generation of a tumor cell population able to escape from immune recognition and elimination by tumor infiltrating lymphocytes. Two major mechanisms, which affect the target cells and the effector phase of the immune response, play a crucial role in the editing process. One is represented by the downregulation of tumor antigen (TA) processing and presentation because of abnormalities in the HLA class I antigen processing machinery (APM). The other one is represented by the anergy of effector immune infiltrates in the tumor microenvironment caused by aberrant inhibitory signals triggered by immune checkpoint receptor (ICR) ligands, such as programmed death ligand-1 (PD-L1). In this review, we will focus on tumor immune escape mechanisms caused by defects in HLA class I APM component expression and/or function in different types of cancer, with emphasis on head and neck cancer (HNC). We will also discuss the immunological implications and clinical relevance of these HLA class I APM abnormalities. Finally, we will describe strategies to counteract defective TA presentation with the expectation that they will enhance tumor recognition and elimination by tumor infiltrating effector T cells.
Collapse
Affiliation(s)
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Doorduijn EM, Sluijter M, Querido BJ, Oliveira CC, Achour A, Ossendorp F, van der Burg SH, van Hall T. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. J Clin Invest 2016; 126:784-94. [PMID: 26784543 DOI: 10.1172/jci83671] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
Tumor cells frequently escape from CD8+ T cell recognition by abrogating MHC-I antigen presentation. Deficiency in processing components, like the transporter associated with antigen processing (TAP), results in strongly decreased surface display of peptide/MHC-I complexes. We previously identified a class of hidden self-antigens known as T cell epitopes associated with impaired peptide processing (TEIPP), which emerge on tumor cells with such processing defects. In the present study, we analyzed thymus selection and peripheral behavior of T cells with specificity for the prototypic TEIPP antigen, the "self" TRH4 peptide/Db complex. TEIPP T cells were efficiently selected in the thymus, egressed with a naive phenotype, and could be exploited for immunotherapy against immune-escaped, TAP-deficient tumor cells expressing low levels of MHC-I (MHC-Ilo). In contrast, overt thymus deletion and functionally impaired TEIPP T cells were observed in mice deficient for TAP1 due to TEIPP antigen presentation on all body cells in these mice. Our results strongly support the concept that TEIPPs derive from ubiquitous, nonmutated self-antigens and constitute a class of immunogenic neoantigens that are unmasked during tumor immune evasion. These data suggest that TEIPP-specific CD8+ T cells are promising candidates in the treatment of tumors that have escaped from conventional immunotherapies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/immunology
- Animals
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Mice
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Peptides/genetics
- Peptides/immunology
- Tumor Escape
Collapse
|
40
|
Basu A, Cajigas-Du Ross CK, Rios-Colon L, Mediavilla-Varela M, Daniels-Wells TR, Leoh LS, Rojas H, Banerjee H, Martinez SR, Acevedo-Martinez S, Casiano CA. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer. PLoS One 2016; 11:e0146549. [PMID: 26771192 PMCID: PMC4714844 DOI: 10.1371/journal.pone.0146549] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- * E-mail:
| | - Christina K. Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Leslimar Rios-Colon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Melanie Mediavilla-Varela
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Tracy R. Daniels-Wells
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Lai Sum Leoh
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Heather Rojas
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Hiya Banerjee
- Novartis Pharmaceutical Oncology, East Hanover, New Jersey 08807, United States of America
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Stephanny Acevedo-Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| |
Collapse
|
41
|
Carretero FJ, Del Campo AB, Flores-Martín JF, Mendez R, García-Lopez C, Cozar JM, Adams V, Ward S, Cabrera T, Ruiz-Cabello F, Garrido F, Aptsiauri N. Frequent HLA class I alterations in human prostate cancer: molecular mechanisms and clinical relevance. Cancer Immunol Immunother 2016; 65:47-59. [PMID: 26611618 PMCID: PMC11029306 DOI: 10.1007/s00262-015-1774-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/06/2015] [Indexed: 01/02/2023]
Abstract
Reduced expression of HLA class I is an important immune escape mechanism from cytotoxic T cells described in various types of malignancy. It often correlates with poor prognosis and resistance to therapy. However, current knowledge about the frequency, underlying molecular mechanisms, and prognostic value of HLA class I and II alterations in prostate cancer (PC) is limited. Immunohistochemical analysis demonstrated that 88 % of the 42 studied cryopreserved prostate tumors have at least one type of HLA alteration as compared to adjacent normal prostate epithelium or benign hyperplasia. Total loss of HLA-I expression found in 50 % of tumors showed an association with increased incidence of tumor relapse, perineural invasion, and high D'Amico risk. The remaining HLA-I-positive tumors demonstrated locus and allelic losses detected in 26 and 12 % of samples, respectively. Loss of heterozygosity at chromosome 6 was detected in 32 % of the studied tumors. Molecular analysis revealed a reduced expression of B2M, TAP2, tapasin and NLRC5 mRNA in microdissected HLA-I-negative tumors. Analysis of twelve previously unreported cell lines derived from neoplastic and normal epithelium of cancerous prostate revealed different types of HLA-I aberration, ranging from locus and/or allelic downregulation to a total absence of HLA-I expression. The high incidence of HLA-I loss observed in PC, caused by both regulatory and structural defects, is associated with more aggressive disease development and may pose a real threat to patient health by increasing cancer progression and resistance to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Francisco Javier Carretero
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Ana Belen Del Campo
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
| | - Jose Francisco Flores-Martín
- UGC Urología del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rosa Mendez
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Cesar García-Lopez
- UGC Anatomía Patológica del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jose Manuel Cozar
- UGC Urología del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Victoria Adams
- Onyvax, Ltd, St. George's Hospital, University of London, London, UK
- Cell Therapy Catapult Limited, NIHR Biomedical Research Centre, Guy's Hospital, London, UK
| | - Stephen Ward
- Onyvax, Ltd, St. George's Hospital, University of London, London, UK
- Cell Therapy Catapult Limited, NIHR Biomedical Research Centre, Guy's Hospital, London, UK
| | - Teresa Cabrera
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain.
| |
Collapse
|
42
|
Thuring C, Follin E, Geironson L, Freyhult E, Junghans V, Harndahl M, Buus S, Paulsson KM. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma. Br J Cancer 2015; 113:952-62. [PMID: 26313662 PMCID: PMC4578088 DOI: 10.1038/bjc.2015.297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/15/2014] [Accepted: 07/25/2015] [Indexed: 12/24/2022] Open
Abstract
Background: Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. Methods: We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Results: Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Conclusions: Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.
Collapse
Affiliation(s)
- Camilla Thuring
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Elna Follin
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Linda Geironson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Eva Freyhult
- Science for Life Laboratory, Bioinformatics Infrastructure for Life Sciences, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Victoria Junghans
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Mikkel Harndahl
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Søren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Kajsa M Paulsson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
43
|
Schlößer HA, Theurich S, Shimabukuro-Vornhagen A, Holtick U, Stippel DL, von Bergwelt-Baildon M. Overcoming tumor-mediated immunosuppression. Immunotherapy 2015; 6:973-88. [PMID: 25341119 DOI: 10.2217/imt.14.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of tumor-mediated immunosuppression have been described for several solid and hematological tumors. Tumors inhibit immune responses by attraction of immunosuppressive lymphocytic populations, secretion of immunosuppressive cytokines or expression of surface molecules, which inhibit immune responses by induction of anergy or apoptosis in tumor-infiltrating lymphocytes. This tumor-mediated immunosuppression represents a major obstacle to many immunotherapeutic or conventional therapeutic approaches. In this review we discuss how tumor-mediated immunosuppression interferes with different immunotherapeutic approaches and then give an overview of strategies to overcome it. Particular emphasis is placed on agents or approaches already transferred into clinical settings. Finally the success of immune checkpoint inhibitors targeting CTLA-4 or the PD-1 pathway highlights the enormous therapeutic potential of an effective overcoming of tumor-mediated immunosuppression.
Collapse
|
44
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
45
|
Héninger E, Krueger TEG, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6:29. [PMID: 25699047 PMCID: PMC4316783 DOI: 10.3389/fimmu.2015.00029] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Erika Héninger
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA ; Department of Medicine, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
46
|
Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2015; 5:403-16. [PMID: 24480782 PMCID: PMC3964216 DOI: 10.18632/oncotarget.1719] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
47
|
Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 2014; 138:271-80. [PMID: 25471439 DOI: 10.1002/ijc.29375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Intratumor heterogeneity among cancer cells is promoted by reversible or irreversible genetic alterations and by different microenvironmental factors. There is considerable experimental evidence of the presence of a variety of malignant cell clones with a wide diversity of major histocompatibility class I (MHC-I) expression during early stages of tumor development. This variety of MHC-I phenotypes may define the evolution of a particular tumor. Loss of MHC-I molecules frequently results in immune escape of MHC-negative or -deficient tumor cells from the host T cell-mediated immune response. We review here the results obtained by our group and other researchers in animal models and humans, showing how MHC-I intratumor heterogeneity may affect local oncogenicity and metastatic progression. In particular, we summarize the data obtained in an experimental mouse cancer model of a methylcholanthrene-induced fibrosarcoma (GR9), in which isolated clones with different MHC-I expression patterns demonstrated distinct local tumor growth rates and metastatic capacities. The observed "explosion of diversity" of MHC-I phenotypes in primary tumor clones and the molecular mechanism ("hard"/irreversible or "soft"/reversible) responsible for a given MHC-I alteration might determine not only the metastatic capacity of the cells but also their response to immunotherapy. We also illustrate the generation of further MHC heterogeneity during metastatic colonization and discuss different strategies to favor tumor rejection by counteracting MHC-I loss. Finally, we highlight the role of MHC-I genes in tumor dormancy and cell cycle control.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
48
|
Kosoff D, Krueger T, Lang JM. Targeting epigenetic mechanisms for clinical translation: enhancing the efficacy of tumor immunotherapies. Immunotherapy 2014; 5:1243-54. [PMID: 24188678 DOI: 10.2217/imt.13.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability to evade host immune surveillance is critical for the survival of tumor cells and is correlated with poor clinical outcomes. Many tumor types have been found to downregulate expression of genes involved in antigen production, processing and presentation to evade immune detection. Recent findings suggest that the mechanisms underlying these immune evasion phenomena extend beyond alterations in DNA sequence to include epigenetic modifications of DNA and associated proteins, including hypermethylation of DNA and altered histone acetylation patterns. This review will summarize alterations in antigen presentation machinery identified in malignant cells, epigenetic mechanisms that can be employed in the downregulation of genes relevant for antigen presentation and translational strategies to target these processes to enhance the efficacy of antitumor immunotherapies.
Collapse
Affiliation(s)
- David Kosoff
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
49
|
Bak SP, Barnkob MS, Wittrup KD, Chen J. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate. Cancer Immunol Res 2014; 1:393-401. [PMID: 24778132 DOI: 10.1158/2326-6066.cir-13-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells.
Collapse
Affiliation(s)
- S Peter Bak
- Authors' Affiliations: Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
50
|
Carretero R, Gil-Julio H, Vázquez-Alonso F, Garrido F, Castiñeiras J, Cózar J. Involvement of HLA class I molecules in the immune escape of urologic tumors. Actas Urol Esp 2014; 38:192-9. [PMID: 24315763 DOI: 10.1016/j.acuro.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/02/2013] [Indexed: 12/22/2022]
Abstract
CONTEXT AND OBJECTIVE To analyze the influence of different alterations in human leukocyte antigen class I molecules (HLA I) in renal cell carcinoma, as well as in bladder and prostate cancer. We also study the correlation between HLA I expression and the progression of the disease and the response after immunotherapy protocols. EVIDENCES ACQUISITION It has been shown, experimentally, that the immune system can recognize and kill neoplastic cells. By analyzing the expression of HLA I molecules on the surface of cancer cells, we were able to study the tumor escape mechanisms against the immune system. EVIDENCES SYNTHESIS Alteration or irreversible damage in HLA I molecules is used by the neoplastic cells to escape the immune system. The function of these molecules is to recognize endogenous peptides and present them to T cells of the immune system. There is a clear relationship between HLA I reversible alterations and success of therapy. Irreversible lesions also imply a lack of response to treatment. The immune system activation can reverse HLA I molecules expression in tumors with reversible lesions, whereas tumors with irreversible ones do not respond to such activation. Determine the type of altered HLA I molecules in tumors is of paramount importance when choosing the type of treatment to keep looking for therapeutic success. Those tumors with reversible lesions can be treated with traditional immunotherapy; however, tumour with irreversible alterations should follow alternative protocols, such as the use of viral vectors carrying the HLA genes to achieve damaged re-expression of the protein. CONCLUSION From studies in urologic tumors, we can conclude that the HLA I molecules play a key role in these tumors escape to the immune system.
Collapse
|