1
|
Li H, Zhang L, Yao Z, Wang H, Dong X, Wang L, Wang S, Gao Z. Functional characterization of interleukin 17 family members and their receptors in amphioxus. Int J Biol Macromol 2025; 311:143901. [PMID: 40319973 DOI: 10.1016/j.ijbiomac.2025.143901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/29/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
The interleukin 17 (IL17) cytokine family plays a crucial role in phylogenetically conserved immune defense mechanisms, broadly categorized into two distinct evolutionary lineages: the invertebrate-derived (i-type) and vertebrate-specific (v-type) IL17 homologs. Intriguingly, the basal chordate amphioxus retains both IL17 subtypes, though the corresponding receptors and functional specializations orchestrated by these paralogs have remained enigmatic. In this investigation, we delineated four i-type IL17 ligands (designated BjIL17-i1 to BjIL17-i4) and four v-type homologs (BjIL17-v1 to BjIL17-v4), along with two cognate receptors (BjIL17R1 and BjIL17R2), within the amphioxus Branchiostoma japonicum genome. Functional analyses revealed that all i-type ligands, with the exception of BjIL17-i3, demonstrated robust capacity to stimulate the BjIL17R1/R2 heterocomplex. Conversely, v-type ligands exhibited preferential activation of independent BjIL17R1 or BjIL17R2 in an isoform-specific manner. Of particular significance, all eight BjIL17 isoforms participate in inflammatory regulation, differentially modulating transcriptional programs associated with either pro-inflammatory signaling or antimicrobial defense. Strikingly, BjIL17-i2 emerged as a potent pro-inflammatory mediator, displaying biomarker potential for inflammatory status delineation in amphioxus. Furthermore, BjIL17-v1 uniquely facilitated the coordinated induction of ATP synthesis and DNA repair-associated genes during inflammatory challenge. These findings collectively establish that the BjIL17 ligand-receptor network embodies an ancient, multifunctional regulatory axis governing immunological and homeostatic processes in basal chordates, predating the vertebrate-invertebrate divergence.
Collapse
Affiliation(s)
- Haifeng Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Liping Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuocheng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Haitao Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuecheng Dong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuai Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Begagic E, Vranic S, Sominanda A. The role of interleukin 17 in cancer: a systematic review. Carcinogenesis 2025; 46:bgae079. [PMID: 39673782 DOI: 10.1093/carcin/bgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024] Open
Abstract
Interleukin 17 (IL17) is a cytokine involved in immune regulation and has been increasingly recognized for its role in cancer progression. This systematic review aims to integrate data on IL17's role in various tumors to better understand its implications for cancer prognosis and treatment. The review included 105 studies (27.6% experimental and 72.4% clinical). Clinical studies involved 9266 patients: 31.2% males, 60.0% females, and 8.8% with undefined gender. IL17A and IL17 were the most studied subtypes (36.2% and 33.3%, respectively). Breast cancer (26.7%), colorectal carcinoma (13.3%), and hematologic malignancies (10.5%) were the most researched neoplasms. IL17A promoted tumor growth in breast cancer and correlated with poor outcomes in colorectal, breast, and lung cancers. IL17 also played a significant role in immune modulation in gliomas and other tumors. IL17A significantly influences tumor growth and prognosis across various cancers, with notable roles in immune modulation and poor outcomes in multiple cancer types.
Collapse
Affiliation(s)
- Emir Begagic
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Semir Vranic
- Department of Pathology, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ajith Sominanda
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
5
|
Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Discov 2024; 10:287. [PMID: 38879568 PMCID: PMC11180143 DOI: 10.1038/s41420-024-02064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaohan Su
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Li
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Zeng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
6
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, Li F. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci 2023; 24:13539. [PMID: 37686343 PMCID: PMC10487659 DOI: 10.3390/ijms241713539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The members of the cytokine interleukin 17 (IL-17) family, along with their receptors (IL-17R), are vital players in a range of inflammatory diseases and cancer. Although generally regarded as proinflammatory, the effects they exhibit on cancer progression are a double-edged sword, with both antitumor and protumor activities being discovered. There is growing evidence that the IL-17 signaling pathways have significant impacts on the tumor microenvironment (TME), immune response, and inflammation in various types of cancer, including pancreatic cancer. However, the detailed mechanistic functions of the IL-17/IL-17R families in pancreatic cancer were rarely systematically elucidated. This review considers the role of the IL-17/IL-17R families in inflammation and tumor immunity and elaborates on the mechanistic functions and correlations of these members with pathogenesis, progression, and chemoresistance in pancreatic cancer. By summarizing the advanced findings on the role of IL-17/IL17R family members and IL-17 signaling pathways at the molecular level, cellular level, and disease level in pancreatic cancer, this review provides an in-depth discussion on the potential of IL-17/IL-17R as prognostic markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Boyue Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
8
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
9
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
10
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
11
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
12
|
Chen SH, Wang X. A high preoperative serum IL-25 level is a negative prognosis predictor after liver resection for HBV-HCC. Front Oncol 2022; 12:858151. [PMID: 36119529 PMCID: PMC9478489 DOI: 10.3389/fonc.2022.858151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The aim of this study was to evaluate the association between preoperative IL-25 levels and HBV-HCC patient outcomes following liver surgery. Methods This study enrolled consecutive HCC patients that had undergone liver surgery from 2008 to 2015. Baseline patient clinical properties were assessed to establish predictors of postoperative overall survival and recurrence-free survival (OS and RFS, respectively) following liver resection. In addition, serum IL-25 levels were assessed via ELISA. Results Cox regression analyses revealed IL-25 levels to be independently related to the OS and RFS of 896 HBV-associated HCC patients. An optimal IL-25 cutoff level of 14.9 μg/ml was identified, with 206 patients in this cohort having IL-25 levels above this threshold. Both the OS and RFS of patients with an IL-25 level <14.9 μg/ml were significantly better after liver resection as compared to those of patients with higher preoperative levels of this cytokine (p < 0.05). Cox multivariate regression analyses revealed an IL-25 level ≥ 14.9 μg/L to be an independent predictor of poorer RFS and OS. A combination of IL-25 levels and tumor diameter may be an even more reliable predictor of OS. Conclusions IL-25 levels are independent predictors of postoperative survival within HCC patients undergoing liver resection.
Collapse
Affiliation(s)
- Shao-hua Chen
- Department of Hepatobiliary Surgery, 900TH Hospital of Logistics Support Force, Fuzhou, China
| | - Xu Wang
- Outpatient Department, Meng chao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Xu Wang,
| |
Collapse
|
13
|
Jarocki M, Karska J, Kowalski S, Kiełb P, Nowak Ł, Krajewski W, Saczko J, Kulbacka J, Szydełko T, Małkiewicz B. Interleukin 17 and Its Involvement in Renal Cell Carcinoma. J Clin Med 2022; 11:jcm11174973. [PMID: 36078902 PMCID: PMC9457171 DOI: 10.3390/jcm11174973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, molecular and immunological research is essential for the better understanding of tumor cells pathophysiology. The increasing number of neoplasms has been taken under ‘the molecular magnifying glass’ and, therefore, it is possible to discover complex relationships between the cytophysiology and immune system action. An example could be renal cell carcinoma (RCC) which has deep interactions with immune mediators such as Interleukin 17 (IL-17)—an inflammatory cytokine reacting to tissue damage and external pathogens. RCC is one of the most fatal urological cancers because of its often late diagnosis and poor susceptibility to therapies. IL-17 and its relationship with tumors is extremely complex and constitutes a recent topic for numerous studies. What is worth highlighting is IL-17’s dual character in cancer development—it could be pro- as well as anti-tumorigenic. The aim of this review is to summarize the newest data considering multiple connections between IL-17 and RCC.
Collapse
Affiliation(s)
- Michał Jarocki
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Julia Karska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Szymon Kowalski
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-506-158-136
| |
Collapse
|
14
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
15
|
Ding Q, Hou Z, Zhao Z, Chen Y, Zhao L, Xiang Y. Identification of the prognostic signature based on genomic instability-related alternative splicing in colorectal cancer and its regulatory network. Front Bioeng Biotechnol 2022; 10:841034. [PMID: 35923577 PMCID: PMC9340224 DOI: 10.3389/fbioe.2022.841034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a heterogeneous disease with many somatic mutations defining its genomic instability. Alternative Splicing (AS) events, are essential for maintaining genomic instability. However, the role of genomic instability-related AS events in CRC has not been investigated. Methods: From The Cancer Genome Atlas (TCGA) program, we obtained the splicing profiles, the single nucleotide polymorphism, transcriptomics, and clinical information of CRC. Combining somatic mutation and AS events data, a genomic instability-related AS signature was constructed for CRC. Mutations analyses, clinical stratification analyses, and multivariate Cox regression analyses evaluated this signature in training set. Subsequently, we validated the sensitivity and specificity of this prognostic signature using a test set and the entire TCGA dataset. We constructed a nomogram for the prognosis prediction of CRC patients. Differentially infiltrating immune cells were screened by using CIBERSORT. Inmmunophenoscore (IPS) analysis was used to evaluate the response of immunotherapy. The AS events-related splicing factors (SF) were analyzed by Pearson’s correlation. The effects of SF regulating the prognostic AS events in proliferation and migration were validated in Caco2 cells. Results: A prognostic signature consisting of seven AS events (PDHA1-88633-ES, KIAA1522-1632-AP, TATDN1-85088-ES, PRMT1-51042-ES, VEZT-23786-ES, AIG1-77972-AT, and PHF11-25891-AP) was constructed. Patients in the high-risk score group showed a higher somatic mutation. The genomic instability risk score was an independent variable associated with overall survival (OS), with a hazard ratio of a risk score of 1.537. The area under the curve of receiver operator characteristic curve of the genomic instability risk score in predicting the OS of CRC patients was 0.733. Furthermore, a nomogram was established and could be used clinically to stratify patients to predict prognosis. Patients defined as high-risk by this signature showed a lower proportion of eosinophils than the low-risk group. Patients with low risk were more sensitive to anti-CTLA4 immunotherapy. Additionally, HSPA1A and FAM50B were two SF regulating the OS-related AS. Downregulation of HSPA1A and FAM50B inhibited the proliferation and migration of Caco2 cells. Conclusion: We constructed an ideal prognostic signature reflecting the genomic instability and OS of CRC patients. HSPA1A and FAM50B were verified as two important SF regulating the OS-related AS.
Collapse
Affiliation(s)
- Qiuying Ding
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhengping Hou
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- The Department of Hepatobiliary Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Yao Chen, ; Lei Zhao, ; Yue Xiang,
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Yao Chen, ; Lei Zhao, ; Yue Xiang,
| | - Yue Xiang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Yao Chen, ; Lei Zhao, ; Yue Xiang,
| |
Collapse
|
16
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Karpisheh V, Ahmadi M, Abbaszadeh-Goudarzi K, Mohammadpour Saray M, Barshidi A, Mohammadi H, Yousefi M, Jadidi-Niaragh F. The role of Th17 cells in the pathogenesis and treatment of breast cancer. Cancer Cell Int 2022; 22:108. [PMID: 35248028 PMCID: PMC8897940 DOI: 10.1186/s12935-022-02528-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a severe problem worldwide due to an increase in mortality and prevalence among women. Despite early diagnostic procedures as well as advanced therapies, more investigation is required to find new treatment targets. Various factors and mechanisms, such as inflammatory conditions, can play a crucial role in cancer progression. Among them, Th17 cells are identified as effective CD4+ T cells that play an essential role in autoimmune diseases and inflammation which may be associated with anti-tumor responses. In addition, Th17 cells are one of the main factors involved in cancer, especially breast cancer via the inflammatory process. In tumor immunity, the exact mechanism of Th17 cells is not entirely understood and seems to have a dual function in tumor development. Various studies have reported that cytokines secreted by Th17 cells are in close relation to cancer stem cells and tumor microenvironment. Therefore, they play a critical role in the growth, proliferation, and invasion of tumor cells. On the other hand, most studies have reported that T cells suppress the growth of tumor cells by the induction of immune responses. In patients with breast cancer compared to normal individuals, various studies have been reported that the Th17 population dramatically increases in peripheral blood which results in cancer progression. It seems that Th17 cells by creating inflammatory conditions through the secretion of cytokines, including IL-22, IL-17, TNF-α, IL-21, and IL-6, can significantly enhance breast cancer progression. Therefore, to identify the mechanisms and factors involved in the activation and development of Th17 cells, they can provide an essential role in preventing breast cancer progression. In the present review, the role of Th17 cells in breast cancer progression and its therapeutic potential was investigated.
Collapse
Affiliation(s)
- Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehran Mohammadpour Saray
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Villanueva CM, Espinosa A, Gracia-Lavedan E, Vlaanderen J, Vermeulen R, Molina AJ, Amiano P, Gómez-Acebo I, Castaño-Vinyals G, Vineis P, Kogevinas M. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 157:106873. [PMID: 34543938 DOI: 10.1016/j.envint.2021.106873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) and nitrate are widespread chemicals in drinking water associated with colorectal cancer risk but mechanisms are not well understood. OBJECTIVES We explored the association between exposure to THMs and nitrate in drinking water and inflammation markers, and the link with colorectal cancer risk. METHODS A subset of 198 colorectal cancer cases and 205 controls from the multicase-control study MCC-Spain were included. Average concentration of THMs (chloroform, bromodichloromethane, dibromochloromethane, bromoform) and nitrate in tap water at the residence was estimated from age 18 until 2 years before the interview ("long term") and for a recent period (3 years before diagnosis). Serum levels of EGF, eotaxin, G-CSF, IL-17E, IL-1rA, IL-8, IP-10, MDC, MPO, periostin, VEGF, and C-reactive protein (CRP) were measured. We estimated the linear association between inflammation markers and exposure among controls, and the odds ratio of colorectal cancer associated with THM and nitrate exposure, and inflammation markers. A mediation analysis was conducted to identify inflammation markers in the pathway between THM/nitrate exposure and colorectal cancer. RESULTS Serum concentrations of EGF, IL-8, IL-17E and eotaxin increased with recent residential levels of brominated THMs, chloroforom and/or total THM. No associations were observed for nitrate and for long-term residential THM levels. All residential exposures except chloroform were positively associated with colorectal cancer. Serum concentrations of VEGF and periostin were positively associated with colorectal cancer, while EGF was inversely associated. One protein-exposure combination (periostin-recent ingested brominated THMs) slightly mediated the association with colorectal cancer risk. DISCUSSION Results suggest that estimated THM exposure is involved in inflammation processes. However, the study design was limited to stablish etiologically relevant associations between the protein levels and colorectal cancer risk. The lack of association between nitrate exposure and inflammation markers suggests other biological mechanisms are involved in the link with colorectal cancer.
Collapse
Affiliation(s)
- Cristina M Villanueva
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Ana Espinosa
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Esther Gracia-Lavedan
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Antonio José Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Spain
| | - Pilar Amiano
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Inés Gómez-Acebo
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universidad de Cantabria, Santander, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK; Italian Institute of Technology, Genova, Liguria, Italy
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
19
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
20
|
Poncin A, Onesti CE, Josse C, Boulet D, Thiry J, Bours V, Jerusalem G. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines 2021; 9:biomedicines9091087. [PMID: 34572273 PMCID: PMC8470317 DOI: 10.3390/biomedicines9091087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The role of eosinophils, a cell type involved in the immune response to parasitic infections and allergies, has been investigated in different cancer types, in both tumor tissue and at the circulating level. Most studies showed a role mainly in conjunction with immunotherapy in melanomas and lung tumors, while few data are available in breast cancer. In this review, we summarize literature data on breast cancer, showing a prognostic role of circulating eosinophil counts as well as of the presence of tumor tissue infiltration by eosinophils. In particular, some studies showed an association between a higher circulating eosinophil count and a good prognosis, as well as an association with response to neoadjuvant chemotherapy in hormone receptor-negative/HER2-positive and in triple negative breast cancer. Several mechanistic studies have also been conducted in in vivo models, but the exact mechanism by which eosinophils act in the presence of breast cancer is still unknown. Further studies on this subject are desirable, in order to understand their role at the cellular level, identify related biomarkers and/or possibly search for new therapeutic targets.
Collapse
Affiliation(s)
- Aurélie Poncin
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
- Department of Medical Oncology, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
21
|
Gowhari Shabgah A, Amir A, Gardanova ZR, Olegovna Zekiy A, Thangavelu L, Ebrahimi Nik M, Ahmadi M, Gholizadeh Navashenaq J. Interleukin-25: New perspective and state-of-the-art in cancer prognosis and treatment approaches. Cancer Med 2021; 10:5191-5202. [PMID: 34128588 PMCID: PMC8335817 DOI: 10.1002/cam4.4060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death which imposes a substantial financial burden. Among the several mechanisms involved in cancer progression, imbalance of immune cell-derived factors such as cytokines and chemokines plays a central role. IL-25, as a member of the IL-17 cytokine subfamily, exerts a paradoxical role in cancer, including tumor supportive and tumor suppressive. Hence, we have tried to clarify the role of IL-25 and its receptor in tumor progression and cancer prognosis. It has been confirmed that IL-25 exerts a tumor-suppressive role through inducing infiltration of eosinophils and B cells into the tumor microenvironment and activating the apoptotic pathways. In contrast, the tumor-supportive function has been implemented by activating inflammatory cascades, promoting cell cycle, and inducing type-2 immune responses. Since IL-25 has been dysregulated in tumor tissues and this dysregulation is involved in cancer development, its examination can be used as a tumor diagnostic and prognostic biomarker. Moreover, IL-25-based therapeutic approaches have shown promising results in cancer inhibition. In cancers in which IL-25 has a tumor-suppressive function, employing IL-25-enhancing approaches, such as Virulizin® and dihydrobenzofuran administration, has potentially inhibited tumor cell growth. On the other hand, in the case of IL-25-dependent tumor progression, using IL-25 blocking methods, including anti-IL-25 antibodies, might be a complementary approach to the other anticancer agent. Collectively, it is hoped, IL-25 might be a promising target in cancer treatment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of MedicineBam University of Medical SciencesBamIran
- Student Research CommitteeBam University of Medical SciencesBamIran
| | - Azwar Amir
- Wahidin Sudirohusodo Hospital MakassarMakassarTamalanreaIndonesia
| | - Zhanna R. Gardanova
- Department of PsychotherapyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic DentistrySechenov First Moscow State Medical UniversityMoscowRussia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of medical and Technical SciencesSaveetha UniversityChennaiIndia
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
22
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1224] [Impact Index Per Article: 306.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
23
|
Desharnais L, Walsh LA, Quail DF. Exploiting the obesity-associated immune microenvironment for cancer therapeutics. Pharmacol Ther 2021; 229:107923. [PMID: 34171329 DOI: 10.1016/j.pharmthera.2021.107923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Obesity causes chronic low-grade inflammation and leads to changes in the immune landscape of multiple organ systems. Given the link between chronic inflammatory conditions and cancer, it is not surprising that obesity is associated with increased risk and worse outcomes in many malignancies. Paradoxically, recent epidemiological studies have shown that high BMI is associated with increased efficacy of immune checkpoint inhibitors (ICI), and a causal relationship has been demonstrated in the preclinical setting. It has been proposed that obesity-associated immune dysregulation underlies this observation by inadvertently creating a favourable microenvironment for increased ICI efficacy. The recent success of ICIs in obese cancer patients raises the possibility that additional immune-targeted therapies may hold therapeutic value in this context. Here we review how obesity affects the immunological composition of the tumor microenvironment in ways that can be exploited for cancer immunotherapies. We discuss existing literature supporting a beneficial role for obesity during ICI therapy in cancer patients, potential opportunities for targeting the innate immune system to mitigate chronic inflammatory processes, and how to pinpoint obese patients who are most likely to benefit from immune interventions without relying solely on body mass index. Given that the incidence of obesity is expanding on an international scale, we propose that understanding obesity-associated inflammation is necessary to reduce cancer mortalities and capitalize on novel therapeutic opportunities in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Song X, Wei C, Li X. The potential role and status of IL-17 family cytokines in breast cancer. Int Immunopharmacol 2021; 95:107544. [PMID: 33740640 DOI: 10.1016/j.intimp.2021.107544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) is currently the most common malignant tumor of women in the world. At present, the development of BC is accelerating and showing a younger trend, which may be due to the known and/or unknown risk factors (RFs) for BC are increasing. It has been reported that inflammatory factors promote the occurrence and development of BC. No doubt chronic inflammation could trigger a series of molecular events, which will lead to the malignant transformation of differentiated cells, inhibition of anti-tumor immunity, and finally, lead to the occurrence and metastasis of tumors. With the deepening of research, it has been found that pro-inflammatory cytokine-interleukin-17 (IL-17) is closely related to BC. It not only plays an important role in promoting tumor proliferation, invasion and metastasis, but also has a significant correlation with poor prognosis. Recently, it was reported that IL-17 is closely related to programmed death ligand 1 (PD-L1) in BC. Therefore, starting with the role of IL-17 family cytokines in BC, this paper briefly discusses the potential role and status of IL-17 and seeks to contribute to the development of targeted drugs for BC-related treatments and to the identification of prediction factors for the early detection and prognosis prediction of BC for laying a solid theoretical foundation.
Collapse
Affiliation(s)
- Xuelian Song
- Department of The Graduate Student, Shandong First Medical University, Tai'an, Shandong 271000, PR China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, PR China.
| |
Collapse
|
25
|
Siemińska I, Poljańska E, Baran J. Granulocytes and Cells of Granulocyte Origin-The Relevant Players in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073801. [PMID: 33917620 PMCID: PMC8038777 DOI: 10.3390/ijms22073801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancy and cause of cancer death worldwide, and it still remains a therapeutic challenge for western medicine. There is strong evidence that, in addition to genetic predispositions, environmental factors have also a substantial impact in CRC development. The risk of CRC is attributed, among others to dietary habits, alcohol consumption, whereas physical activity, food containing dietary fiber, dairy products, and calcium supplements have a protective effect. Despite progress in the available therapies, surgery remains a basic treatment option for CRC. Implementation of additional methods of treatment such as chemo- and/or targeted immunotherapy, improved survival rates, however, the results are still far from satisfactory. One of the reasons may be the lack of deeper understanding of the interactions between the tumor and different types of cells, including tumor infiltrating granulocytes. While the role of neutrophils is quite well explored in many cancers, role of eosinophils and basophils is often underestimated. As part of this review, we focused on the function of different granulocyte subsets in CRC, emphasizing the beneficial role of eosinophils and basophils, as well as dichotomic mode of neutrophils action. In addition, we addressed the current knowledge on cells of granulocyte origin, specifically granulocytic myeloid derived suppressor cells (Gr-MDSCs) and their role in development and progression of CRC.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewa Poljańska
- Laboratory Medicine, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|
26
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
27
|
Kaewsarabhumi S, Proungvitaya T, Limpaiboon T, Tippayawat P, Tummanatsakun D, Titapun A, Sa-Ngaimwibool P, Proungvitaya S. Interleukin 25 (IL-25) expression in cholangiocarcinoma. Mol Clin Oncol 2020; 13:84. [PMID: 33163180 PMCID: PMC7642803 DOI: 10.3892/mco.2020.2154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Various cytokines are involved in carcinogenesis and tumor progression. Some tumor cells produce cytokines by themselves. Using secretome analysis, a high expression of APEX-1 was found in cholangiocarcinoma (CCA) cell lines. During this secretome analysis, it was found that CCA cell lines overexpressed some cytokines and related molecules, including interleukin 25 (IL-25). In the present study, we first performed precise secretome analysis on cytokines and related molecules in CCA cell lines and identified that IL-25 was overexpressed in CCA cell lines. Then, using immunohistochemical methods, we investigated the expression of IL-25 in the cancer tissues from 20 CCA patients in Northeast Thailand. Correlation between IL-25 expression levels and patients' clinical parameters were analyzed. The results showed that IL-25 expression was significantly (P<0.0001) higher in cancerous tissues than in the normal bile ducts and in the adjacent tissues. Overexpression of IL-25 protein in CCA tissue was confirmed using western blot analysis. Moreover, IL-25 expression in cancerous tissues was significantly (P<0.0015) higher in CCA patients with metastasis than in CCA patients without metastasis. Survival analysis revealed that a high expression of IL-25 was correlated with shorter survival time of CCA patients (P=0.0260). Aberrant expression of IL-25 in CCA tissue was associated with tumor metastasis and poor prognosis, suggesting that IL-25 is a potential prognostic biomarker. Biological roles of IL-25 in CCA genesis and progression should be explored in future.
Collapse
Affiliation(s)
- Supakit Kaewsarabhumi
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prakasit Sa-Ngaimwibool
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
28
|
Li Y, Wang D, Li X. The blood cells in NSCLC and the changes after RFA. Int J Hyperthermia 2020; 37:753-762. [PMID: 32619369 DOI: 10.1080/02656736.2020.1782486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lung cancer has attracted a lot of attention because of its high morbidity and mortality. The emergence of RFA provides a new treatment for unresectable NSCLC patients. In addition to killing in situ lung tumors, RFA also provides new immuno-activated antigens, for the treatment of lung cancer. It changes the tumor microenvironment and activates the entire immune system of patients. The peripheral blood cell count is easy to achieve and the blood cells are important in tumor immunity, which changes after RFA. On the one hand, the changes in blood cells identify the immune changes of NSCLC; on the other hand, it provides support and suspicion for the treatment of RFA.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Dongdong Wang
- Minimally Invasive Interventional Therapy Center Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Onesti CE, Josse C, Boulet D, Thiry J, Beaumecker B, Bours V, Jerusalem G. Blood eosinophilic relative count is prognostic for breast cancer and associated with the presence of tumor at diagnosis and at time of relapse. Oncoimmunology 2020; 9:1761176. [PMID: 32923121 PMCID: PMC7458605 DOI: 10.1080/2162402x.2020.1761176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Cancer outcome is associated with circulating immune cells, including eosinophils. Here we analyze the relative eosinophil count (REC) in different breast cancer subtypes. Methods Stage I–III breast cancer patients were included in the study and classified as REC-high vs low (cutoff 1.5%) or relative lymphocyte count (RLC)-high vs low (cutoff 17.5%). The co-primary endpoints were the breast cancer-specific survival (BCSS) or the time to treatment failure (TTF) in the REC groups. Results Overall 930 patients were included in the study. We observed a benefit for REC-high vs REC-low in TTF (HR 0.610, 95% CI 0.458–0.812), and in BCSS (HR 0.632, 95% CI 0.433–0.923). Similarly, we observed a better TTF (HR 0.421, 95% CI 0.262–0.677) and BCSS (HR 0.350, 95% CI 0.200–0.614) in RLC-high vs low. A lower relapse rate was observed in the REC-high vs REC-low group (17.1% vs 24.7%, p = 0.005), not confirmed in the multivariate analysis. A lower median REC at baseline and at relapse was observed compared to REC after surgery and during cancer-free follow-up (p < .0001). Conclusions REC could be a new promising, affordable and accessible predictive and prognostic biomarker in all breast cancer subtypes.
Collapse
Affiliation(s)
- Concetta Elisa Onesti
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Laboratory of Human Genetics, GIGA Institute, Liège, Belgium
| | - Claire Josse
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Laboratory of Human Genetics, GIGA Institute, Liège, Belgium
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Institute, Liège, Belgium
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Institute, Liège, Belgium
| | | | - Vincent Bours
- Laboratory of Human Genetics, GIGA Institute, Liège, Belgium.,Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Guy Jerusalem
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Faculty of Medicine, Liège University, Liège, Belgium
| |
Collapse
|
30
|
DelGiorno KE, Naeem RF, Fang L, Chung CY, Ramos C, Luhtala N, O'Connor C, Hunter T, Manor U, Wahl GM. Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Front Physiol 2020; 11:88. [PMID: 32116793 PMCID: PMC7033634 DOI: 10.3389/fphys.2020.00088] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023] Open
Abstract
Chronic pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma (PDA), is a serious, widespread medical condition characterized by inflammation, fibrosis, and acinar to ductal metaplasia (ADM). ADM is a cell type transdifferentiation event where pancreatic acinar cells become ductal-like under conditions of injury or oncogenic mutation. Here, we show that chronic pancreatitis and ADM in genetically wild type mice results in the formation of a significant population of chemosensory tuft cells. Transcriptomic analyses of pancreatitis tuft cells identify expression of inflammatory mediators, consistent with a role for tuft cells in injury progression and/or resolution. Though similar to tuft cell populations in other organs and disease systems, we identified a number of key differences that suggest context-specific tuft cell functions. We evaluated seven different mouse strains for tuft cell formation in response to chronic injury and identified significant heterogeneity reflecting varying proclivity for epithelial plasticity between strains. These results have interesting implications in the role of epithelial plasticity and heterogeneity in pancreatitis and highlight the importance of mouse strain selection when modeling human disease.
Collapse
Affiliation(s)
- Kathleen E DelGiorno
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Razia F Naeem
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Cynthia Ramos
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Natalie Luhtala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Carolyn O'Connor
- Flow Cytometry Core, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
31
|
Barati M, Sinaeian M, Shokrollahi Barough M, Pak F, Semnani V, Kokhaei P, Momtazi-Borojeni AA. Evaluation of Interleukin 25 and Interleukin 25 Receptor Expression in Peripheral Blood Mononuclear Cells of Breast Cancer Patients and Normal Subjects. J Interferon Cytokine Res 2020; 40:139-144. [PMID: 31905037 DOI: 10.1089/jir.2019.0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
[Figure: see text] Interleukin 25 (IL-25) is a ligand for IL-25 receptor (IL-25R) with apoptotic effect on breast cancer epithelial cells that are produced by peripheral blood mononuclear cells (PBMCs). In this study, we aimed to evaluate IL-25/IL-25R mRNA expression in PBMCs, and also investigate correlation of IL-25/IL-25R with tumor stages/grades in patients with breast cancer. PBMCs and serum were isolated from 30 patients with breast cancer and 18 normal subjects. ELISA test was conducted for IL-25 cytokine. Total RNA was isolated from 2 × 106 PBMCs and reverse transcribed to cDNA. Quantitative PCRs were performed for IL-25, IL-25R, and GAPDH genes. IL-25 mRNA expression in PBMCs of breast cancer patients (malignant and benign) was significantly lower than that in normal subjects, Also IL-25 expression in breast cancer patients with malignant tumor was significantly lower than that in nonmalignant patients. IL-25R expression in malignant patients was significantly higher than that of benign and normal subjects (P < 0.05). IL-25 in serum of normal subjects was higher than that of benign and malignant patients. There was a direct association between IL-25R expression and tumor grade/stage of cancer. In conclusion, IL-25 seems as a potential prognostic factor in the serum of breast cancer patients and reduction of IL-25 is associated with a higher grade/stage of cancer.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sinaeian
- Department of Biology Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mahdieh Shokrollahi Barough
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Pak
- Departments of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahid Semnani
- Departments of Pathology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Departments of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Li Q, Ma L, Shen S, Guo Y, Cao Q, Cai X, Feng J, Yan Y, Hu T, Luo S, Zhou L, Peng B, Yang Z, Hua Y. Intestinal dysbacteriosis-induced IL-25 promotes development of HCC via alternative activation of macrophages in tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019. [PMID: 31296243 DOI: 10.1186/s13046-019-1271-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gut microbiota and the tumor microenvironment are thought to be critical factors that modulate the processes of liver diseases, including hepatocellular carcinoma (HCC). Interleukin-25 (IL-25) promotes type 2 immunity via alternative activation of macrophages, and is closely associated with inflammation-related diseases, even malignancies. However, it is not clear which role IL-25 plays in the development of HCC, and whether gut microbiota are involved. METHODS IL-25 was detected by ELISA, Western blotting (WB), and immunohistochemistry. Chemokines were measured by RT-qPCR and WB. After co-culture with IL-25-stimulated macrophages, the cell growth, migration, invasion and EMT marker of HCC cell lines (MHCC97L and HepG2) were evaluated by Brdu proliferation, Transwell assays and WB. An antibody neutralization assay of chemokine CXCL10 was performed to confirm its role in HCC development. Furthermore, the effects of IL-25 in HCC were investigated in vivo. Dysbiosis of gut microflora was induced by antibiotics (vancomycin, cefoperazone or combination of ampicillin, neomycin, metronidazole, and vancomycin). We used feces suspension to treat colonic epithelial NCM460 cells, and detected IL-25 and tuft cell marker DCLK1 using WB and immunofluorescence staining. RESULTS We found that the level of IL-25 was significantly elevated in HCC patients, and was negatively correlated with survival rate after hepatectomy. However, IL-25 did not directly promote the development of HCC cells. Then, we observed the significant positive correlation between IL-25 level and M2 percentage (CD206/CD68) in HCC tumors. In vitro and in vivo, IL-25 induced alternative activation of macrophages promoted HCC cell migration, invasion and tumorigenesis, increased the expression of vimentin, Snail and phospho-ERK, and decreased the expression of E-cadherin in HCC cells. After IL-25 treatment, chemokine CXCL10 was increased in macrophages. Neutralizing CXCL10 in macrophage-conditioned medium reversed the IL-25-mediated effect on HCC cells. Vancomycin-induced dysbiosis promoted the growth of orthotopic HCC homograft. Surprisedly, we found the hyperplasia of colonic epithelial tuft cells, from which more IL-25 was secreted . CONCLUSIONS IL-25 promotes the progression of HCC through inducing alternative activation and CXCL10 secretion of macrophages in tumor microenvironment, and IL-25 secretion may partly result from hyperplastic epithelial tuft cells in colon, induced by gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Qiao Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lei Ma
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shunli Shen
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yu Guo
- Cancer Center & Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qinghua Cao
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiuqin Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Juan Feng
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Yuan Yan
- Department of Histology and Embryology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Tianyu Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiya Luo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lin Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Yunpeng Hua
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
33
|
Intestinal dysbacteriosis-induced IL-25 promotes development of HCC via alternative activation of macrophages in tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:303. [PMID: 31296243 PMCID: PMC6625119 DOI: 10.1186/s13046-019-1271-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Background Gut microbiota and the tumor microenvironment are thought to be critical factors that modulate the processes of liver diseases, including hepatocellular carcinoma (HCC). Interleukin-25 (IL-25) promotes type 2 immunity via alternative activation of macrophages, and is closely associated with inflammation-related diseases, even malignancies. However, it is not clear which role IL-25 plays in the development of HCC, and whether gut microbiota are involved. Methods IL-25 was detected by ELISA, Western blotting (WB), and immunohistochemistry. Chemokines were measured by RT-qPCR and WB. After co-culture with IL-25-stimulated macrophages, the cell growth, migration, invasion and EMT marker of HCC cell lines (MHCC97L and HepG2) were evaluated by Brdu proliferation, Transwell assays and WB. An antibody neutralization assay of chemokine CXCL10 was performed to confirm its role in HCC development. Furthermore, the effects of IL-25 in HCC were investigated in vivo. Dysbiosis of gut microflora was induced by antibiotics (vancomycin, cefoperazone or combination of ampicillin, neomycin, metronidazole, and vancomycin). We used feces suspension to treat colonic epithelial NCM460 cells, and detected IL-25 and tuft cell marker DCLK1 using WB and immunofluorescence staining. Results We found that the level of IL-25 was significantly elevated in HCC patients, and was negatively correlated with survival rate after hepatectomy. However, IL-25 did not directly promote the development of HCC cells. Then, we observed the significant positive correlation between IL-25 level and M2 percentage (CD206/CD68) in HCC tumors. In vitro and in vivo, IL-25 induced alternative activation of macrophages promoted HCC cell migration, invasion and tumorigenesis, increased the expression of vimentin, Snail and phospho-ERK, and decreased the expression of E-cadherin in HCC cells. After IL-25 treatment, chemokine CXCL10 was increased in macrophages. Neutralizing CXCL10 in macrophage-conditioned medium reversed the IL-25-mediated effect on HCC cells. Vancomycin-induced dysbiosis promoted the growth of orthotopic HCC homograft. Surprisedly, we found the hyperplasia of colonic epithelial tuft cells, from which more IL-25 was secreted . Conclusions IL-25 promotes the progression of HCC through inducing alternative activation and CXCL10 secretion of macrophages in tumor microenvironment, and IL-25 secretion may partly result from hyperplastic epithelial tuft cells in colon, induced by gut microbiota dysbiosis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1271-3) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Guo HZ, Niu LT, Qiang WT, Chen J, Wang J, Yang H, Zhang W, Zhu J, Yu SH. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance. FASEB J 2019; 33:9565-9576. [PMID: 31136196 DOI: 10.1096/fj.201900099r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Secreted proteins provide crucial signals that have been implicated in the development of acute myeloid leukemia (AML) in the bone marrow microenvironment. Here we identify aberrant expressions of inflammatory IL-17B and its receptor (IL-17RB) in human and mouse mixed lineage leukemia-rearranged AML cells, which were further increased after exposure to chemotherapy. Interestingly, silencing of IL-17B or IL-17RB led to significant suppression of leukemic cell survival and disease progression in vivo. Moreover, the IL-17B-IL-17RB axis protected leukemic cells from chemotherapeutic agent-induced apoptotic effects. Mechanistic studies revealed that IL-17B promoted AML cell survival by enhancing ERK, NF-κB phosphorylation, and the expression of antiapoptotic protein B-cell lymphoma 2, which were reversed by small-molecule inhibitors. Thus, the inhibition of the IL-17B-IL-17RB axis may be a valid strategy to enhance sensitivity and therapeutic benefit of AML chemotherapy.-Guo, H.-Z., Niu, L.-T., Qiang, W.-T., Chen, J., Wang, J., Yang, H., Zhang, W., Zhu, J., Yu, S.-H. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance.
Collapse
Affiliation(s)
- He-Zhou Guo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Li-Ting Niu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wan-Ting Qiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Wang
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hui Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Shan-He Yu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| |
Collapse
|
35
|
Shen W, Qiu Y, Li J, Wu C, Liu Z, Zhang X, Hu X, Liao Y, Wang H. IL-25 promotes cisplatin resistance of lung cancer cells by activating NF-κB signaling pathway to increase of major vault protein. Cancer Med 2019; 8:3491-3501. [PMID: 31044552 PMCID: PMC6601590 DOI: 10.1002/cam4.2213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
As an inflammatory factor, IL‐25 has been studied in variouscancers, but it is rarely reported in cancer chemotherapy resistance. Major vault protein (MVP), as a gene associated with lung multidrug resistance, is associated with multiple chemotherapy resistances of lung cancer. However, the relationship between IL‐25 and MVP in lung cancer cells has not been studied. In this study, we found that both IL‐25 and MVP were elevated expressed in cisplatin‐resistant lung adenocarcinoma cell line (A549/CDDP). Silencing of IL‐25 resulted in down‐regulation of MVP expression and reduced cisplatin tolerance of A549/CDDP cells. Overexpression of IL‐25 resulted in increase of MVP expression and the cisplatin tolerance in A549 cells. In addition, we found that the extracellular IL‐25 could stimulate the expression of MVP and activate the NF‐κB signaling pathway. Further, animal models also confirmed that IL‐25 reduced the sensitivity of xenografts to chemotherapy. Taken together, we believe that the up‐regulation of IL‐25 induces MVP expression contributing to chemotherapy resistances of lung cancer cells. Our findings suggest that interference the expression of IL‐25 might be potential treatment strategies for the clinical reversing the chemotherapy resistance.
Collapse
Affiliation(s)
- Weiming Shen
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yang Qiu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingyao Li
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Vasculocardiology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaorong Zhang
- The Institute of Burn Research, South-West Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Hu
- The Institute of Burn Research, South-West Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haidong Wang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
36
|
Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine 2019; 116:7-12. [PMID: 30684916 DOI: 10.1016/j.cyto.2018.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer in the world. Several factors contribute to the development of this cancer. Tumor formation in colon triggers immune responses such as immune cells proliferation, phenotype alteration, cytokine synthesis and release, which lead to IL-17 producing T cells, the differentiated CD4+ T cells i.e. T helper 17. IL-17 is a pro-inflammatory cytokine, which its level is up regulated in serum and tissues of CRC patients. Several studies have shown that IL-17 has an important role in metastasis and prognosis of CRC. The aim of this review is to summarize the role of this cytokine in tumorigenesis, angiogenesis and metastasis of CRC and discuss its value in diagnosis, prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoud Baradaran Noveiry
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Baltimore, MD, USA
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
37
|
The Interleukin-17 Family of Cytokines in Breast Cancer. Int J Mol Sci 2018; 19:ijms19123880. [PMID: 30518157 PMCID: PMC6321268 DOI: 10.3390/ijms19123880] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide and remains a major cause of mortality with an expected 137,000 death this year in Europe. Standard management of metastatic BC comprises hormonotherapy, chemotherapy, and targeted therapies. Cyclin dependent kinase (CDK) and mammalian target of rapamycin (mTOR) inhibitors have recently proved their efficiency in hormonal receptor expressing BC. Checkpoint proteins inhibition is being evaluated in phase 3 studies. Since inflammation is constantly present in cancers, research teams have focused their attention on the interleukin-17 (IL-17) family of proinflammatory cytokines. Preclinical experiments have reported both pro and antitumor effects depending on the conditions. In the present article, we review the accumulating evidences about the roles of IL-17 in BC and discuss whether this family of cytokines could be a new target in anticancer treatments.
Collapse
|
38
|
Guggino G, Lin X, Rizzo A, Xiao F, Saieva L, Raimondo S, Di Liberto D, Candore G, Ruscitti P, Cipriani P, Giacomelli R, Dieli F, Alessandro R, Triolo G, Lu L, Ciccia F. Interleukin-25 Axis Is Involved in the Pathogenesis of Human Primary and Experimental Murine Sjögren's Syndrome. Arthritis Rheumatol 2018; 70:1265-1275. [PMID: 29569854 DOI: 10.1002/art.40500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the role of the interleukin-25 (IL-25)/IL-17 receptor B (IL-17RB) axis in experimental Sjögren's syndrome (SS) and in patients with primary SS and primary SS-associated lymphoma. METHODS Expression of IL-25, IL-17RB, IL-17B, and tumor necrosis factor receptor-associated factor 6 (TRAF6) was analyzed on minor salivary gland (SG) samples from patients with primary SS and on parotid gland samples from patients with primary SS-associated B cell non-Hodgkin's lymphoma (NHL). IL-17RB expression and the frequencies of natural group 2 innate lymphoid cells (ILC2s), inflammatory ILC2s, and M2-polarized macrophages were assessed by flow cytometry in SG mononuclear cells and peripheral blood mononuclear cells (PBMCs). Tissue distribution of ILC2s was studied by confocal microscopy. The role of recombinant IL-25 and of rituximab in modulating IL-25 expression was investigated in in vitro studies. IL-25/IL-17RB and TRAF6 expression and the role of IL-25 inhibition were also studied in the experimental murine model of SS. RESULTS Activation of the IL-25/IL-17RB/TRAF6 axis correlated with the focus score and was observed in patients with primary SS and in patients with primary SS-associated NHL. A significant increase in the frequency of inflammatory ILC2s was observed both in SG mononuclear cells and in PBMCs. IL-25 stimulation of isolated SG mononuclear cells and PBMCs from patients and controls resulted both in inflammatory ILC2 expansion and in increased autoantibody production. Rituximab modulated expression of inflammatory ILC2s and IL-25 in primary SS. SG protein-immunized mice developed overt SS symptoms with increased IL-25 expression and increased frequency of CD4+IL-17RB+TRAF6+ cells. IL-25 neutralization attenuated disease progression and tissue pathology in mice with experimental SS. CONCLUSION IL-25 may promote the inflammatory state in primary SS and may be a potential target for novel disease-modifying therapeutic strategies in patients with primary SS.
Collapse
Affiliation(s)
| | | | - Aroldo Rizzo
- Ospedali riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Fan Xiao
- University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | - Liwei Lu
- University of Hong Kong, Hong Kong
| | | |
Collapse
|
39
|
Abstract
IL-25, also known as IL-17E, is a member of the IL-17 cytokine family mostly produced by epithelial cells and innate immune cells. After binding to the IL-17RB/IL-17RA complex, IL-25 induces downstream signaling responses in epithelial cells and type 2 lymphocytes, which initiates, propagates, and sustains type 2 immunity. The function of IL-25 in allergic diseases such as asthma has been well established, and now also is extended to diseases such as inflammatory bowel disease and cancer. This review summarizes the literature on IL-25 and discusses the unsolved questions. Our knowledge on IL-25 will pave the pathway for targeting this cytokine in inflammatory diseases.
Collapse
Affiliation(s)
- Miao Xu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Li J, Liao Y, Ding T, Wang B, Yu X, Chu Y, Xu J, Zheng L. Tumor-infiltrating macrophages express interleukin-25 and predict a favorable prognosis in patients with gastric cancer after radical resection. Oncotarget 2017; 7:11083-93. [PMID: 26840565 PMCID: PMC4905459 DOI: 10.18632/oncotarget.7095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/17/2016] [Indexed: 12/28/2022] Open
Abstract
Interleukin-25 (IL-25) is a recently identified member of the proinflammatory IL-17 cytokine family; however, its role in human tumors remains largely unknown. The aim of this study was to investigate the cellular source and clinical significance of IL-25 in gastric cancer (GC) in situ. The results demonstrated that macrophages (Mφs) were the primary IL-25-expressing cells (IL-25+) in GC in situ. Moreover, IL-25+ cells were highly enriched in the intra-tumoral (IT) region of GC tissues (p < 0.001). The production of IL-25 in Mφs exposed to culture supernatant from gastric cancer cell line SGC7901 in vitro was induced by transforming growth factor-β1, and their density in the IT region was positively associated with those of other effector immune cells, namely, CD4+ T cells, CD8+ T cells and CD103+T cells (p < 0.01). This suggested that macrophages might produce IL-25 to create an antitumor micromilieu in GC tissues. The level of IL-25+IT cells was positively associated with histological grade (p < 0.001) and found to be an independent predictor of favorable survival (p = 0.024) in patients with GC after radical resection. These findings suggest that IL-25+IT cells may be a novel therapeutic target in those patients.
Collapse
Affiliation(s)
- Jinqing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuan Liao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tong Ding
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Bo Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xingjuan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yifan Chu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Key Laboratory of Gene Engineering of The Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
41
|
Ferretti E, Di Carlo E, Ognio E, Fraternali-Orcioni G, Corcione A, Belmonte B, Ravetti JL, Tripodo C, Ribatti D, Pistoia V. IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin Lymphoma by curtailing neoangiogenesis. Oncoimmunology 2017; 7:e1397249. [PMID: 29399397 DOI: 10.1080/2162402x.2017.1397249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-25, a member of the IL-17 cytokine superfamily, is produced by immune and non-immune cells and exerts type 2 pro-inflammatory effects in vitro and in vivo. The IL-25 receptor(R) is composed of the IL-17RA/IL-17RB subunits. Previous work showed that germinal centre (GC)-derived B-cell non Hodgkin lymphomas (B-NHL) expressed IL-17AR, formed by IL-17RA and IL-17RC subunits, and IL-17A/IL-17AR axis promoted B-NHL growth by stimulating neoangiogenesis. Here, we have investigated expression and function of IL-25/IL-25R axis in lymph nodes from human GC-derived B-NHL, i.e. Follicular Lymphoma (FL,10 cases), Diffuse Large B Cell Lymphoma (6 cases) and Burkitt Lymphoma (3 cases). Tumor cells expressed IL-25R and IL-25 that was detected also in non-malignant cells by flow cytometry. Immunohistochemical studies confirmed expression of IL-25R and IL-25 in FL cells, and highlighted IL-25 expression in bystander elements of the FL microenvironment. IL-25 i) up-regulated phosphorylation of NFkBp65, STAT-1 and JNK in B-NHL cells; ii) inhibited in vitro proliferation of the latter cells; iii) exerted anti-tumor activity in two in vivo B-NHL models by dampening expression of pro-angiogenic molecules as VEGF-C, CXCL6 and ANGPT3. In conclusion, IL-25, that is intrinsically pro-angiogenic, inhibits B-NHL growth by reprogramming the angiogenic phenotype of B-NHL cells.
Collapse
Affiliation(s)
- Elisa Ferretti
- Laboratory of Experimental Therapies in Oncology and Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University and Ce.SI-MeT, Aging Research Center, Pathological Anatomy and Immuno-Oncology Unit, "G. d'Annunzio" University, Chieti, Italy
| | - Emanuela Ognio
- Animal Facility, IRCCS AOU San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Giulio Fraternali-Orcioni
- Unit of Pathology, IRCCS AOU San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Anna Corcione
- Laboratorio di Oncologia and Laboratorio malattie autoinfiammatorie e immudeficienze, Istituto Giannina Gaslini, Genova, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Jean Louis Ravetti
- Unit of Pathology, IRCCS AOU San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Claudio Tripodo
- Laboratorio di Oncologia and Laboratorio malattie autoinfiammatorie e immudeficienze, Istituto Giannina Gaslini, Genova, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, and National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Vito Pistoia
- Immunology Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
42
|
Zhou L, Shi M, Zhao L, Lin Z, Tang Z, Sun H, Chen T, Lv Z, Xu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis. Parasit Vectors 2017. [PMID: 28623940 PMCID: PMC5474055 DOI: 10.1186/s13071-017-2228-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. Methods A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Results Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. Conclusions CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Jardim-Perassi BV, Calvinho GB, Facchini MC, Viloria-Petit AM, de Campos Zuccari DAP. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci 2017. [PMID: 28624391 DOI: 10.1016/j.lfs.2017.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.
Collapse
Affiliation(s)
- Gabriela Bottaro Gelaleti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Thaiz Ferraz Borin
- Tumor Imaging Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| | - Larissa Bazela Maschio-Signorini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Marina Gobbe Moschetta
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil
| | - Guilherme Berto Calvinho
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Mariana Castilho Facchini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Debora Aparecida Pires de Campos Zuccari
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
44
|
Abstract
Metastasis in lung cancer is a multifaceted process. In this review, we will dissect the process in several isolated steps such as angiogenesis, hypoxia, circulation, and establishment of a metastatic focus. In reality, several of these processes overlap and occur even simultaneously, but such a presentation would be unreadable. Metastasis requires cell migration toward higher oxygen tension, which is based on changing the structure of the cell (epithelial-mesenchymal transition), orientation within the stroma and stroma interaction, and communication with the immune system to avoid attack. Once in the blood stream, cells have to survive trapping by the coagulation system, to survive shear stress in small blood vessels, and to find the right location for extravasation. Once outside in the metastatic locus, tumor cells have to learn the communication with the “foreign” stroma cells to establish vascular supply and again express molecules, which induce immune tolerance.
Collapse
|
45
|
Abstract
Metastasis is the leading cause of death in breast cancer patients. However, the mechanisms underlying metastasis are not well understood and there is no effective treatment in the clinic. Here, we demonstrate that in MMTV-PyMT, a highly malignant spontaneous breast tumor model, IL-25 (also called IL-17E) was expressed by tumor-infiltrating CD4+ T cells and macrophages. An IL-25 neutralization antibody, while not affecting primary tumor growth, substantially reduced lung metastasis. Inhibition of IL-25 resulted in decreased type 2 T cells and macrophages in the primary tumor microenvironments, both reported to enhance breast tumor invasion and subsequent metastasis to the lung. Taken together, our data suggest IL-25 blockade as a novel treatment for metastatic breast tumor.
Collapse
|
46
|
Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, Bagot M, Al-Dacak R. Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. Int J Mol Sci 2016; 17:ijms17091433. [PMID: 27589729 PMCID: PMC5037712 DOI: 10.3390/ijms17091433] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
The inflammatory process contributes to immune tolerance as well as to tumor progression and metastasis. By releasing extracellular signals, cancerous cells constantly shape their surrounding microenvironment through their interactions with infiltrating immune cells, stromal cells and components of extracellular matrix. Recently, the pro-inflammatory interleukin 17 (IL-17)-producing T helper lymphocytes, the Th17 cells, and the IL-17/IL-17 receptor (IL-17R) axis gained special attention. The IL-17 family comprises at least six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F. Secreted as disulfide-linked homo- or heterodimers, the IL-17 bind to the IL-17R, a type I cell surface receptor, of which there are five variants, IL-17RA to IL-17RE. This review focuses on the current advances identifying the promoting role of IL-17 in carcinogenesis, tumor metastasis and resistance to chemotherapy of diverse solid cancers. While underscoring the IL-17/IL-17R axis as promising immunotherapeutic target in the context of cancer managing, this knowledge calls upon further in vitro and in vivo studies that would allow the development and implementation of novel strategies to combat tumors.
Collapse
Affiliation(s)
- Joseph Fabre
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
- Centre Hospitalo-Universitaire Henri Mondor, Service de Radiothérapie, 51 Avenue du Maréchal de Lattre de Tassigny, F-94010 Créteil, France.
| | - Jerome Giustiniani
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Christian Garbar
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Frank Antonicelli
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Yacine Merrouche
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint Louis, F-75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
- OREGA Biotech, 69130 Ecully, France.
| | - Martine Bagot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint Louis, F-75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
| | - Reem Al-Dacak
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
| |
Collapse
|
47
|
Luo Y, Yang Z, Su L, Shan J, Xu H, Xu Y, Liu L, Zhu W, Chen X, Liu C, Chen J, Yao C, Cheng F, Zhang C, Ma Q, Shen J, Qian C. Non-CSCs nourish CSCs through interleukin-17E-mediated activation of NF-κB and JAK/STAT3 signaling in human hepatocellular carcinoma. Cancer Lett 2016; 375:390-399. [DOI: 10.1016/j.canlet.2016.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
|
48
|
Acute blockade of IL-25 in a colitis associated colon cancer model leads to increased tumor burden. Sci Rep 2016; 6:25643. [PMID: 27165713 PMCID: PMC4863374 DOI: 10.1038/srep25643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation within the gastrointestinal tract results in an increased risk for developing colorectal cancer. Epithelial cytokines, including interleukin-25 (IL-25), are produced in the colon and are critical for protection from parasites, but can also be pathogenic in the context of inflammatory bowel diseases and allergy. Whether IL-25 is involved in the progression from inflammation to cancer is still largely unexplored. Using a well-established murine model for colitis-induced colon cancer; we aimed to determine the role of IL-25 in this process. We found that acute IL-25 blockade resulted in greater tumor burdens compared to isotype control treated mice. Histologically, α-IL-25 treated mice had increased colitis scores compared to mice receiving isotype control antibody, as well as decreased eosinophilia. This is the first study to explore the therapeutic potential of using an IL-25 blocking antibody during a chronic inflammatory setting. Taken together these data suggest that IL-25 plays an inhibitory role in the growth and development of colonic tumors.
Collapse
|
49
|
Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators Inflamm 2015; 2015:804347. [PMID: 26783383 PMCID: PMC4691460 DOI: 10.1155/2015/804347] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Metastatic disease accounts for more than 90% of deaths from breast cancer. Yet the factors that trigger metastasis, often years after primary tumor removal, are not understood well. Recently the proinflammatory cytokine interleukin- (IL-) 17 family has been associated with poor prognosis in breast cancer. Here we review current literature on the pathogenic mechanisms driven by IL-17 during breast cancer progression and connect these findings to metastasis. These include (1) direct effects of IL-17 on tumor cells promoting tumor cell survival and invasiveness, (2) regulation of tumor angiogenesis, and (3) interaction with myeloid derived suppressor cells (MDSCs) to inhibit antitumor immune response and collaborate at the distant metastatic site. Furthermore, IL-17 might also be a culprit in bone destruction caused by late stage bone metastasis. Interestingly, in addition to these potential prometastasis functions, there is also evidence for an opposite, antitumor role of IL-17 during cancer therapies. We hypothesize that these contradictory roles may be due to chronic, imbalanced versus acute transient nature of the immune reactions, as well as differences in the cells that interact with IL-17+ cells under different circumstances.
Collapse
|
50
|
IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Sci Rep 2015; 5:11874. [PMID: 26154409 PMCID: PMC4648389 DOI: 10.1038/srep11874] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory IL-17 cytokines were initially described for their pathogenic role in chronic inflammatory diseases and subsequent accumulating evidence indicated their involvement in carcinogenesis. In the present study we report that IL-17A and IL-17E receptors subunits mRNA expressions are upregulated in breast cancers versus normal samples. IL-17E, which is undetectable in most normal breast tissues tested, seems more expressed in some tumors. Investigation of the molecular signaling following stimulation of human breast cancer cell lines with IL-17A and IL-17E showed that both cytokines induced the phosphorylation of c-RAF, ERK1/2 and p70 S6 Kinase were involved in the proliferation and survival of tumor cells. Accordingly, IL-17A and IL-17E promoted resistance to Docetaxel and failed to induce apoptosis as previously reported for IL-17E. Interestingly, we also revealed that both cytokines induced the generation of tumorogenic low molecular weight forms of cyclin E (LMW-E), which high levels correlated strongly with a poor survival in breast cancer patients. These results show for the first time some of the molecular pathways activated by IL-17A and IL-17E that may participate to their pro-oncogenic activity in breast cancers.
Collapse
|