1
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
2
|
Sato Y, Vatsan R, Joshi BH, Husain SR, Puri RK. A Novel Recombinant Modified Vaccinia Ankara Virus expressing Interleukin-13 Receptor α2 Antigen for Potential Cancer Immunotherapy. Curr Mol Med 2024; 24:758-770. [PMID: 36999709 DOI: 10.2174/1566524023666230331085007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cellmediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors in vivo, indicating that host immune responses against IL-13Rα2 need further augmentation. OBJECTIVE The aim of the study is developing a recombinant modified vaccinia Ankara (MVA) expressing IL-13Rα2 (rMVA-IL13Rα2) virus and study in vitro infectivity and efficacy against IL-13Rα2 positive cell lines. METHODS We constructed a recombinant MVA expressing IL-13Rα2 and a green fluorescent protein (GFP) reporter gene. Purified virus titration by infection of target cells and immunostaining using anti-vaccinia and anti-IL-13Rα2 antibodies was used to confirm the identity and purity of the rMVA-IL13Rα2. RESULTS Western Blot analysis confirmed the presence of IL-13Rα2 protein (~52 kDa). Flow cytometric analysis of IL-13Rα2 negative T98G glioma cells when infected with rMVA-IL13Rα2 virus demonstrated cell-surface expression of IL-13Rα2, indicating the infectivity of the recombinant virus. Incubation of T98G-IL13Rα2 cells with varying concentrations (0.1-100 ng/ml) of interleukin-13 fused to truncated Pseudomonas exotoxin (IL13-PE) resulted in depletion of GFP+ fluorescence in T98G-IL13Rα2 cells. IL13-PE (10-1000 ng/ml) at higher concentrations also inhibited the protein synthesis in T98G-IL13Rα2 cells compared to cells infected with the control pLW44-MVA virus. IL13- PE treatment of rMVA-IL13Rα2 infected chicken embryonic fibroblast and DF-1 cell line reduced virus titer compared to untreated cells. CONCLUSION rMVA-IL13Rα2 virus can successfully infect mammalian cells to express IL-13Rα2 in a biologically active form on the surface of infected cells. To evaluate the efficacy of rMVA-IL13Rα2, immunization studies are planned in murine tumor models.
Collapse
Affiliation(s)
- Yuki Sato
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Department of Research Promotion, Division of Cancer Research, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda, Tokyo 100- 0004, Japan
| | - Ramjay Vatsan
- Gene Therapy Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Syed R Husain
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| |
Collapse
|
3
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
4
|
Orr S, Huang L, Moser J, Stroopinsky D, Gandarilla O, DeCicco C, Liegel J, Tacettin C, Ephraim A, Cheloni G, Torres D, Kufe D, Rosenblatt J, Hidalgo M, Muthuswamy SK, Avigan D. Personalized tumor vaccine for pancreatic cancer. Cancer Immunol Immunother 2023; 72:301-313. [PMID: 35834008 PMCID: PMC10992215 DOI: 10.1007/s00262-022-03237-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic cancer is a highly lethal malignancy often presenting with advanced disease and characterized by resistance to standard chemotherapy. Immune-based therapies such checkpoint inhibition have been largely ineffective such that pancreatic cancer is categorized as an immunologically "cold tumor". In the present study, we examine the therapeutic efficacy of a personalized cancer vaccine in which tumor cells are fused with dendritic cells (DC) resulting in the broad induction of antitumor immunity. RESULTS In the KPC spontaneous pancreatic cancer murine model, we demonstrated that vaccination with DC/KPC fusions led to expansion of pancreatic cancer specific lymphocytes with an activated phenotype. Remarkably, vaccination led to a reduction in tumor bulk and near doubling of median survival in this highly aggressive model. In a second murine pancreatic model (Panc02), vaccination with DC/tumor fusions similarly led to expansion of tumor antigen specific lymphocytes and their infiltration to the tumor site. Having shown efficacy in immunocompetent murine models, we subsequently demonstrated that DC/tumor fusions generated from primary human pancreatic cancer and autologous DCs potently stimulate tumor specific cytotoxic lymphocyte responses. CONCLUSIONS DC/tumor fusions induce the activation and expansion of tumor reactive lymphocytes with the capacity to infiltrate into the pancreatic cancer tumor bed.
Collapse
Affiliation(s)
- Shira Orr
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Ling Huang
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - James Moser
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Dina Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Omar Gandarilla
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Cori DeCicco
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Jessica Liegel
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Cansu Tacettin
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Adam Ephraim
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Daniela Torres
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Donald Kufe
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Manuel Hidalgo
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Senthil K Muthuswamy
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Selvanesan BC, Meena K, Beck A, Meheus L, Lara O, Rooman I, Gravekamp C. Nicotinamide combined with gemcitabine is an immunomodulatory therapy that restrains pancreatic cancer in mice. J Immunother Cancer 2020; 8:e001250. [PMID: 33154149 PMCID: PMC7646363 DOI: 10.1136/jitc-2020-001250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Treatments for pancreatic ductal adenocarcinoma are poorly effective, at least partly due to the tumor's immune-suppressive stromal compartment. New evidence of positive effects on immune responses in the tumor microenvironment (TME), compelled us to test the combination of gemcitabine (GEM), a standard chemotherapeutic for pancreatic cancer, with nicotinamide (NAM), the amide form of niacin (vitamin B3), in mice with pancreatic cancer. METHODS Various mouse tumor models of pancreatic cancer, that is, orthotopic Panc-02 and KPC (KrasG12D, p53R172H, Pdx1-Cre) grafts, were treated alternately with NAM and GEM for 2 weeks, and the effects on efficacy, survival, stromal architecture and tumor-infiltrating immune cells was examined by immunohistochemistry (IHC), flow cytometry, Enzyme-linked immunospot (ELISPOT), T cell depletions in vivo, Nanostring analysis and RNAscope. RESULTS A significant reduction in tumor weight and number of metastases was found, as well as a significant improved survival of the NAM+GEM group compared with all control groups. IHC and flow cytometry showed a significant decrease in tumor-associated macrophages and myeloid-derived suppressor cells in the tumors of NAM+GEM-treated mice. This correlated with a significant increase in the number of CD4 and CD8 T cells of NAM+GEM-treated tumors, and CD4 and CD8 T cell responses to tumor-associated antigen survivin, most likely through epitope spreading. In vivo depletions of T cells demonstrated the involvement of CD4 T cells in the eradication of the tumor by NAM+GEM treatment. In addition, remodeling of the tumor stroma was observed with decreased collagen I and lower expression of hyaluronic acid binding protein, reorganization of the immune cells into lymph node like structures and CD31 positive vessels. Expression profiling for a panel of immuno-oncology genes revealed significant changes in genes involved in migration and activation of T cells, attraction of dendritic cells and epitope spreading. CONCLUSION This study highlights the potential of NAM+GEM as immunotherapy for advanced pancreatic cancer.
Collapse
Affiliation(s)
| | - Kiran Meena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amanda Beck
- Michael F. Price Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lydie Meheus
- AntiCancer Fund, Boechoutlaan, Strombeek-Bever, Belgium
| | - Olaya Lara
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Ilse Rooman
- AntiCancer Fund, Boechoutlaan, Strombeek-Bever, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Wang M, Luo Y, Sun T, Mao C, Jiang Y, Yu X, Li Z, Xie T, Wu F, Yan H, Teng L. The Ectopic Expression of SurvivinT34A and FilC Can Enhance the Oncolytic Effects of Vaccinia Virus in Murine Gastric Cancer. Onco Targets Ther 2020; 13:1011-1025. [PMID: 32099404 PMCID: PMC7006861 DOI: 10.2147/ott.s230902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Background/Aims Anti-tumor vaccines have been shown to be effective in cancer therapeutics ever since the anti-HPV vaccine was developed. Compared to conventional chemotherapy, anti-tumor vaccines can specifically target cancer cells and they have lower side effects. We developed a recombinant vaccinia virus (VACV) (Western Reserve) WR strain, and we tested its anti-tumor effects in an animal model. Methods A recombinant VACV WR strain expressing mutant survivin T34A (SurT34A) and FilC was constructed and validated. Its oncolytic effect was tested in vitro using a CCK-8 assay, and its tolerance and anti-tumor effects were tested in a murine gastric cancer model. The proportion of lymphocytes in the spleen and tumor was determined after antibody-mediated immuno-depletion. Results The recombinant VACV showed a stronger replication ability in tumor cells, and it was safe in vivo, even at high doses. The combination of vv-SurT34A and vv-FilC resulted in a stronger anti-tumor effect compared to either construct alone. However, the inhibitory effect of vv-SurT34A was stronger than the combination. The recombinant VACV activated the host immune response, as indicated by lymphocyte infiltration in the spleen and tumor tissues. Conclusion The recombinant VACV WR strain expressing SurT34A and FilC is a safe and effective anti-tumor vaccine.
Collapse
Affiliation(s)
- Minglong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxi Luo
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Ting Sun
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Chenyu Mao
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yili Jiang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Fusheng Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Yan
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Allahverdy A, Moghaddam AK, Rahbar S, Shafiekhani S, Mirzaie HR, Amanpour S, Etemadi Y, Hadjati J, Jafari AH. An Agent-based Model for Investigating the Effect of Myeloid-Derived Suppressor Cells and its Depletion on Tumor Immune Surveillance. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:15-23. [PMID: 30967986 PMCID: PMC6419563 DOI: 10.4103/jmss.jmss_33_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND To predict the behavior of biological systems, mathematical models of biological systems have been shown to be useful. In particular, mathematical models of tumor-immune system interactions have demonstrated promising results in prediction of different behaviors of tumor against the immune system. METHODS This study aimed at the introduction of a new model of tumor-immune system interaction, which includes tumor and immune cells as well as myeloid-derived suppressor cells (MDSCs). MDSCs are immune suppressor cells that help the tumor cells to escape the immune system. The structure of this model is agent-based which makes possible to investigate each component as a separate agent. Moreover, in this model, the effect of low dose 5-fluorouracil (5-FU) on MDSCs depletion was considered. RESULTS Based on the findings of this study, MDSCs had suppressive effect on increment of immune cell number which consequently result in tumor cells escape the immune cells. It has also been demonstrated that low-dose 5-FU could help immune system eliminate the tumor cells through MDSCs depletion. CONCLUSION Using this new agent-based model, multiple injection of low-dose 5-FU could eliminate MDSCs and therefore might have the potential to be considered in treatment of cancers.
Collapse
Affiliation(s)
- Armin Allahverdy
- Department of Radiology, Sari School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorrami Moghaddam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Rahbar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadjad Shafiekhani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaie
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Amanpour
- Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Etemadi
- Department of Rehabilitation Science, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Chen W, Fan W, Ru G, Huang F, Lu X, Zhang X, Mou X, Wang S. Gemcitabine combined with an engineered oncolytic vaccinia virus exhibits a synergistic suppressive effect on the tumor growth of pancreatic cancer. Oncol Rep 2018; 41:67-76. [PMID: 30365143 PMCID: PMC6278373 DOI: 10.3892/or.2018.6817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal solid malignancy with resistance to traditional chemotherapy. Recently, considerable studies have demonstrated the ubiquitous antitumor properties of gene therapy mediated by the oncolytic vaccinia virus. The second mitochondrial-derived activator of caspase (Smac) has been identified as an innovative tumor suppressor that augments the chemosensitivity of cancer cells. However, the therapeutic value of oncolytic vaccinia virus (oVV)-mediated Smac gene transfer in pancreatic cancer is yet to be elucidated. In the present study, oncolytic vaccinia virus expressing Smac (second mitochondrial-derived activator of caspase) (oVV-Smac) was used to examine its beneficial value when used alone or with gemcitabine in pancreatic cancer in vitro and in vivo. The expression of Smac was evaluated by western blot analysis and quantitative polymerase chain reaction, oVV-Smac cytotoxicity by MTT assay, and apoptosis by flow cytometry and western blot analysis. Furthermore, the inhibitory effect of oVV-Smac combined with gemcitabine was also evaluated. The results indicated that oVV-Smac achieved high levels of Smac, greater cytotoxicity, and potentiated apoptosis. Moreover, co-treatment with oVV-Smac and gemcitabine resulted in a synergistic effect in vitro and in vivo. Therefore, our findings advance oVV-Smac as a potential therapeutic candidate in pancreatic cancer and indicated the synergistic effects of co-treatment with oVV-Smac and gemcitabine.
Collapse
Affiliation(s)
- Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weimin Fan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaming Lu
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
11
|
Wu Y, Mou X, Wang S, Liu XE, Sun X. ING4 expressing oncolytic vaccinia virus promotes anti-tumor efficiency and synergizes with gemcitabine in pancreatic cancer. Oncotarget 2017; 8:82728-82739. [PMID: 29137298 PMCID: PMC5669924 DOI: 10.18632/oncotarget.21095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
With no effective treatments available for most pancreatic cancer patients, pancreatic cancer continues to be one of the most difficult malignancies to treat. Oncolytic virus mediated-gene therapy has exhibited ubiquitous antitumor potential. In this study, we constructed a novel oncolytic vaccinia virus harboring the inhibitor of growth family member 4 gene (VV-ING4) to investigate its therapeutic efficacy alone or in combination with gemcitabine against pancreatic cancer cells in vitro and in vivo. ING4 expression was determined via quantitative real-time polymerase chain reaction (qPCR) and western blot. The cytotoxicity of VV-ING4 was measured using a cell proliferation assay. Both flow cytometry and western blot were applied to analyze the cell cycle and apoptosis. Furthermore, the combination inhibitory effect of VV-ING4 and gemcitabine was assessed using Chou-Talalay analysis in vitro and a BLAB/c mice model in vivo. We found that VV-ING4 significantly increases ING4 expression, displayed greater cytotoxic efficiency, and induced pancreatic cancer cell apoptosis and G2/M phase arrest. Additionally, the combination of VV-ING4 and gemcitabine synergistically effect in vitro and in vivo. Taken together, our data implicate VV-ING4 as a conceivable pancreatic cancer therapeutic candidate alone or in combination with gemcitabine.
Collapse
Affiliation(s)
- Yinfang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P. R. China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P. R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, P. R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P. R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, P. R. China
| | - Xing-E Liu
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou 310007, P. R. China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P. R. China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Therap Adv Gastroenterol 2017; 10:168-194. [PMID: 28286568 PMCID: PMC5330603 DOI: 10.1177/1756283x16667909] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer is a highly aggressive and lethal cancer characterized by high invasiveness, local and extensive dissemination at time of diagnosis and resistance to treatment. Few therapies have shown efficacy in the past and even standard of care therapies yield only modest improvements in the mortality of patients with advanced or metastatic disease. Efforts have been undertaken to study the pancreatic tumor microenvironment and have established its complex and immunosuppressive nature which could explain the high resistance to chemotherapy. Novel therapies targeting the tumor microenvironment with an aim to decrease this resistance, improve immune tolerance and increase the efficacy of the current treatment have shown some promising preliminary results in preclinical and clinical trials. We review the current advances in the field of immunotherapy and their effectiveness as a potential treatment strategy in the pancreatic cancer.
Collapse
Affiliation(s)
- Komal Thind
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Leslie J. Padrnos
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Mitesh J. Borad
- Division of Hematology/Oncology, Mayo Clinic Arizona, 5777 E. Mayo Boulevard, Phoenix, AZ 85054, USA
| |
Collapse
|
13
|
Yoo J, Kistler CA, Yan L, Dargan A, Siddiqui AA. Endoscopic ultrasound in pancreatic cancer: innovative applications beyond the basics. J Gastrointest Oncol 2016; 7:1019-1029. [PMID: 28078128 PMCID: PMC5177581 DOI: 10.21037/jgo.2016.08.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022] Open
Abstract
Endoscopic ultrasound (EUS) has become a mainstay in assisting in the diagnosis and staging of pancreatic cancer. In addition, EUS provides a modality to treat chronic pain through celiac plexus neurolysis. Currently, there is growing data and utilization of EUS in more diverse and innovative applications aimed at providing more sophisticated diagnostic, prognostic and therapeutic options for patients with pancreatic cancer. EUS delivery of chemotherapy, viral and biological vectors and fiducial markers may eventually revolutionize the way clinicians approach the care of a patient with pancreatic cancer.
Collapse
Affiliation(s)
- Joseph Yoo
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - C. Andrew Kistler
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Linda Yan
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Dargan
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Ali A. Siddiqui
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
14
|
Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int 2016; 16:49. [PMID: 27340370 PMCID: PMC4917988 DOI: 10.1186/s12935-016-0326-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Survivin is the smallest member of the Inhibitor of apoptosis (IAP) family of proteins, involved in inhibition of apoptosis and regulation of cell cycle. These functional attributes make Survivin a unique protein exhibiting divergent functions i.e. regulating cell proliferation and cell death. Expression pattern of Survivin is also distinctive; it is prominently expressed during embryonal development, absent in most normal, terminally differentiated tissues but upregulated in a variety of human cancers. Expression of Survivin in tumours correlates with not only inhibition of apoptosis and a decreased rate of cell death, but also resistance to chemotherapy and aggressiveness of tumours. Therefore, Survivin is an important target for cancer vaccines and therapeutics. Survivin has also been found to be prominently expressed on both human and embryonic stem cells and many somatic stem cell types indicating its yet unexplored role in stem cell generation and maintenance. Overall, Survivin emerges as a molecule with much wider role in cellular homeostasis. This review will discuss various aspects of Survivin biology and its role in regulation of apoptosis, cell division, chemo-resistance and tumour progression. Various molecular and immunotherapeutic approaches targeting Survivin will also be discussed.
Collapse
Affiliation(s)
- Himani Garg
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| | - Prerna Suri
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Jagdish C Gupta
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - G P Talwar
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
15
|
Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015; 7:1249-58. [PMID: 26595180 PMCID: PMC4976866 DOI: 10.2217/imt.15.90] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.
Collapse
Affiliation(s)
- Chadwan Al Yaghchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Zhongxian Zhang
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Ghassan Alusi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| |
Collapse
|
16
|
Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez PC, Ochoa AC. Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunol Res 2015; 3:1236-47. [PMID: 26025381 DOI: 10.1158/2326-6066.cir-15-0036] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) promote tumor growth by inhibiting T-cell immunity and promoting malignant cell proliferation and migration. The therapeutic potential of blocking MDSC in tumors has been limited by their heterogeneity, plasticity, and resistance to various chemotherapy agents. Recent studies have highlighted the role of energy metabolic pathways in the differentiation and function of immune cells; however, the metabolic characteristics regulating MDSC remain unclear. We aimed to determine the energy metabolic pathway(s) used by MDSC, establish its impact on their immunosuppressive function, and test whether its inhibition blocks MDSC and enhances antitumor therapies. Using several murine tumor models, we found that tumor-infiltrating MDSC (T-MDSC) increased fatty acid uptake and activated fatty acid oxidation (FAO). This was accompanied by an increased mitochondrial mass, upregulation of key FAO enzymes, and increased oxygen consumption rate. Pharmacologic inhibition of FAO blocked immune inhibitory pathways and functions in T-MDSC and decreased their production of inhibitory cytokines. FAO inhibition alone significantly delayed tumor growth in a T-cell-dependent manner and enhanced the antitumor effect of adoptive T-cell therapy. Furthermore, FAO inhibition combined with low-dose chemotherapy completely inhibited T-MDSC immunosuppressive effects and induced a significant antitumor effect. Interestingly, a similar increase in fatty acid uptake and expression of FAO-related enzymes was found in human MDSC in peripheral blood and tumors. These results support the possibility of testing FAO inhibition as a novel approach to block MDSC and enhance various cancer therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Claudia Hernandez
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liqin Zheng
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Krzystoff Reiss
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jimena Trillo-Tinoco
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paulo C Rodriguez
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
17
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-6145. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
18
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
19
|
Ozmen F, Şahin TT, Ozmen MM. Current adjuvant therapeutic approaches for pancreatic cancer. Adv Ther 2015; 32:42-56. [PMID: 25595483 DOI: 10.1007/s12325-015-0177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer continues to be the fourth leading cause of death despite advancements in surgical and adjuvant therapeutic approaches. In the present review, the current cytotoxic therapeutic approaches and advanced targeted therapies are objectively discussed with consideration to the current literature.
Collapse
Affiliation(s)
- Fusun Ozmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | | | | |
Collapse
|
20
|
Bauer C, Sterzik A, Bauernfeind F, Duewell P, Conrad C, Kiefl R, Endres S, Eigler A, Schnurr M, Dauer M. Concomitant gemcitabine therapy negatively affects DC vaccine-induced CD8(+) T-cell and B-cell responses but improves clinical efficacy in a murine pancreatic carcinoma model. Cancer Immunol Immunother 2014; 63:321-33. [PMID: 24384835 PMCID: PMC11029406 DOI: 10.1007/s00262-013-1510-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Multiple studies have shown that dendritic cell (DC)-based vaccines can induce antitumor immunity. Previously, we reported that gemcitabine enhances the efficacy of DC vaccination in a mouse model of pancreatic carcinoma. The present study aimed at investigating the influence of gemcitabine on vaccine-induced anti-tumoral immune responses in a syngeneic pancreatic cancer model. MATERIALS AND METHODS Subcutaneous or orthotopic pancreatic tumors were induced in C57BL/6 mice using Panc02 cells expressing the model antigen OVA. Bone marrow-derived DC were loaded with soluble OVA protein (OVA-DC). Animals received gemcitabine twice weekly. OVA-specific CD8(+) T-cells and antibody titers were monitored by FACS analysis and ELISA, respectively. RESULTS Gemcitabine enhanced clinical efficacy of the OVA-DC vaccine. Interestingly, gemcitabine significantly suppressed the vaccine-induced frequency of antigen-specific CD8(+) T-cells and antibody titers. DC migration to draining lymph nodes and antigen cross-presentation were unaffected. Despite reduced numbers of tumor-reactive T-cells in peripheral blood, in vivo cytotoxicity assays revealed that cytotoxic T-cell (CTL)-mediated killing was preserved. In vitro assays revealed sensitization of tumor cells to CTL-mediated lysis by gemcitabine. In addition, gemcitabine facilitated recruitment of CD8(+) T-cells into tumors in DC-vaccinated mice. T- and B-cell suppression by gemcitabine could be avoided by starting chemotherapy after two cycles of DC vaccination. CONCLUSIONS Gemcitabine enhances therapeutic efficacy of DC vaccination despite its negative influence on vaccine-induced T-cell proliferation. Quantitative analysis of tumor-reactive T-cells in peripheral blood may thus not predict vaccination success in the setting of concomitant chemotherapy.
Collapse
Affiliation(s)
- Christian Bauer
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Alexander Sterzik
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Franz Bauernfeind
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Peter Duewell
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Claudius Conrad
- Massachusetts General Hospital, Harvard University, Boston, MA USA
| | - Rosemarie Kiefl
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Andreas Eigler
- Department of Internal Medicine I, Klinikum Dritter Orden, Munich, Germany
| | - Max Schnurr
- Section of Gastroenterology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Marc Dauer
- Department of Medicine II, Kliniken St. Elisabeth, Müller-Gnadenegg-Weg 4, 86633 Neuburg an der Donau, Germany
| |
Collapse
|
21
|
Ondondo BO. Fallen angels or risen apes? A tale of the intricate complexities of imbalanced immune responses in the pathogenesis and progression of immune-mediated and viral cancers. Front Immunol 2014; 5:90. [PMID: 24639678 PMCID: PMC3944202 DOI: 10.3389/fimmu.2014.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes.
Collapse
|
22
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Kim SJ, Ha GH, Kim SH, Kang CD. Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells. Immunol Invest 2013; 43:517-34. [PMID: 24295450 DOI: 10.3109/08820139.2013.857352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although cancer immunotherapy, which is able to target specifically cancer cells without detrimental effects to normal cell functions, would serve as an ideal therapeutic modality, most of the randomized clinical trials of cancer immunotherapy have not demonstrated a meaningful survival benefit to cancer patients over preexisting therapeutic modalities. Due to the discrepancy between the impressive preclinical results and the limited clinical results, the cancer immunotherapy is not accepted generally as a standard therapy for cancers. A variety of immune escape mechanisms are thought to be involved in this ineffectiveness of cancer immunotherapy. Therefore, elimination of immunosuppressive activities in tumor microenvironment will enhance the effectiveness of cancer immunotherapy, which is currently focused on activation of tumor-specific immune responses. Since there are now increasing evidences showing that many cytotoxic anticancer drugs including targeted agents given in lower-than-therapeutic doses have not only the ability to eliminate tumor cells but can also block the immunosuppressive activities in tumor microenvironments and consequently favor the development of anticancer immune responses, clinically available drugs can be considered for their rapid application to cancer immunotherapies to enhance the efficacy of cancer immunotherapies with marginal effects on cancer treatment.
Collapse
Affiliation(s)
- So-Jung Kim
- MD-PhD Program, Pusan National University School of Medicine , Yangsan , South Korea 626-870
| | | | | | | |
Collapse
|
24
|
Wang YQ, Zhang HH, Liu CL, Wu H, Wang P, Xia Q, Zhang LX, Li B, Wu JX, Yu B, Gu TJ, Yu XH, Kong W. Enhancement of survivin-specific anti-tumor immunity by adenovirus prime protein-boost immunity strategy with DDA/MPL adjuvant in a murine melanoma model. Int Immunopharmacol 2013; 17:9-17. [DOI: 10.1016/j.intimp.2013.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/01/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|
25
|
Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother Cancer 2013; 1:10. [PMID: 24829747 PMCID: PMC4019895 DOI: 10.1186/2051-1426-1-10] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/14/2013] [Indexed: 02/08/2023] Open
Abstract
Myeloid Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cells that are increased in states of cancer, inflammation and infection. In malignant states, MDSC are induced by tumor secreted growth factors. MDSC play an important part in suppression of host immune responses through several mechanisms such as production of arginase 1, release of reactive oxygen species and nitric oxide and secretion of immune-suppressive cytokines. This leads to a permissive immune environment necessary for the growth of malignant cells. MDSC may also contribute to angiogenesis and tumor invasion. This review focuses on currently available strategies to inhibit MDSC in the treatment of cancer.
Collapse
Affiliation(s)
- Robert Wesolowski
- Division of Medical Oncology, B401 Starling Loving Hall, W10th Avenue, Columbus, OH 43210, USA
| | - Joseph Markowitz
- Division of Medical Oncology, 406C Starling Loving Hall 320 W 10th Ave, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University Comprehensie Cancer Center, N911 Doan Hall, 410 West 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Israyelyan A, La Rosa C, Tsai W, Kaltcheva T, Srivastava T, Aquino L, Li J, Kim Y, Palmer J, Streja L, Senitzer D, Zaia JA, Rosenwald A, Forman SJ, Nakamura R, Diamond DJ. Detection and preliminary characterization of CD8+T lymphocytes specific for Wilms' tumor antigen in patients with non-Hodgkin lymphoma. Leuk Lymphoma 2013; 54:2490-9. [PMID: 23480492 DOI: 10.3109/10428194.2013.783910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wilms' tumor antigen (WT1) is overexpressed in many different solid tumors and hematologic malignancies. However, little is known about WT1 expression or WT1-specific immune responses in patients with non-Hodgkin lymphoma (NHL). In a cross-sectional survey study, we investigated the immune recognition of WT1 by patients with NHL. Utilizing a WT1 overlapping peptide library, we discovered that a large percentage of patients with NHL of all grades maintain WT1-specific T cells. Ex vivo frequencies of these T cells measured from unfractionated samples by the CD137 activation marker assay were high in many patients (some > 1% CD8+). Using standard in vitro techniques we discovered that they were cytotoxic to WT1 peptide library-loaded T2 cells and WT1 antigen-primed autologous Epstein-Barr virus-transformed B cell lines (EBV-LCLs) and expressed interferon gamma (IFN-γ). In addition, we detected WT1 mRNA transcripts in diseased lymph node tissues of patients with NHL utilizing real-time quantitative polymerase chain reaction (RT-qPCR) technology. These results are the first example of strong T cell reactivity against WT1 in patients with NHL which also demonstrate strong cytotoxicity against peptide-loaded tumor cells. The potential for developing WT1 as a target for immunotherapy in NHL deserves further exploration.
Collapse
|
27
|
Basso D, Fogar P, Falconi M, Fadi E, Sperti C, Frasson C, Greco E, Tamburrino D, Teolato S, Moz S, Bozzato D, Pelloso M, Padoan A, De Franchis G, Gnatta E, Facco M, Zambon CF, Navaglia F, Pasquali C, Basso G, Semenzato G, Pedrazzoli S, Pederzoli P, Plebani M. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study. PLoS One 2013; 8:e54824. [PMID: 23359812 PMCID: PMC3554636 DOI: 10.1371/journal.pone.0054824] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Blood and spleen expansion of immature myeloid cells (IMCs) might compromise the immune response to cancer. We studied in vivo circulating and splenic T lymphocyte and IMC subsets in patients with benign and malignant pancreatic diseases. We ascertained in vitro whether pancreatic adenocarcinoma (PDAC)-associated IMC subsets are induced by tumor-derived soluble factors and whether they are immunosuppressive focusing on the inhibitory co-stimulatory molecules PDL1 and CTLA4. METHODOLOGY AND PRINCIPAL FINDINGS 103 pancreatic and/or splenic surgical patients were enrolled including 52 PDAC, 10 borderline and 10 neuroendocrine tumors (NETs). Lymphocytes and IMCs were analysed by flow cytometry in blood, in spleen and in three PDAC cell conditioned (CM) or non conditioned PBMC. PDL1 and CTLA4 were studied in 30 splenic samples, in control and conditioned PBMC. IMCs were FACS sorted and co-coltured with allogenic T lymphocytes. In PDAC a reduction was found in circulating CD8(+) lymphocytes (p = 0.004) and dendritic cells (p = 0.01), which were reduced in vitro by one PDAC CM (Capan1; p = 0.03). Blood myeloid derived suppressive cells (MDSCs) CD33(+)CD14(-)HLA-DR(-) were increased in PDAC (p = 0.022) and were induced in vitro by BxPC3 CM. Splenic dendritic cells had a higher PDL1 expression (p = 0.007), while CD33(+)CD14(+)HLA-DR(-) IMCs had a lower CTLA4 expression (p = 0.029) in PDAC patients. In vitro S100A8/A9 complex, one of the possible inflammatory mediators of immune suppression in PDAC, induced PDL1 (p = 0.018) and reduced CTLA4 expression (p = 0.028) among IMCs. IMCs not expressing CTLA4 were demonstrated to be immune suppressive. CONCLUSION In PDAC circulating dendritic and cytotoxic T cells are reduced, while MDSCs are increased and this might favour tumoral growth and progression. The reduced CTLA4 expression found among splenic IMCs of PDAC patients was demonstrated to characterize an immune suppressive phenotype and to be consequent to the direct exposure of myeloid cells to pancreatic cancer derived products, S100A8/A9 complex in particular.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu C, Li H, Su C, Li Z. Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333:1-8. [PMID: 23354590 DOI: 10.1016/j.canlet.2013.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is one of the most devastating diseases with very poor prognosis. Only a small proportion is curable by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Therefore, there is an urgent need for the development of novel therapeutic approaches to improve the patient outcome. Recently the viral therapy is emerging as a novel effective therapeutic approach for cancer with the potential to selectively treat both primary tumor and metastatic lesions. This review provides an overview of the current status of viral treatment for pancreatic cancer, both in the laboratories and in clinical settings.
Collapse
Affiliation(s)
- Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
29
|
Gunturu KS, Rossi GR, Saif MW. Immunotherapy updates in pancreatic cancer: are we there yet? Ther Adv Med Oncol 2013; 5:81-9. [PMID: 23323149 PMCID: PMC3539275 DOI: 10.1177/1758834012462463] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal disease and remains one of the most resistant cancers to traditional therapies. Historically, chemotherapy or radiotherapy did not provide meaningful survival benefit in advanced pancreatic cancer. Gemcitabine and recently FOLFIRINOX (5-flourouracil, leucovorin, oxaliplatin and irinotecan) have provided some limited survival advantage in advanced pancreatic cancer. Targeted agents in combination with gemcitabine had not shown significant improvement in the survival. Current therapies for pancreatic cancer have their limitations; thus, we are in dire need of newer treatment options. Immunotherapy in pancreatic cancer works by recruiting and activating T cells that recognize tumor-specific antigens which is a different mechanism compared with chemotherapy and radiotherapy. Preclinical models have shown that immunotherapy and targeted therapies like vascular endothelial growth factor and epidermal growth factor inhibitors work synergistically. Hence, new immunotherapy and targeted therapies represent a viable option for pancreatic cancer. In this article, we review the vaccine therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Krishna Soujanya Gunturu
- Division of Hematology/Onocology and Department of Medicine and Cancer Center, Tufts Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
30
|
Wang YQ, Zhang HH, Liu CL, Xia Q, Wu H, Yu XH, Kong W. Correlation Between Auto-antibodies to Survivin and MUC1 Variable Number Tandem Repeats in Colorectal Cancer. Asian Pac J Cancer Prev 2012; 13:5557-62. [DOI: 10.7314/apjcp.2012.13.11.5557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Zhang H, Wang Y, Liu C, Zhang L, Xia Q, Zhang Y, Wu J, Jiang C, Chen Y, Wu Y, Zha X, Yu X, Kong W. DNA and adenovirus tumor vaccine expressing truncated survivin generates specific immune responses and anti-tumor effects in a murine melanoma model. Cancer Immunol Immunother 2012; 61:1857-67. [PMID: 22706381 PMCID: PMC11028718 DOI: 10.1007/s00262-012-1296-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022]
Abstract
Survivin is overexpressed in major types of cancer and is considered an ideal "universal" tumor-associated antigen that can be targeted by immunotherapeutic vaccines. However, its anti-apoptosis function raises certain safety concerns. Here, a new truncated human survivin, devoid of the anti-apoptosis function, was generated as a candidate tumor vaccine. Interleukin 2 (IL-2) has been widely used as an adjuvant for vaccination against various diseases. Meanwhile, the DNA prime and recombinant adenovirus (rAd) boost heterologous immunization strategy has been proven to be highly effective in enhancing immune responses. Therefore, the efficacy of a new cancer vaccine based on a truncated form of survivin, combined with IL-2, DNA prime, and rAd boost, was tested. As prophylaxis, immunization with the DNA vaccine alone resulted in a weak immune response and modest anti-tumor effect, whereas the tumor inhibition ratio with the DNA vaccine administered with IL-2 increased to 89 % and was further increased to nearly 100 % by rAd boosting. Moreover, complete tumor rejection was observed in 5 of 15 mice. Efficacy of the vaccine administered therapeutically was enhanced by nearly 300 % when combined with carboplatin. These results indicated that vaccination with a truncated survivin vaccine using DNA prime-rAd boost combined with IL-2 adjuvant and carboplatin represents an attractive strategy to overcoming immune tolerance to tumors and has potential therapeutic benefits in melanoma cancer.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents/therapeutic use
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carboplatin/therapeutic use
- Cell Line, Tumor
- Combined Modality Therapy
- Female
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/immunology
- Interleukin-2/therapeutic use
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mutation
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/therapy
- Survivin
- Treatment Outcome
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yuqian Wang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Chenlu Liu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Lixing Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Qiu Xia
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Xiao Zha
- Sichuan Tumor Hospital and Institute, Chengdu, 610041 China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| |
Collapse
|
32
|
Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S, Rutkowski AJ, Kalaitsidou M, Gilham DE, Stern PL. Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 2012; 61:1005-18. [PMID: 22127365 PMCID: PMC11029011 DOI: 10.1007/s00262-011-1167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Epitopes, T-Lymphocyte/immunology
- Immunotherapy, Active/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptors, Cell Surface/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fernanda V. Castro
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Mariam Al-Muftah
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Kate Mulryan
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Hui-Rong Jiang
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jan-Wouter Drijfhout
- Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sumia Ali
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Andrzej J. Rutkowski
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Milena Kalaitsidou
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Peter L. Stern
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| |
Collapse
|
33
|
Poschke I, Kiessling R. On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol 2012; 144:250-68. [PMID: 22858650 DOI: 10.1016/j.clim.2012.06.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) have frequently been observed in patients with cancer. This heterogeneous population of myeloid cells can exert potent suppression of lymphocyte function and thereby poses a significant hurdle to natural or therapeutically induced anti-tumor immunity. On the other hand, the natural function of MDSC is not yet well understood and their role in infection, inflammation and autoimmune disease is still puzzling. Understanding MDSC biology will provide the tools necessary for therapeutic targeting of this population, but also permit exploitation of their strong tolerogenic function in the treatment of inflammatory conditions and the prevention of graft rejection.
Collapse
Affiliation(s)
- Isabel Poschke
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
34
|
Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki H, Ellenhorn JD, Hensel M, Metelitsa L, Diamond DJ. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res 2011; 71:4183-91. [PMID: 21527558 PMCID: PMC3117077 DOI: 10.1158/0008-5472.can-10-4676] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer vaccine therapies have only achieved limited success when focusing on effector immunity with the goal of eliciting robust tumor-specific T-cell responses. More recently, there is an emerging understanding that effective immunity can only be achieved by coordinate disruption of tumor-derived immunosuppression. Toward that goal, we have developed a potent Salmonella-based vaccine expressing codon-optimized survivin (CO-SVN), referred to as 3342Max. When used alone as a therapeutic vaccine, 3342Max can attenuate growth of aggressive murine melanomas overexpressing SVN. However, under more immunosuppressive conditions, such as those associated with larger tumor volumes, we found that the vaccine was ineffective. Vaccine efficacy could be rescued if tumor-bearing mice were treated initially with Salmonella encoding a short hairpin RNA (shRNA) targeting the tolerogenic molecule STAT3 (YS1646-shSTAT3). In vaccinated mice, silencing STAT3 increased the proliferation and granzyme B levels of intratumoral CD4(+) and CD8(+) T cells. The combined strategy also increased apoptosis in tumors of treated mice, enhancing tumor-specific killing of tumor targets. Interestingly, mice treated with YS1646-shSTAT3 or 3342Max alone were similarly unsuccessful in rejecting established tumors, whereas the combined regimen was highly potent. Our findings establish that a combined strategy of silencing immunosuppressive molecules followed by vaccination can act synergistically to attenuate tumor growth, and they offer a novel translational direction to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Edwin R. Manuel
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | - Céline A. Blache
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | - Rebecca Paquette
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | | | - Hidenobu Ishizaki
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | | | - Michael Hensel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leonid Metelitsa
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Don J. Diamond
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| |
Collapse
|