1
|
Ghorbaninezhad F, Nour MA, Farzam OR, Saeedi H, Vanan AG, Bakhshivand M, Jafarlou M, Hatami-Sadr A, Baradaran B. The tumor microenvironment and dendritic cells: Developers of pioneering strategies in colorectal cancer immunotherapy? Biochim Biophys Acta Rev Cancer 2025; 1880:189281. [PMID: 39929377 DOI: 10.1016/j.bbcan.2025.189281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Colorectal cancer (CRC) is the world's third most frequent cancer, and both its incidence and fatality rates are rising. Despite various therapeutic approaches, neither its mortality rate nor its recurrence frequency has decreased significantly. Additionally, conventional treatment approaches, such as chemotherapy and radiotherapy, have several side effects and risks for patients with CRC. Accordingly, the need for alternative and effective treatments for CRC patients is critical. Immunotherapy that utilizes dendritic cells (DCs) harnesses the patient's immune system to combat cancer cells effectively. DCs are the most potent antigen-presenting cells (APCs), which play a vital role in generating anti-cancer T cell responses. A significant barrier to the immune system's ability to eliminate CRC is the establishment of a potent immunosuppressive tumor milieu by malignant cells. Since DCs are frequently defective in this milieu, the tumor setting significantly reduces the effectiveness of DC-based therapy. Determining central mechanisms contributing to tumor growth by unraveling and comprehending the interaction between CRC tumor milieu and DCs may lead to new therapeutic approaches. This study aims to review DC biology and discuss its role in T-cell-mediated anti-tumor immunity, as well as to highlight the immunosuppressive effects of the CRC tumor milieu on the function of DCs. We will also highlight the tumor microenvironment (TME)-related factors that interfere with DC function as a possible therapeutic target to enhance DC-based cell therapy efficacy.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Shbeer AM. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol Res Pract 2024; 253:155025. [PMID: 38147726 DOI: 10.1016/j.prp.2023.155025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
DCs have great promise for cancer immunotherapy and are essential for coordinating immune responses. In the battle against cancer, using DCs' ability to stimulate the immune system and focus it on tumor cells has shown to be a viable tactic. This study offers a thorough summary of recent developments as well as potential future paths for DC-based immunotherapy against cancer. This study reviews the many methods used in DC therapy, such as vaccination and active cellular immunotherapy. The effectiveness and safety of DC-based treatments for metastatic castration-resistant prostate cancer and non-small cell lung cancer are highlighted in these investigations. The findings indicate longer survival times and superior results for particular patient groups. We are aware of the difficulties and restrictions of DC-based immunotherapy, though. These include the immunosuppressive tumor microenvironment, the intricacy of DC production, and the heterogeneity within DC populations. More study and development are needed to overcome these challenges to enhance immunological responses, optimize treatment regimens, and increase scalability.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
4
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
6
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Gessani S, Belardelli F. Immune Dysfunctions and Immunotherapy in Colorectal Cancer: The Role of Dendritic Cells. Cancers (Basel) 2019; 11:E1491. [PMID: 31623355 PMCID: PMC6827143 DOI: 10.3390/cancers11101491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC), a multi-step malignancy showing increasing incidence in today's societies, represents an important worldwide health issue. Exogenous factors, such as lifestyle, diet, nutrition, environment and microbiota, contribute to CRC pathogenesis, also influencing non neoplastic cells, including immune cells. Several immune dysfunctions were described in CRC patients at different disease stages. Many studies underline the role of microbiota, obesity-related inflammation, diet and host reactive cells, including dendritic cells (DC), in CRC pathogenesis. Here, we focused on DC, the main cells linking innate and adaptive anti-cancer immunity. Variations in the number and phenotype of circulating and tumor-infiltrating DC have been found in CRC patients and correlated with disease stages and progression. A critical review of DC-based clinical studies and of recent advances in cancer immunotherapy leads to consider new strategies for combining DC vaccination strategies with check-point inhibitors, thus opening perspectives for a more effective management of this neoplastic disease.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|
8
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Szaryńska M, Olejniczak A, Kobiela J, Łaski D, Śledziński Z, Kmieć Z. Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer. Sci Rep 2018; 8:12042. [PMID: 30104575 PMCID: PMC6089981 DOI: 10.1038/s41598-018-30525-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The therapy of colorectal cancer (CRC) patients is often unsuccessful because of the presence of cancer stem cells (CSCs) resistant to conventional approaches. Dendritic cells (DC)-based protocols are believed to effectively supplement CRC therapy. Our study was aimed to assess how the number and properties of CSCs isolated from tumor tissue of CRC patients will affect the biological characteristics of in vitro modified DCs. Similar procedures were conducted with the using of CRC HCT116 and HT29 cell lines. We found that the detailed configuration of CSC-like markers significantly influenced the maturation and activation of DCs after stimulation with cancer cells lysates or culture supernatants. This basic stimulatory effect was enhanced by LPS that is normally present in CRC CSCs niche. The increased number of CD29+ and CD44+ CSCs presented the opposite impact on treated DCs as showed by many significant correlations. The CD133+ CSCs seemed to impair the functions of DCs. The more CD133+ CSCs in tumor sample the lower number of activated DCs evidenced after stimulation. Moreover, our results showed superiority of the spherical culture model over the adherent one since spherical HCT116 and HT29 cells presented similar influence on DCs properties as CRC patients cancer cells. We concluded that the DCs features may depend directly on the properties of CSCs affected by progression status of tumor.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland.
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Dariusz Łaski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Zbigniew Śledziński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland
| |
Collapse
|
10
|
Du J, Wei J, Yang Y, Su S, Shao J, Chen F, Meng F, Zou Z, Liu B. Disappearance of bone metastases in chemotherapy-resistant gastric cancer treated with antigen peptide-pulsed dendritic cell-activated cytotoxic T lymphocyte immunotherapy: A case report. Oncol Lett 2018; 16:875-881. [PMID: 29963158 PMCID: PMC6019880 DOI: 10.3892/ol.2018.8781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The adoptive transfer of cytotoxic T lymphocytes (CTLs) stimulated by specific tumor antigen peptide-pulsed dendritic cells (DCs) is one of the most promising immunotherapeutic strategies currently available for patients with gastric cancer (GC). The present case report describes a patient with chemotherapy-resistant stage IV GC with multiple bone metastases, who had been treated with antigen peptide-pulsed DC-CTLs. DCs and CTLs were transfused into the patient subcutaneously and intravenously with simultaneous oral administration of low-dose cyclophosphamide. Following 3 cycles of combination therapy, marked remission regarding the number of metastatic bone lesions was achieved, confirmed by the use of enhanced computerized tomography, computerized tomography and magnetic resonance imaging. After 1 year, 8 cycles of adoptive immunotherapy were administered, and a further decrease in the number of metastatic bone lesions was observed in addition to a marked improvement in the patient's quality of life. Therefore, personalized antigen peptide-pulsed DC-CTLs combined with oral administration of low-dose cyclophosphamide may serve as a promising anticancer therapy to eradicate tumor cells, and therefore this approach is recommended for future cases of a similar nature.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
11
|
Challenges in Colorectal Cancer: From Vaccines to Macrophage Repolarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Pardieck IN, Jawahier PA, Swets M, van de Velde CJH, Kuppen PJK. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol 2016; 10:465-80. [PMID: 26582071 DOI: 10.1586/17474124.2016.1122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since it is known that the immune system affects tumor growth, it has been studied if immunotherapy can be developed to combat cancer. While some successes have been claimed, the increasing knowledge on tumor-immune interactions has, however, also shown the limitations of this approach. Tumors may show selective outgrowth of cells escaped from immune control. Escape variants arise spontaneously due to the genetically instable nature of tumor cells. This is one of the most obvious limitations of cancer immunotherapy. However, new therapies are becoming available, designed to respond to tumor-immune escape.
Collapse
Affiliation(s)
- Iris N Pardieck
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Priscilla A Jawahier
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Marloes Swets
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | | | - Peter J K Kuppen
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
13
|
Kajihara M, Takakura K, Kanai T, Ito Z, Saito K, Takami S, Shimodaira S, Okamoto M, Ohkusa T, Koido S. Dendritic cell-based cancer immunotherapy for colorectal cancer. World J Gastroenterol 2016; 22:4275-86. [PMID: 27158196 PMCID: PMC4853685 DOI: 10.3748/wjg.v22.i17.4275] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.
Collapse
|
14
|
Kim JS, Kim YG, Park EJ, Kim B, Lee HK, Hong JT, Kim Y, Han SB. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells. Immune Netw 2016; 16:99-108. [PMID: 27162526 PMCID: PMC4853502 DOI: 10.4110/in.2016.16.2.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Ji Sung Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Yong Guk Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Boyeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
15
|
Ohtake J, Wada S, Yada E, Fujimoto Y, Uchiyama H, Yoshida S, Itoh K, Sasada T. Personalized immunotherapy in colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1174060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Rahma OE, Myint ZW, Estfan B. Dendritic Cell Cancer Vaccines for Treatment of Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mantia-Smaldone GM, Chu CS. A review of dendritic cell therapy for cancer: progress and challenges. BioDrugs 2014; 27:453-68. [PMID: 23592406 DOI: 10.1007/s40259-013-0030-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells are the professional antigen-presenting cells of the innate immune system with the potential to generate robust antigen-specific T cell immune responses. Immunotherapeutic strategies have attempted to monopolize on this ability of dendritic cells to deliver antigens as a means of therapeutic vaccination in individuals with advanced malignancies. Since the publication of the first clinical trial in melanoma patients in 1995, therapeutic dendritic cell cancer vaccines have been extensively studied in numerous phase I and II trials. While advances have been encountered (especially with prostate cancer), there are still considerable challenges that need to be addressed in future clinical trials. In this review, we describe the current methodology and highlight trials which have contributed to the development of dendritic cell vaccines. We then review strategies to optimize dendritic cell vaccines in order to improve antitumor responses in cancer patients.
Collapse
Affiliation(s)
- Gina M Mantia-Smaldone
- Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
19
|
Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev Vaccines 2013; 12:617-29. [PMID: 23750792 DOI: 10.1586/erv.13.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concurrent with the US FDA's approval of the first therapeutic cancer vaccine, and supported by mounting clinical evidence indicating that targeting carcinoembryonic antigen (CEA) can safely overcome pre-existing tolerance, a multitude of novel CEA cancer vaccines are now in various stages of development. Since cancer-driven immune suppression often limits the efficacy of vaccines, numerous strategies are being examined in both preclinical and clinical settings to overcome immunosuppressive elements, including the combined use of vaccines with certain chemotherapies, immune checkpoint inhibitors, small-molecule targeted therapies and radiation. This review discusses the current state and future direction of therapeutic cancer vaccines targeting CEA, based on advances achieved over the last 5 years.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Seliger B, Massa C. The dark side of dendritic cells: development and exploitation of tolerogenic activity that favor tumor outgrowth and immune escape. Front Immunol 2013; 4:419. [PMID: 24348482 PMCID: PMC3845009 DOI: 10.3389/fimmu.2013.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/17/2013] [Indexed: 01/27/2023] Open
Abstract
Dendritic cells (DC) play a central role in the regulation of the immune responses by providing the information needed to decide between tolerance, ignorance, or active responses. For this reason different therapies aim at manipulating DC to obtain the desired response, such as enhanced cell-mediated toxicity against tumor and infected cells or the induction of tolerance in autoimmunity and transplantation. In the last decade studies performed in these settings have started to identify (some) molecules/factors involved in the acquisition of a tolerogenic DC phenotype as well as the underlying mechanisms of their regulatory function on different immune cell populations.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| | - Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| |
Collapse
|
21
|
Talebian Yazdi M, Keene KR, Hiemstra PS, van der Burg SH. Recent progress in peptide vaccination in cancer with a focus on non-small-cell lung cancer. Expert Rev Vaccines 2013; 13:87-116. [PMID: 24308580 DOI: 10.1586/14760584.2014.862499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active immunotherapy aimed at the stimulation of tumor-specific T cells has established itself within the clinic as a therapeutic option to treat cancer. One strategy is the use of so-called peptides that mimic genuine T-cell epitopes as vaccines to activate tumor-specific T cells. In various clinical trials, different types of vaccines, adjuvants and other immunomodulatory compounds were evaluated in patients with different types of tumors. Here, we review the trials published in the last 3 years focusing on the T-cell response, the effect of immunomodulation and potential relationships with clinical outcomes. Furthermore, we would like to make a case for the development of peptide vaccines aiming to treat non-small-cell lung cancer, the most common cause of cancer mortality.
Collapse
Affiliation(s)
- Mehrdad Talebian Yazdi
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | | |
Collapse
|
22
|
Hunyadi J, András C, Szabó I, Szántó J, Szluha K, Sipka S, Kovács P, Kiss A, Szegedi G, Altorjay I, Sápy P, Antal-Szalmás P, Tóth L, Fazekas G, Rajnavölgyi É. Autologous dendritic cell based adoptive immunotherapy of patients with colorectal cancer-A phase I-II study. Pathol Oncol Res 2013; 20:357-65. [PMID: 24163303 DOI: 10.1007/s12253-013-9704-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 10/02/2013] [Indexed: 12/17/2022]
Abstract
Dendritic cell-based active immunotherapies of cancer patients are aimed to provoke the proliferation and differentiation of tumor-specific CD4(+) and CD8(+) T-lymphocytes towards protective effector cells. Isolation and in vitro differentiation of circulating blood monocytes has been established a reasonable platform for adoptively transferred DC-based immunotherapies. In the present study the safety and tolerability of vaccination by autologous tumor cell lysates (oncolysate)- or carcinoembriogenic antigen (CEA)-loaded DCs in patients with colorectal cancer was investigated in a phase I-II trial. The study included 12 patients with histologically confirmed colorectal cancer (Dukes B2-C stages). Six of the patients received oncolysate-pulsed, whereas the other six received recombinant CEA-loaded autologous DCs. The potential of the tumor antigen-loaded DCs to provoke the patient's immune system was studied both in vivo and in vitro. The clinical outcome of the therapy evaluated after 7 years revealed that none of the six patients treated with oncolysate-loaded DCs showed relapse of colorectal cancer, whereas three out of the six patients treated with CEA-loaded DCs died because of tumor relapse. Immunization with both the oncolysate- and the CEA-loaded autologous DCs induced measurable immune responses, which could be detected in vivo by cutaneous reactions and in vitro by lymphocyte proliferation assay. Our results show that vaccination by autologous DCs loaded with autologous oncolysates containing various tumor antigens represents a well tolerated therapeutic modality in patients with colorectal cancer without any detectable adverse effects. Demonstration of the efficacy of such therapy needs further studies with increased number of patients.
Collapse
Affiliation(s)
- János Hunyadi
- Clinical Centre for Cell Therapy, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Broussard EK, Kim R, Wiley JC, Marquez JP, Annis JE, Pritchard D, Disis ML. Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions. Cancer Prev Res (Phila) 2013; 6:666-74. [PMID: 23682078 PMCID: PMC3718634 DOI: 10.1158/1940-6207.capr-12-0484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The length of time required for preinvasive adenoma to progress to carcinoma, the immunogenicity of colorectal cancer (CRC), and the identification of high-risk populations make development and testing of a prophylactic vaccine for the prevention of CRC possible. We hypothesized that genes upregulated in adenoma relative to normal tissue, which maintained increased expression in CRC, would encode proteins suitable as putative targets for immunoprevention. We evaluated existing adenoma and CRC microarray datasets and identified 160 genes that were ≥2-fold upregulated in both adenoma and CRC relative to normal colon tissue. We further identified 23 genes that showed protein overexpression in colon adenoma and CRC based on literature review. Silencing the most highly upregulated genes, CDH3, CLDN1, KRT23, and MMP7, in adenoma and CRC cell lines resulted in a significant decrease in viability (P < 0.0001) and proliferation (P < 0.0001) as compared to controls and an increase in cellular apoptosis (P < 0.05 for CDH3, KRT23). Results were duplicated across cell lines representing microsatellite instability, CpG island methylator, and chromosomal instability phenotypes, suggesting immunologic elimination of cells expressing these proteins could impact the progression of all CRC phenotypes. To determine whether these proteins were immunogens, we interrogated sera from early stage CRC patients and controls and found significantly elevated CDH3 (P = 0.006), KRT23 (P = 0.0007), and MMP7 (P < 0.0001) serum immunoglobulin G in cases as compared to controls. These data show a high throughput approach to the identification of biologically relevant putative immunologic targets for CRC and identified three candidates suitable for vaccine development.
Collapse
MESH Headings
- Adenoma/diagnosis
- Adenoma/metabolism
- Adenoma/prevention & control
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Case-Control Studies
- Cell Proliferation
- Claudin-1/antagonists & inhibitors
- Claudin-1/genetics
- Claudin-1/metabolism
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/prevention & control
- DNA Methylation
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Keratins, Type I/antagonists & inhibitors
- Keratins, Type I/genetics
- Keratins, Type I/metabolism
- Male
- Matrix Metalloproteinase 7/chemistry
- Matrix Metalloproteinase 7/genetics
- Matrix Metalloproteinase 7/metabolism
- Microsatellite Instability
- Middle Aged
- Neoplasm Staging
- Precancerous Conditions/diagnosis
- Precancerous Conditions/metabolism
- Precancerous Conditions/prevention & control
- Prognosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Young Adult
Collapse
Affiliation(s)
- Elizabeth K Broussard
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Parra-Guillen ZP, Berraondo P, Grenier E, Ribba B, Troconiz IF. Mathematical model approach to describe tumour response in mice after vaccine administration and its applicability to immune-stimulatory cytokine-based strategies. AAPS JOURNAL 2013; 15:797-807. [PMID: 23605806 DOI: 10.1208/s12248-013-9483-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/26/2013] [Indexed: 01/21/2023]
Abstract
Immunotherapy is a growing therapeutic strategy in oncology based on the stimulation of innate and adaptive immune systems to induce the death of tumour cells. In this paper, we have developed a population semi-mechanistic model able to characterize the mechanisms implied in tumour growth dynamic after the administration of CyaA-E7, a vaccine able to target antigen to dendritic cells, thus triggering a potent immune response. The mathematical model developed presented the following main components: (1) tumour progression in the animals without treatment was described with a linear model, (2) vaccine effects were modelled assuming that vaccine triggers a non-instantaneous immune response inducing cell death. Delayed response was described with a series of two transit compartments, (3) a resistance effect decreasing vaccine efficiency was also incorporated through a regulator compartment dependent upon tumour size, and (4) a mixture model at the level of the elimination of the induced signal vaccine (k 2) to model tumour relapse after treatment, observed in a small percentage of animals (15.6%). The proposed model structure was successfully applied to describe antitumor effect of IL-12, suggesting its applicability to different immune-stimulatory therapies. In addition, a simulation exercise to evaluate in silico the impact on tumour size of possible combination therapies has been shown. This type of mathematical approaches may be helpful to maximize the information obtained from experiments in mice, reducing the number of animals and the cost of developing new antitumor immunotherapies.
Collapse
Affiliation(s)
- Zinnia P Parra-Guillen
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | | | | | | | | |
Collapse
|
27
|
Piątkiewicz P, Miłek T, Bernat-Karpińska M, Ohams M, Czech A, Ciostek P. The dysfunction of NK cells in patients with type 2 diabetes and colon cancer. Arch Immunol Ther Exp (Warsz) 2013; 61:245-53. [PMID: 23456207 DOI: 10.1007/s00005-013-0222-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
Abstract
Glucose metabolism disorders influence anticarcinogenic function of natural killer (NK) cells. The aim of this study was to evaluate the number and cytotoxic activity of NK cells in type 2 diabetic (T2D) patients with negative family history of cancer, type 2 diabetic subjects with newly diagnosed untreated colon cancer (T2DCC) and patients without type 2 diabetes with newly diagnosed, untreated colon cancer (CC). Incubation tests were performed in 18 T2D patients, treated with diet and oral antidiabetic agents, 16 T2DCC; cT1-4N0M0 (c-clinical diagnosis based on computed tomography, colonoscopy and histopathology) treated with diet and oral antidiabetic agents and 16 normoglycemic CC; cT1-4N0M0. Control group included 18 metabolically healthy (with normal fasting glucose and normal glucose tolerance) subjects (HS) with negative family history of cancer, matched by age, BMI and waist circumference. Peripheral blood mononuclear cells were isolated by means of gradient centrifugation. The K562 human erythroleukemia cell line served as the standard target for human NK cytotoxicity assay. The T2D revealed an increased number of NK cells (13.56 ± 5.9 vs 9.50 ± 4.8 %; p < 0.05) when compared with HS, yet these cells had a decreased activity (3.3 ± 2.5 vs 9.4 ± 3.6 %; p < 0.01). The CC demonstrated a decreased activity (2.9 ± 1.8 %; p < 0.01) but a similar number (8.82 ± 3.7 %; not significant) of NK cells when compared to HS. The T2DCC NK cells were characterized by trace cytotoxic activity (1.1 ± 0.7 %; p < 0.01) and nearly three times greater amount (21.24 ± 7.5 %; p < 0.01) when compared to T2D. Type 2 diabetes and CC are associated with disadvantageous alterations of NK cells, leading to impairment in their cytotoxic activity. The impaired activity of NK cells in T2D can be involved in the increased carcinogenic risk and can promote a higher incidence of CC.
Collapse
Affiliation(s)
- Paweł Piątkiewicz
- Chair and Department of Internal Diseases and Diabetology, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
28
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. J Drug Target 2013; 21:126-136. [PMID: 23061479 DOI: 10.3109/1061186x.2012.731069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrointestinal (GI) malignancies are one of the most frequently occurring tumors found worldwide. Surgery remains the primary treatment for most solid tumors and adjuvant chemotherapy and radiotherapy are limited by lack of specificity and toxicity. In view of the poor survival rate, there is a great need to introduce new and effective therapeutic modalities. Recently, dendritic cells (DCs)-based vaccines are being explored as a promising therapeutic strategy but their success is limited by the tumor-induced immune escape mechanisms. This article provides a comprehensive analysis of clinical trials conducted using this approach. It also showcases the necessity of exploring nano-engineered strategies for improving the clinical utility of DC-vaccination for GI tract malignancies to overcome immune tolerance.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi, Mumbai, India
| | | | | | | |
Collapse
|
29
|
Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 2013; 4:84-95. [PMID: 23386907 PMCID: PMC3564249 DOI: 10.7150/jca.5482] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022] Open
Abstract
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Collapse
Affiliation(s)
- Yan-gao Man
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Alexander Stojadinovic
- 3. Surgical Oncology, Walter Reed National Military Medical Center, and Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey Mason
- 4. Veterans Affair Medical Center, Washington, DC, USA
| | - Itzhak Avital
- 5. Bon Secours National Cancer Institute (BSNCI), Richmond VA, USA
| | - Anton Bilchik
- 6. John Wayne Cancer Institute; California Oncology Research Institute; and, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Mladjan Protic
- 8. Clinic of Abdominal, Endocrine, and Transplantation Surgery, Clinical Center of Vojvodina, University of Novi Sad - Medical Faculty, Novi Sad, Serbia
| | - Aviram Nissan
- 9. The Surgical Oncology Laboratory, Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Mina Izadjoo
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
| | - Xichen Zhang
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Anahid Jewett
- 10. Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
30
|
Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression. Drug Discov Today 2013; 18:35-42. [DOI: 10.1016/j.drudis.2012.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/30/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023]
|
31
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|