1
|
Guo X, Xiao T, Lin L, Gao Q, Lai B, Liu X, Zhong Z. Proliferation capability of natural killer cells upon cytokines stimulation correlated negatively with serum lactate dehydrogenase level in coronary artery disease patients. Front Immunol 2024; 15:1436747. [PMID: 39286242 PMCID: PMC11402710 DOI: 10.3389/fimmu.2024.1436747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Natural killer (NK) cells are proposed to participate in coronary artery disease (CAD) development. However, little is known about how CAD patients' NK cells respond to different stimulatory factors in terms of proliferation capability. Methods and results Twenty-nine CAD patients' peripheral blood NK cells were isolated and individually treated with IL-2, IL-12, IL-15, IL-18, IL-21, cortisone acetate, hydrocortisone, or ascorbic acid for 36 hours, followed by cell cycle analysis using flow cytometry. The ratio of S and G2/M phase cell number to total cell number was defined as a proliferation index (PrI) and used for proliferative capability indication. The results showed that these eight factors resulted in different life cycle changes in the 29 NK cell samples. Remarkably, 28 out of 29 NK cell samples showed an obvious increase in PrI upon ascorbic acid treatment. The serum lactate dehydrogenase (LDH) level of the 29 CAD patients was measured. The results showed a negative correlation between serum LDH level and the CAD patients' NK cell PrI upon stimulation of interleukins, but not the non-interleukin stimulators. Consistently, a retrospective analysis of 46 CAD patients and 32 healthy donors showed that the circulating NK cell number negatively correlated with the serum LDH level in CAD patients. Unexpectedly, addition of LDH to NK cells significantly enhanced the production of IFN-γ, IL-10 and TNF-α, suggesting a strong regulatory role on NK cell's function. Conclusion Ascorbic acid could promote the proliferation of the CAD patients' NK cells; LDH serum level may function as an indicator for NK cell proliferation capability and an immune-regulatory factor.
Collapse
Affiliation(s)
- Xuemin Guo
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Ting Xiao
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Li Lin
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Bifa Lai
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Xianhui Liu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Zhixiong Zhong
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| |
Collapse
|
2
|
Yoon JH, Yoon HN, Kang HJ, Yoo H, Choi MJ, Chung JY, Seo M, Kim M, Lim SO, Kim YJ, Lee JK, Jang M. Empowering pancreatic tumor homing with augmented anti-tumor potency of CXCR2-tethered CAR-NK cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200777. [PMID: 38596297 PMCID: PMC10926211 DOI: 10.1016/j.omton.2024.200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 04/11/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising immunotherapy for solid cancers; however, their effectiveness against pancreatic cancer is limited by the immunosuppressive tumor microenvironment. In particular, low NK cell infiltration poses a major obstacle that reduces cytotoxicity. The current study aimed to enhance the tumor-homing capacity of CAR-NK cells by targeting the chemokine-chemokine receptor axis between NK and pancreatic cancer cells. To this end, data from a chemokine array and The Cancer Genome Atlas pan-cancer cohort were analyzed. Pancreatic cancer cells were found to secrete high levels of ligands for C-X-C motif receptor 1 (CXCR1) and CXCR2. Subsequently, we generated anti-mesothelin CAR-NK cells incorporating CXCR1 or CXCR2 and evaluated their tumor-killing abilities in 2D cancer cell co-culture and 3D tumor-mimetic organoid models. CAR-NK cells engineered with CXCR2 demonstrated enhanced tumor killing and strong infiltration of tumor sites. Collectively, these findings highlight the potential of CXCR2-augmented CAR-NK cells as a clinically relevant modality for effective pancreatic cancer treatment. By improving their infiltration and tumor-killing capabilities, these CXCR2-augmented CAR-NK cells have the potential to overcome the challenges posed by the immunosuppressive tumor microenvironment, providing improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Han-Na Yoon
- Rare & Pediatric Cancer Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyun Ju Kang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Moon Jung Choi
- Division of Hematology and Oncology, Brown University, Providence, RI, USA
| | - Joo-Yoon Chung
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minkoo Seo
- Corporate Research & Development Center, UCI Therapeutics, Seoul 04784, Republic of Korea
| | - Minsung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Si On Lim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Ku Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Vaucoret V, Kazhalawi A, Rodriguez-Pozo A, Habeichi N, Ruoso L, Cassuto NG, Rahmati M. The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. Int J Mol Sci 2023; 24:11322. [PMID: 37511080 PMCID: PMC10379072 DOI: 10.3390/ijms241411322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Assisted reproduction techniques have improved considerably in recent decades, but despite these advances, success rates remain relatively low. Endometrial immune profiling involves the analysis of cytokine biomarkers in the endometrium during the mid-luteal phase. This profiling aims to provide insights into the immune environment of the uterus. The aim is to identify immune disturbances and thus guide the development of personalized therapeutic approaches. The first part of the review looks back at the emergence of innovative concepts, highlighting the specificity of the human uterine environment at the time of implantation. Based on this new knowledge, biomarkers have been selected for endometrial immune profiling. The second part details the results of clinical studies conducted over the last ten years. These clinical results suggest that this approach can increase the rate of live births in patients suffering from repeated implantation failures or repeated pregnancy loss. Uterine immune profiling represents a clinical innovation that can significantly improve the performance of medically assisted reproduction treatments through personalized strategies tailored to the local immune profile. Innovation in personalized medicine for assisted reproduction is crucial to improving the success rates of fertility treatments, while reducing the risks and costs associated with ineffective or unnecessary interventions.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Marie Petitbarat
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Laura Prat-Ellenberg
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Géraldine Dray
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Virginie Vaucoret
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Alaa Kazhalawi
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - André Rodriguez-Pozo
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Nada Habeichi
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Lea Ruoso
- Laboratoire Drouot, 21 Rue Drouot, 75010 Paris, France
| | | | - Mona Rahmati
- London Women's Clinic, 113-115 Harley Street, London W1G 6AP, UK
| |
Collapse
|
4
|
Sun L, Sun W, Liu M, Li N, Liu Y, Cao X, Chen L, Ren X, Wang H, Wang M. Wedelolactone induces natural killer cell activity and the improvement to bioavailability using polysaccharides from Ligustri Lucidi Fructus. Int J Biol Macromol 2023:125208. [PMID: 37285884 DOI: 10.1016/j.ijbiomac.2023.125208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Wedelolactone (WDL) is the major bioactive component in Ecliptae Herba. This present study investigated the effects of WDL on natural killer cell functions and possible underlying mechanisms. It was proved that wedelolactone enhanced the killing ability of NK92-MI by upregulating the expression of perforin and granzyme B through the JAK/STAT signaling pathway. Additionally, wedelolactone could induce the migration of NK-92MI cells by promoting CCR7 and CXCR4 expressions. However, the application of WDL is limited due to poor solubility and bioavailability. Accordingly, this study investigated the impact of polysaccharides from Ligustri Lucidi Fructus (LLFPs) on WDL. The biopharmaceutical properties and pharmacokinetic characteristics were determined to compare WDL individually and in combination with LLFPs. The results showed that LLFPs could benefit the biopharmaceutical properties of WDL. Specifically, stability, solubility, and permeability were increased by 1.19-1.82-fold, 3.22-fold, and 1.08-fold higher than those of WDL alone, respectively. Furthermore, the pharmacokinetic study revealed that LLFPs could remarkably improve AUC(0-t) (150.34 vs. 50.47 ng/mL ∗ h), t1/2 (40.78 vs. 2.81 h), and MRT(0-∞) (46.64 vs. 5.05 h) for WDL. In conclusion, WDL would be considered a potential immunopotentiator, and LLFPs could overcome the instability and insolubility, ultimately improving the bioavailability of this plant-derived phenolic coumestan.
Collapse
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuexiao Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Parajuli P, Rosati R, Mamdani H, Wright RE, Hussain Z, Naeem A, Dzinic S, Polin L, Gavande NS, Ratnam M. Senescence-associated secretory proteins induced in lung adenocarcinoma by extended treatment with dexamethasone enhance migration and activation of lymphocytes. Cancer Immunol Immunother 2023; 72:1273-1284. [PMID: 36434273 PMCID: PMC10991119 DOI: 10.1007/s00262-022-03332-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
There is a need to improve response rates of immunotherapies in lung adenocarcinoma (AC). Extended (7-14 days) treatment of high glucocorticoid receptor (GR) expressing lung AC cells with dexamethasone (Dex) induces an irreversible senescence phenotype through chronic induction of p27. As the senescence-associated secretory phenotype (SASP) may have either tumor supporting or antitumor immunomodulatory effects, it was interest to examine the effects of Dex-induced senescence of lung AC cells on immune cells. Dex-induced senescence resulted in sustained production of CCL2, CCL4, CXCL1 and CXCL2, both in vitro and in vivo. After Dex withdrawal, secretion of these chemokines by the senescent cells attracted peripheral blood monocytes, T-cells, and NK cells. Following treatment with Dex-induced SASP protein(s), the peripheral blood lymphocytes exhibited higher cell count and tumor cytolytic activity along with enhanced Ki67 and perforin expression in T and NK cells. This cytolytic activity was partially attributed to NKG2D, which was upregulated in NK cells by SASP while its ligand MICA/B was upregulated in the senescent cells. Enhanced infiltrations of T and NK cells were observed in human lung AC xenografts in humanized NSG mice, following treatment with Dex. The findings substantiate the idea that induction of irreversible senescence in high-GR expressing subpopulations of lung AC tumors using Dex pretreatment enhances tumor immune infiltration and may subsequently improve the clinical outcome of current immunotherapies.
Collapse
Affiliation(s)
- Prahlad Parajuli
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Rayna Rosati
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Robert E Wright
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Zahin Hussain
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Aroma Naeem
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Sijana Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Manohar Ratnam
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA
| |
Collapse
|
6
|
Wisgalla A, Ramien C, Streitz M, Schlickeiser S, Lupu AR, Diemert A, Tolosa E, Arck PC, Bellmann-Strobl J, Siebert N, Heesen C, Paul F, Friese MA, Infante-Duarte C, Gold SM. Alterations of NK Cell Phenotype During Pregnancy in Multiple Sclerosis. Front Immunol 2022; 13:907994. [PMID: 35860238 PMCID: PMC9289470 DOI: 10.3389/fimmu.2022.907994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56bright NK cell frequencies increase during pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed significant frequency shifts, notably an increase of CD56bright NK cells and a decrease of CD56dim NK cells toward the third trimester, indicating a general rather than an MS-specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a specific CD56bright subset with receptor expression related to cytotoxicity and cell activity (e.g., CD16+ NKp46high NKG2Dhigh NKG2Ahigh phenotype) that may drive the expansion of CD56bright NK cells during pregnancy in MS. Our data confirm that pregnancy promotes pronounced shifts of NK cells toward the regulatory CD56bright population. Although exploratory results on in-depth CD56bright phenotype need to be confirmed in larger studies, our findings suggest an increased regulatory NK activity, thereby potentially contributing to disease amelioration of MS during pregnancy.
Collapse
Affiliation(s)
- Anne Wisgalla
- Medizinische Klinik m.S. Psychosomatik, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Streitz
- Institut für Medizinische Immunologie, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Schlickeiser
- Institut für Medizinische Immunologie, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Andreea-Roxana Lupu
- Cantacuzino National Military Medical Institute for Research and Development, Bucharest, Romania
| | - Anke Diemert
- Klinik für Geburtshilfe und Pränatalmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C. Arck
- Klinik für Geburtshilfe und Pränatalmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nadja Siebert
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan M. Gold
- Medizinische Klinik m.S. Psychosomatik, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- *Correspondence: Stefan M. Gold,
| |
Collapse
|
7
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
8
|
Hejazi M, Zhang C, Bennstein SB, Balz V, Reusing SB, Quadflieg M, Hoerster K, Heinrichs S, Hanenberg H, Oberbeck S, Nitsche M, Cramer S, Pfeifer R, Oberoi P, Rühl H, Oldenburg J, Brossart P, Horn PA, Babor F, Wels WS, Fischer JC, Möker N, Uhrberg M. CD33 Delineates Two Functionally Distinct NK Cell Populations Divergent in Cytokine Production and Antibody-Mediated Cellular Cytotoxicity. Front Immunol 2022; 12:798087. [PMID: 35058934 PMCID: PMC8764454 DOI: 10.3389/fimmu.2021.798087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33- subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33- NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33- NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.
Collapse
Affiliation(s)
- Maryam Hejazi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah B Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Oberbeck
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Marcus Nitsche
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sophie Cramer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Glucocorticoid circadian rhythms in immune function. Semin Immunopathol 2021; 44:153-163. [PMID: 34580744 DOI: 10.1007/s00281-021-00889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Adrenal glucocorticoid (GC) hormones are important regulators of energy metabolism, brain functions, and the immune system. Their release follows robust diurnal rhythms and GCs themselves serve as entrainment signals for circadian clocks in various tissues. In the clinics, synthetic GC analogues are widely used as immunosuppressive drugs. GC inhibitory effects on the immune system are well documented and include suppression of cytokines and increased immune cell death. However, the circadian dynamics of GC action are often neglected. Synthetic GC medications fail to mimic complex GC natural rhythms. Several recent publications have shown that endogenous GCs and their daily concentration rhythms prepare the immune system to face anticipated environmental threats. That includes migration patterns that direct specific cell population to organs and tissues best exemplified by the rhythmic expression of chemoattractants and their receptors. On the other hand, chronotherapeutic approaches may benefit the treatment of immunological diseases such as asthma. In this review, we summarise our current knowledge on the circadian regulation of GCs, their role in innate and adaptive immune functions and the implications for the clinics.
Collapse
|
10
|
Cheloufi M, Kazhalawi A, Pinton A, Rahmati M, Chevrier L, Prat-ellenberg L, Michel AS, Dray G, Mekinian A, Kayem G, Lédée N. The Endometrial Immune Profiling May Positively Affect the Management of Recurrent Pregnancy Loss. Front Immunol 2021; 12:656701. [PMID: 33841443 PMCID: PMC8024694 DOI: 10.3389/fimmu.2021.656701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The endometrial immune profiling is an innovative approach based on the analysis of the local immune reaction occurring in the endometrium at the time of the embryo implantation. By documenting the local immune activation during the period of uterine receptivity, we aim to detect and correct potential imbalances before and at the very beginning of placentation. The main objective of the study was to analyze in women with a history of repeated pregnancy loss (RPL) the association of personalized strategies based on immune dysregulations with live birth rates. The secondary objective was to highlight the main prognostic factors for live births. Methods This is an observational retrospective analysis of 104 patients with RPL, included between January 2012 and December 2019. Inclusion criteria included a spontaneous fertility with at least three miscarriages, an assessment including a three-dimension ultrasound scan, an endometrial biopsy for uterine immune profiling and a follow-up over at least 6 months with personalized care if indicated after the complete assessment. We defined as a success if the patients had a live birth after the suggested plan, as a failure if the patient either did not get pregnant or experienced a new miscarriage after the targeted therapies. Results Uterine immune profiling was the only exploration to be significantly associated with a higher live birth rate (LBR) if a dysregulation was identified and treated accordingly (55% vs 45%, p=0.01). On the contrary, an absence of local dysregulation (resulting in an apparently balanced immune environment) was associated with a higher risk of a new miscarriage, suggesting that the cause inducing RPL still needed to be identified. Independently of age and AMH level, dysregulated immune profile is significatively associated with 3 times higher LBR than a non-deregulated profile (OR=3.4 CI 95%1.27-9.84) or five times in case of an overactive profile treated by immunotherapy (OR=5 CI 95% 1.65-16.5). The usage of ART was significantly associated with lower LBR regardless of the presence of a subfertility factor (p=0.012). Personalization of medical care using natural cycle or simple hormonal stimulation is associated with a significantly higher LBR than personalization including ART treatments regardless of maternal age and AMH level (OR= 2.9 CI 95% 1.03-8.88). Conclusion Our study suggests that some endometrial immune profiles with targeted management of RPL are associated with a higher rate of LBR. ART may be negatively associated with LBR.
Collapse
Affiliation(s)
- Meryam Cheloufi
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | - Alaa Kazhalawi
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
| | - Anne Pinton
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | | | - Lucie Chevrier
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
| | - Laura Prat-ellenberg
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Anne-Sophie Michel
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Geraldine Dray
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| | - Arsène Mekinian
- Hôpital Saint-Antoine Groupe Hospitalier AP-HP, Sorbonne Université (Paris), Paris, France
| | - Gilles Kayem
- Department of Obstetrics and Gynecology, Trousseau Hospital, APHP, Sorbonne Université, FHU PREMA, Paris, France
| | - Nathalie Lédée
- MatriceLAB Innove SARL, Pépinière Paris Santé Cochin, Paris, France
- Centre d’Assistance Médical á la Procréation Bluets-Drouot, Hôpital Les Bluets, Paris, France
| |
Collapse
|
11
|
Salagianni M, Baxevanis CN, Papamichail M, Perez SA. New insights into the role of NK cells in cancer immunotherapy. Oncoimmunology 2021; 1:205-207. [PMID: 22720243 PMCID: PMC3376993 DOI: 10.4161/onci.1.2.18398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Repetitive infusions of ex vivo expanded NK cells induced antitumor T-cell responses in a metastatic lung cancer mouse model. These were further potentiated by Treg depletion. Thus the combination of NK cell-based immunotherapy with other treatment modalities in the direction of adaptive response enhancement might promote long lasting antitumor immunity.
Collapse
Affiliation(s)
- Maria Salagianni
- Cancer Immunology and Immunotherapy Center; Saint Savas Cancer Hospital; Athens, Greece
| | | | | | | |
Collapse
|
12
|
Yao X, Matosevic S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev 2021; 59:36-45. [PMID: 33495094 DOI: 10.1016/j.cytogfr.2020.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors. Often, such interactions are complex and disease-specific. In the context of NK cells, chemokine receptors of note have included CCR2, CCR5, CCR7, CXCR3, and CX3CR1. The immunobiology of chemokine-receptor interactions has fueled the development of approaches that hope to improve the infiltration of NK cells into the microenvironment of solid tumors. Stimulation of NK cells ex vivo in the presence of various cytokines (such as IL-2, IL-15, and IL-21) and genetic engineering of NK cells have been utilized to alter the chemokine receptor profile and generate NK cells with higher infiltrating capacity. Additionally, the immune-suppressive tumor microenvironment has also been targeted, by introducing, either directly or indirectly, chemokine ligands which NK cells are able to respond to, ultimately creating a more hospitable niche for NK cell trafficking. Such strategies have promoted the infiltration and activity of infused NK cells into multiple solid tumors. In this review, we discuss how chemokine receptors and their ligands coordinate and how they can be manipulated to regulate the trafficking, distribution, and residence of NK cells in solid tumors.
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA.
| |
Collapse
|
13
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Cassuto GN, Chevrier L, Kazhalawi A, Vezmar K, Chaouat G. The uterine immune profile: A method for individualizing the management of women who have failed to implant an embryo after IVF/ICSI. J Reprod Immunol 2020; 142:103207. [DOI: 10.1016/j.jri.2020.103207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
|
14
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Cassuto GN, Chevrier L, Kazhalawi A, Vezmar K, Chaouat G. Endometrial Immune Profiling: A Method to Design Personalized Care in Assisted Reproductive Medicine. Front Immunol 2020; 11:1032. [PMID: 32582163 PMCID: PMC7287127 DOI: 10.3389/fimmu.2020.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: To assess the efficiency of the endometrial immune profiling as a method to design personalized care to enhance the pregnancy rate in a large heterogeneous infertile population. We hypothesized that some reproductive failures could be induced by a uterine immune dysregulation which could be identified and corrected with a targeted plan. Design: Prospective cohort study. Setting: Multicentric study. Intervention(s) and Main outcome measure(s): One thousand and seven hundred thirty-eight infertile patients had an immune profiling on a timed endometrial biopsy between 2012 and 2018. This test documented the absence or the presence of an endometrial immune dysregulation and identified its type. In case of dysregulation, a targeted personalized plan was suggested to the treating clinician aiming to supply the anomaly. One year after the test, the clinician was contacted to provide the outcome of the subsequent embryo transfer with the applied suggested plan. Result(s): After testing, 16.5% of the patients showed no endometrial immune dysregulation, 28% had a local immune under-activation, 45% had a local immune over-activation, and 10.5% had a mixed endometrial immune profile. In patients with a history of repeated implantation failures (RIF) or recurrent miscarriages (RM), the pregnancy rate was significantly higher if an endometrial dysregulation was found and the personalized plan applied, compared to the patients with an apparent balanced immune profile (respectively 37.7 and 56% vs. 26.9 and 24%, p < 0.001). In contrast, in good prognosis IVF (in vitro fertilization) subgroup and patients using donor eggs, this difference was not significant between dysregulated and balanced subgroups, but higher pregnancy rates were observed in absence of dysregulation. For patients with immune over-activation, pregnancy rates were significantly higher for patients who had a test of sensitivity, regarding the type of immunotherapy introduced, when compared to the ones who did not (51 vs. 39.9%, p = 0.012). Conclusion(s): Local endometrial immunity appears to be a new and important parameter able to influence the prognosis of pregnancy. Targeted medical care in case of local immune dysregulation resulted in significantly higher pregnancy rates in RIF and RM patients.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Marie Petitbarat
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Laura Prat-Ellenberg
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Géraldine Dray
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
| | - Guy N. Cassuto
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, Paris, France
- Laboratoire Drouot, Paris, France
| | - Lucie Chevrier
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Alaa Kazhalawi
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | - Katia Vezmar
- MatriceLAB Innove, Pépinière Paris Santé Cochin, Hôpital Cochin, Paris, France
| | | |
Collapse
|
15
|
Schmidt S, Schubert R, Demir A, Lehrnbecher T. Distinct Effects of Immunosuppressive Drugs on the Anti- Aspergillus Activity of Human Natural Killer Cells. Pathogens 2019; 8:pathogens8040246. [PMID: 31752374 PMCID: PMC6963337 DOI: 10.3390/pathogens8040246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/27/2023] Open
Abstract
As the prognosis of invasive aspergillosis remains unacceptably poor in patients undergoing hematopoietic stem cell transplantation (HSCT), there is a growing interest in the adoptive transfer of antifungal effector cells, such as Natural Killer (NK) cells. Because immunosuppressive agents are required in most HSCT recipients, knowledge of the impact of these compounds on the antifungal activity of NK cells is a prerequisite for clinical trials. We, therefore, assessed the effect of methylprednisolone (mPRED), cyclosporin A (CsA) and mycophenolic acid (MPA) at different concentrations on proliferation, apoptosis/necrosis, and the direct and indirect anti-Aspergillus activity of human NK cells. Methylprednisolone decreased proliferation and increased apoptosis of NK cells in a significant manner. After seven days, a reduction of viable NK cells was seen for all three immunosuppressants, which was significant for MPA only. Cyclosporin A significantly inhibited the direct hyphal damage by NK cells in a dose-dependent manner. None of the immunosuppressive compounds had a major impact on the measured levels of interferon-γ, granulocyte-macrophage colony-stimulating factor and RANTES (regulated on activation, normal T cell expressed and secreted; CCL5). Our data demonstrate that commonly used immunosuppressive compounds have distinct effects on proliferation, viability and antifungal activity of human NK cells, which should be considered in designing studies on the use of NK cells for adoptive antifungal immunotherapy.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.)
| | - Ralf Schubert
- Pediatric Pulmonology, Allergology and Cystic Fibrosis, Hospital for Children and Adolescents, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Asuman Demir
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.)
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.)
- Correspondence:
| |
Collapse
|
16
|
Impact of prednisone in patients with repeated embryo implantation failures: Beneficial or deleterious? J Reprod Immunol 2018; 127:11-15. [DOI: 10.1016/j.jri.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
|
17
|
Terrén I, Mikelez I, Odriozola I, Gredilla A, González J, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. Implication of Interleukin-12/15/18 and Ruxolitinib in the Phenotype, Proliferation, and Polyfunctionality of Human Cytokine-Preactivated Natural Killer Cells. Front Immunol 2018; 9:737. [PMID: 29713323 PMCID: PMC5911648 DOI: 10.3389/fimmu.2018.00737] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
A brief in vitro stimulation of natural killer (NK) cells with interleukin (IL)-12, IL-15, and IL-18 endow them a memory-like behavior, characterized by higher effector responses when they are restimulated after a resting period of time. These preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have several properties that make them a promising tool in cancer immunotherapy. In the present study, we have described the effect that different combinations of IL-12, IL-15, and IL-18 have on the generation of human CIML NK cells. Our data points to a major contribution of IL-15 to CIML NK cell-mediated cytotoxicity against target cells. However, the synergistic effect of the three cytokines grant them the best polyfunctional profile, that is, cells that simultaneously degranulate (CD107a) and produce multiple cytokines and chemokines such as interferon γ, tumor necrosis factor α, and C-C motif chemokine ligand 3. We have also analyzed the involvement of each cytokine and their combinations in the expression of homing receptors CXCR4 and CD62L, as well as the expression of CD25 and IL-2-induced proliferation. Furthermore, we have tested the effects of the Jak1/2 inhibitor ruxolitinib in the generation of CIML NK cells. We found that ruxolitinib-treated CIML NK cells expressed lower levels of CD25 than non-treated CIML NK cells, but exhibited similar proliferation in response to IL-2. In addition, we have also found that ruxolitinib-treated NK cells displayed reduced effector functions after the preactivation, which can be recovered after a 4 days expansion phase in the presence of low doses of IL-2. Altogether, our results describe the impact that each cytokine and the Jak1/2 pathway have in the phenotype, IL-2-induced proliferation, and effector functions of human CIML NK cells.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Idoia Mikelez
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
- CIC biomaGUNE, Donostia-San Sebastián, Spain
| | - Irati Odriozola
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Andrea Gredilla
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Javier González
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
| | | | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| |
Collapse
|
18
|
Coiffard B, Pelardy M, Loundou AD, Nicolino-Brunet C, Thomas PA, Papazian L, Dignat-George F, Reynaud-Gaubert M. Effect of Immunosuppression on Target Blood Immune Cells Within 1 Year After Lung Transplantation: Influence of Age on T Lymphocytes. Ann Transplant 2018; 23:11-24. [PMID: 29302022 PMCID: PMC6248312 DOI: 10.12659/aot.906372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Lymphocytes are targeted by immunosuppressive therapy in solid organ transplantation and they influence allograft outcome. Material/Methods Peripheral blood lymphocyte subsets (PBLS) determined by flow cytometry during the first year post-transplant from patients who underwent a first lung transplantation in a French University Hospital between December 2011 and July 2013 were retrospectively analyzed according to recipient characteristics and allograft outcome. Results Fifty-seven recipients were enrolled and 890 PBLS were collected. T lymphocytes and NK cells were rapidly decreased, below normal range, from the first postoperative days. B cells decreased more gradually, remaining within normal range, with the lowest level reached after day 100. In multivariate analysis, greater T lymphopenia was found in older recipients (−414 [−709 to −119] cells/μL, p=0.007). According to the outcome, multivariate analysis evidenced lower levels of lymphocytes when bacterial and viral infection occurred (−177 [−310 to −44] cells/μL, p=0.009 and (−601 [−984 to −218] cells/μL, p=0.002, respectively), higher CD8+ T lymphocytes with BOS (+324 [+94 to +553] cells/μL, p=0.006), and higher leukocytes with restrictive allograft syndrome (+3770 [+418 to +7122] cells/μL, p=0.028). Conclusions Aging is associated in our cohort with more severe T lymphopenia after induction therapy for lung transplantation. The analysis of leukocytes and PBLS is associated with specific profile according to the allograft outcome.
Collapse
Affiliation(s)
- Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, Hosital Nord, Marseille, France.,URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France
| | - Matthieu Pelardy
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France
| | - Anderson D Loundou
- Department of Public Health, Aix-Marseille University, Marseille, France
| | - Corine Nicolino-Brunet
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France
| | | | - Laurent Papazian
- URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France.,Respiratory Intensive Care Unit, Hospital Nord, Marseille, France
| | - Françoise Dignat-George
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France.,VRCM, UMR-S1076 INSERM, Aix-Marseille University, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, Hosital Nord, Marseille, France.,URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France
| |
Collapse
|
19
|
Regulatory effects of dexamethasone on NK and T cell immunity. Inflammopharmacology 2017; 26:1331-1338. [PMID: 29159714 PMCID: PMC6153920 DOI: 10.1007/s10787-017-0418-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022]
Abstract
Glucocorticoids (GCs) act via the intracellular glucocorticoid receptor (GR), which can regulate the expression of target genes. With regard to the immune system, GCs may affect both innate and adaptive immunity. Our study analyzed the immunoregulatory effects of dexamethasone (Dex) treatment on splenic T, Treg, NK and NKT cells by treating C57Bl6 mice with various doses of Dex. We observed that treatment with Dex decreased the number of NK cells in the spleen and suppressed their activity. In particular, the expression of both Ly49G and NKG2D receptors was decreased by Dex. However, Dex did not affect the population of NKT cells. With regard to splenic T cells, our results show a dose-dependent reduction in CD3+, CD4+, CD8+, CD44+ and CD8+CD122+ T cells, but a stimulatory effect on CD4+CD25+ regulatory T cells by Dex treatment. In addition, treatment with Dex suppressed anti-tumor immune response in a mouse EG7 tumor model. We conclude that Dex may suppress both T- and NK-mediated immunity.
Collapse
|
20
|
Jonakowski M, Zioło J, Koćwin M, Przemęcka M, Mokros Ł, Panek M, Szemraj J, Kuna P. Role of IL-15 in the modulation of TGF-β1-mediated inflammation in asthma. Exp Ther Med 2017; 14:4533-4540. [PMID: 29104662 DOI: 10.3892/etm.2017.5108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor (TGF)-β1 has an essential role in bronchitis and the induction of bronchial remodelling, which are critical processes in the pathogenesis of asthma. However, the role of interleukin (IL)-15 in asthma inflammation remains unclear. The aim of the present study was to evaluate the effect of TGF-β1 mRNA expression on IL-15 mRNA expression in asthmatic patients and to assess the role of IL-15 in the clinical course of asthma. The study included 221 participants, comprising 130 patients with asthma and 91 healthy volunteers. The participants were subjected to testing using spirometry, as well as the Asthma Control Test™ and Borg Scale. The expression of TGF-β1 and IL-15 mRNA was analyzed in blood samples using reverse transcription-quantitative polymerase chain reaction. Statistical analysis indicated that IL-15 and TGF-β1 mRNA expression each differed significantly between the patient and control groups (P=0.0016 and P=0.033, respectively). A significant correlation was identified between IL-15 expression and TGF-β1 expression (R=0.41, P=0.0005). No correlation was observed between IL-15 expression and the degree of asthma severity, the results of spirometric examination or the frequency of asthma exacerbations. Further analysis revealed that IL-15 expression was elevated following the administration of inhaled glucocorticosteroids (iGCs; P=0.024), and reduced following methylxanthine treatment (P<0.001). The occurrence of dyspnoea differed between the study and control groups, and this was not found to be associated with IL-15 expression. Since IL-15 expression was correlated with TGF-β1 expression among asthmatic patients, and IL-15 expression was elevated following iGC administration, the results of the study suggest that IL-15 activity might be associated with the pathogenesis of asthma.
Collapse
Affiliation(s)
- Mateusz Jonakowski
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Jan Zioło
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marcelina Koćwin
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marcelina Przemęcka
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
21
|
Dubois S, Conlon KC, Müller JR, Hsu-Albert J, Beltran N, Bryant BR, Waldmann TA. IL15 Infusion of Cancer Patients Expands the Subpopulation of Cytotoxic CD56 bright NK Cells and Increases NK-Cell Cytokine Release Capabilities. Cancer Immunol Res 2017; 5:929-938. [PMID: 28842470 DOI: 10.1158/2326-6066.cir-17-0279] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/28/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
Abstract
The cytokine IL15 is required for survival and activation of natural killer (NK) cells as well as expansion of NK-cell populations. Here, we compare the effects of continuous IL15 infusions on NK-cell subpopulations in cancer patients. Infusions affected the CD56bright NK-cell subpopulation in that the expansion rates exceeded those of CD56dim NK-cell populations with a 350-fold increase in their total cell numbers compared with 20-fold expansion for the CD56dim subset. CD56bright NK cells responded with increased cytokine release to various stimuli, as expected given their immunoregulatory functions. Moreover, CD56bright NK cells gained the ability to kill various target cells at levels that are typical for CD56dim NK cells. Some increased cytotoxic activities were also observed for CD56dim NK cells. IL15 infusions induced expression changes on the surface of both NK-cell subsets, resulting in a previously undescribed and similar phenotype. These data suggest that IL15 infusions expand and arm CD56bright NK cells that alone or in combination with tumor-targeting antibodies may be useful in the treatment of cancer. Cancer Immunol Res; 5(10); 929-38. ©2017 AACR.
Collapse
Affiliation(s)
- Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jennifer Hsu-Albert
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nancy Beltran
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
22
|
Leone P, De Re V, Vacca A, Dammacco F, Racanelli V. Cancer treatment and the KIR-HLA system: an overview. Clin Exp Med 2017; 17:419-429. [PMID: 28188495 DOI: 10.1007/s10238-017-0455-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/29/2017] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that the success of cancer therapy depends not only on a combination of adequate procedures (surgery, chemotherapy and radiotherapy) that aim to eliminate all tumor cells, but also on the functional state of the host immune system. HLA and KIR molecules, in particular, are critical to the interactions between tumor cells and both innate and adaptive immune cells such as NK cells and T cells. Different KIR-HLA gene combinations as well as different HLA expression levels on tumor cells associate with variable tumor prognosis and response to treatment. On the other hand, different therapies have different effects on HLA molecules and immune cell functions regulated by these molecules. Here, we provide an overview of the KIR-HLA system, a description of its alterations with clinical relevance in diverse tumor types, and an analysis of the consequences that conventional cancer therapies may have on it. We also discuss how this knowledge can be exploited to identify potential immunological biomarkers that can help to select patients for tailored therapy.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Franco Dammacco
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico - 11, Piazza G. Cesare, 70124, Bari, Italy.
| |
Collapse
|
23
|
Lédée N, Prat-Ellenberg L, Chevrier L, Balet R, Simon C, Lenoble C, Irani EE, Bouret D, Cassuto G, Vitoux D, Vezmar K, Bensussan A, Chaouat G, Petitbarat M. Uterine immune profiling for increasing live birth rate: A one-to-one matched cohort study. J Reprod Immunol 2017; 119:23-30. [DOI: 10.1016/j.jri.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/31/2023]
|
24
|
Bernardini G, Antonangeli F, Bonanni V, Santoni A. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases. Front Immunol 2016; 7:402. [PMID: 27766097 PMCID: PMC5052267 DOI: 10.3389/fimmu.2016.00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Chemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including natural killer (NK) cells. Current research is focused on analyzing changes in chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can be modulated during NK cell activation. At first, this review will summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University, Rome, Italy; IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy
| | | | - Valentina Bonanni
- Department of Molecular Medicine, Sapienza University , Rome , Italy
| | - Angela Santoni
- IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy; Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
25
|
Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, Moretta A, Locatelli F, Moretta L. Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother 2016; 65:465-76. [PMID: 26289090 PMCID: PMC11028670 DOI: 10.1007/s00262-015-1744-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/18/2015] [Indexed: 12/28/2022]
Abstract
It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host's defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment.
Collapse
Affiliation(s)
- Gabriella Pietra
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Chiara Vitale
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | | | | | - Francesca Moretta
- Department of Medicine, University of Verona, Verona, Italy
- Ospedale Sacro Cuore, Negrar, Verona, Italy
| | - Michela Falco
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Elisa Montaldo
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Maria Cristina Mingari
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | | |
Collapse
|
26
|
Lédée N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, Dubanchet S, Gahéry H, Bensussan A, Chaouat G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am J Reprod Immunol 2016; 75:388-401. [PMID: 26777262 PMCID: PMC4849202 DOI: 10.1111/aji.12483] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
LABELED PROBLEM Embryo implantation remains the main limiting factor in assisted reproductive medicine (20% success rate). METHODS OF STUDY An endometrial immune profiling was performed among 394 women with the previous history of repeated embryo implantation failures (RIF). The endometrial immune profile documented the ratio of IL-15/Fn-14 mRNA as a biomarker of uNK cell activation/maturation (together with the uNK cell count) and the IL-18/TWEAK mRNA ratio as a biomarker of both angiogenesis and the Th1/Th2 balance. According to their profile, we recommended personalized care to counteract the documented dysregulation and assessed its effects by the live birth rate (LBR) for the next embryo transfer. RESULTS Endometrial immune profiles appeared to be dysregulated in 81.7% of the RIF patients compared to control. Overactivation was diagnosed in 56.6% and low activation in 25%. The LBR among these dysregulated/treated patients at the first subsequent embryo transfer was 39.8%. CONCLUSION Endometrial immune profiling may improve our understanding of RIF and subsequent LBR if treated.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLAB Innove SARLSaint‐Louis HospitalParisFrance
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | | | | | - Dominique Vitoux
- Plateforme de Diagnostic Biologique Automatisé AP‐HPSaint‐Louis HospitalParisFrance
| | - Katia Vezmar
- MatriceLAB Innove SARLSaint‐Louis HospitalParisFrance
| | - Mona Rahmati
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Sylvie Dubanchet
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Hanne Gahéry
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Armand Bensussan
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Gerard Chaouat
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| |
Collapse
|
27
|
Maciejewski-Duval A, Meuris F, Bignon A, Aknin ML, Balabanian K, Faivre L, Pasquet M, Barlogis V, Fieschi C, Bellanné-Chantelot C, Donadieu J, Schlecht-Louf G, Marin-Esteban V, Bachelerie F. Altered chemotactic response to CXCL12 in patients carrying GATA2 mutations. J Leukoc Biol 2015; 99:1065-76. [PMID: 26710799 DOI: 10.1189/jlb.5ma0815-388r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 12/29/2022] Open
Abstract
GATA2 deficiency-formerly described as MonoMAC syndrome; dendritic cells, monocytes, B cells, and natural killer cell deficiency; familial myelodysplastic syndrome/acute myeloid leukemia; or Emberger syndrome-encompasses a range of hematologic and nonhematologic anomalies, mainly characterized by monocytopenia, B lymphopenia, natural killer cell cytopenia, neutropenia, immunodeficiency, and a high risk of developing acute myeloid leukemia. Herein, we present 7 patients with GATA2 deficiency recruited into the French Severe Chronic Neutropenia Registry, which enrolls patients with all kinds of congenital neutropenia. We performed extended immunophenotyping of their whole blood lymphocyte populations, together with the analysis of their chemotactic responses. Lymphopenia was recorded for B and CD4(+) T cells in 6 patients. Although only 3 patients displayed natural killer cell cytopenia, the CD56(bright) natural killer subpopulation was nearly absent in all 7 patients. Natural killer cells from 6 patients showed decreased CXCL12/CXCR4-dependent chemotaxis, whereas other lymphocytes, and most significantly B lymphocytes, displayed enhanced CXCL12-induced chemotaxis compared with healthy volunteers. Surface expression of CXCR4 was significantly diminished in the patients' natural killer cells, although the total expression of the receptor was found to be equivalent to that of natural killer cells from healthy individual controls. Together, these data reveal that GATA2 deficiency is associated with impaired membrane expression and chemotactic dysfunctions of CXCR4. These dysfunctions may contribute to the physiopathology of this deficiency by affecting the normal distribution of lymphocytes and thus potentially affecting the susceptibility of patients to associated infections.
Collapse
Affiliation(s)
- Anna Maciejewski-Duval
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Floriane Meuris
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Alexandre Bignon
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Marie-Laure Aknin
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Karl Balabanian
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Laurence Faivre
- Génétique et Anomalies du Développement, EA4271, Université de Bourgogne, Dijon, France and FHU TRANSLAD, Département de Génétique, CHU Dijon, Dijon, France
| | - Marlène Pasquet
- Département d'Hématologie du Centre Hospitalier Universitaire Toulouse Purpan and INSERM, CRCT, IUCT-Oncopole, Toulouse, France
| | - Vincent Barlogis
- Service d'Hématologie Pédiatrique, Assistance Publique, Hôpitaux de Marseille, Hôpital Timone Enfants, Marseille, France
| | - Claire Fieschi
- Département d'Immunologie Clinique, Hôpital Saint Louis and Université Denis Diderot, Paris, France
| | - Christine Bellanné-Chantelot
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Jean Donadieu
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France; UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Géraldine Schlecht-Louf
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Viviana Marin-Esteban
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France;
| | - Françoise Bachelerie
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, France;
| |
Collapse
|
28
|
Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology 2015; 146:369-78. [PMID: 26235210 DOI: 10.1111/imm.12516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor-ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy.
Collapse
Affiliation(s)
- Peng Xiong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Wei Sang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Yakimchuk K, Chen L, Hasni MS, Okret S, Jondal M. The selective impact of transgenically expressed glucocorticoid receptor on T cells. Autoimmunity 2014; 48:117-24. [PMID: 25401790 DOI: 10.3109/08916934.2014.959164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glucocorticoids (GCs) strongly impact on different T cell subsets inducing generally immunosuppressive effects, whereas much less is known about the effect of GC on natural killer (NK) cells. The aims of this study were to investigate the effects of GC on T cell functions, including T cell-mediated anti-tumor immune response, and on NK cells. We have used lck-GR mice, which overexpress a transgenic rat GR in both T and NK cells. These mice were found to have decreased both CD4(+) and CD8(+) T cell populations in the periphery. In contrast, both NK and NKT cells were found in normal numbers in lck-GR mice. To identify genes and pathways affected by GR overexpression in our system in T cells, we have compared gene expression profiles in wild-type and lck-GR T cells. Among the genes upregulated in T cells from lck-GR mice, the microarray analysis has identified genes regulating expansion of regulatory T cells. The analysis of genes downregulated in lck-GR mice has identified genes and gene associated with the regulation of immune response. With regard to the effects on T cell functions in lck-GR mice, transgenic expression of GR had a suppressive effect on killer cell activity in vitro. In addition, lck-GR mice showed an increased tumor growth in murine tumor model in vivo, which may be a possible consequence of reduced T cell numbers and activity. We conclude that an increased expression of the GR strongly affects numbers and possibly functions of T cell subsets, but has little effect on NK cells.
Collapse
Affiliation(s)
- Konstantin Yakimchuk
- Department of Biosciences and Nutrition, Karolinska Instutet , Novum, Huddinge , Sweden and
| | | | | | | | | |
Collapse
|
30
|
Fritsch P, Craddock TJA, del Rosario RM, Rice MA, Smylie A, Folcik VA, de Vries G, Fletcher MA, Klimas NG, Broderick G. Succumbing to the laws of attraction. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/sysb.28948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Fischer HJ, Schweingruber N, Lühder F, Reichardt HM. The potential role of T cell migration and chemotaxis as targets of glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Mol Cell Endocrinol 2013; 380:99-107. [PMID: 23578583 DOI: 10.1016/j.mce.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are the most commonly prescribed drugs for the treatment of acute disease bouts in multiple sclerosis (MS) patients. While T lymphocytes were shown to be essential targets of GC therapy, at least in animal models of MS, the mechanisms by which GCs modulate T cell function are less clear. Until now, apoptosis induction and repression of pro-inflammatory cytokines in T cells have been considered the most critical mechanisms in ameliorating disease symptoms. However, this notion is being challenged by increasing evidence that the control of T cell migration and chemotaxis by GCs might be even more important for the treatment of neuroinflammatory diseases. In this review we aim to provide an overview of how GCs impact the morphological alterations that T cells undergo during activation and migration as well as the influences that GCs have on the directed movement of T cells under the influence of chemokines. A deeper understanding of these processes should not only help to advance our understanding of how GCs exert their beneficial effects in MS therapy but may reveal future strategies to intervene in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, Humboldtallee 34, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
32
|
Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol 2012; 42:45-57. [PMID: 22134956 DOI: 10.1007/s12016-011-8289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because of its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This review updates the phenotypic and functional deficiencies of various immune cell populations in UCB compared with their adult counterparts and discusses clinical implications and possible therapeutic strategies to improve the outcome of stem cell transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Hussain M, Javeed A, Ashraf M, Al-Zaubai N, Stewart A, Mukhtar MM. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res 2012; 66:7-18. [DOI: 10.1016/j.phrs.2012.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/14/2012] [Indexed: 12/16/2022]
|
34
|
Verbist KC, Klonowski KD. Functions of IL-15 in anti-viral immunity: multiplicity and variety. Cytokine 2012; 59:467-78. [PMID: 22704694 DOI: 10.1016/j.cyto.2012.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/15/2022]
Abstract
An effective immune response to an invading viral pathogen requires the combined actions of both innate and adaptive immune cells. For example, NK cells and cytotoxic CD8 T cells are capable of the direct engagement of infected cells and the mediation of antiviral responses. Both NK and CD8 T cells depend on common gamma chain (γc) cytokine signals for their development and homeostasis. The γc cytokine IL-15 is very well characterized for its role in promoting the development and homeostasis of NK cells and CD8 T cells, but emerging literature suggests that IL-15 mediates the anti-viral responses of these cell populations during an active immune response. Both NK cells and CD8 T cells must become activated, migrate to sites of infection, survive at those sites, and expand in order to maximally exert effector functions, and IL-15 can modulate each of these processes. This review focuses on the functions of IL-15 in the regulation of multiple aspects of NK and CD8 T cell biology, investigates the mechanisms by which IL-15 may exert such diverse functions, and discusses how these different facets of IL-15 biology may be therapeutically exploited to combat viral diseases.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | |
Collapse
|
35
|
Yamada Y, Aoyama A, Tocco G, Boskovic S, Nadazdin O, Alessandrini A, Madsen JC, Cosimi AB, Benichou G, Kawai T. Differential effects of denileukin diftitox IL-2 immunotoxin on NK and regulatory T cells in nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2012; 188:6063-70. [PMID: 22586034 DOI: 10.4049/jimmunol.1200656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Denileukin diftitox (DD), a fusion protein comprising IL-2 and diphtheria toxin, was initially expected to enhance antitumor immunity by selectively eliminating regulatory T cells (Tregs) displaying the high-affinity IL-2R (α-β-γ trimers). Although DD was shown to deplete some Tregs in primates, its effects on NK cells (CD16(+)CD8(+)NKG2A(+)CD3(-)), which constitutively express the intermediate-affinity IL-2R (β-γ dimers) and play a critical role in antitumor immunity, are still unknown. To address this question, cynomolgus monkeys were injected i.v. with two doses of DD (8 or 18 μg/kg). This treatment resulted in a rapid, but short-term, reduction in detectable peripheral blood resting Tregs (CD4(+)CD45RA(+)Foxp3(+)) and a transient increase in the number of activated Tregs (CD4(+)CD45RA(-)Foxp3(high)), followed by their partial depletion (50-60%). In contrast, all NK cells were deleted immediately and durably after DD administration. This difference was not due to a higher binding or internalization of DD by NK cells compared with Tregs. Coadministration of DD with IL-15, which binds to IL-2Rβ-γ, abrogated DD-induced NK cell deletion in vitro and in vivo, whereas it did not affect Treg elimination. Taken together, these results show that DD exerts a potent cytotoxic effect on NK cells, a phenomenon that might impair its antitumoral properties. However, coadministration of IL-15 with DD could alleviate this problem by selectively protecting potentially oncolytic NK cells, while allowing the depletion of immunosuppressive Tregs in cancer patients.
Collapse
Affiliation(s)
- Yohei Yamada
- Department of Surgery, Transplant Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pham B, Piard-Ruster K, Silva R, Gallo A, Esquivel CO, Martinez OM, Krams SM. Changes in natural killer cell subsets in pediatric liver transplant recipients. Pediatr Transplant 2012; 16:176-82. [PMID: 22360401 PMCID: PMC3306774 DOI: 10.1111/j.1399-3046.2012.01653.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NK cells are important in the immune response against tumors and virally infected cells. A balance between inhibitory and activating receptors controls the effector functions of NK cells. We examined the fate of circulating NK cells and the expression of the NK cell-activating receptors in pediatric liver transplant recipients. Blood specimens were collected from 38 pediatric liver transplant recipients before transplant, and at one wk, one, three, six, and nine months, and one yr post-transplant. PBMCs were isolated and analyzed for the levels of NK cell activation receptors NKp30, NKp46, and NKG2D in the CD56(dim) CD16(+) and CD56(bright) CD16(+/-) subsets of NK cells. We demonstrated that there is a significant decrease in the percentage of circulating NK cells post-transplant (pretransplant 7.69 ± 1.54 vs. one wk post-transplant 1.73 ± 0.44) in pediatric liver transplant recipients. Interestingly, NKp30 expression is significantly increased, while NKp46 and NKG2D levels remain stable on the NK cells that persist at one wk post-transplant. These data indicate that the numbers and subsets of circulating NK cells are altered in children after liver transplantation.
Collapse
Affiliation(s)
- Betty Pham
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hogg A, Huante M, Ongaya A, Williams J, Ferguson M, Cloyd M, Amukoye E, Endsley J. Activation of NK cell granulysin by mycobacteria and IL-15 is differentially affected by HIV. Tuberculosis (Edinb) 2011; 91 Suppl 1:S75-81. [PMID: 22099421 DOI: 10.1016/j.tube.2011.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NK cells play an important role in innate immunity to mycobacteria and are a significant source of the bactericidal effector molecule granulysin. Defects in NK cells have been described in HIV-infected patients, though mechanistic studies have focused on effector molecules relevant to anti-viral, and not anti-bacterial, function. Here we used primary NK cells from healthy human donors and an in vitro system to identify the phenotype of granulysin expressing NK cells, characterize activation stimuli that regulate granulysin, and to study the immediate effects of HIV on innate activation of NK cell granulysin expression. We observe that granulysin expression is co-associated with cytotoxicity receptors (NKp46, NKG2D) known to have important function in the cytotoxic response to M.tb-infected macrophages. Granulysin expression is significantly increased following exposure to IL-15 or Mycobacterium bovis BCG, but in contrast to our previous findings with CD8(+)T cells, expression is weakly activated by IL-21. Infection of PBMC with HIV-1 suppresses NK cell induction of granulysin by IL-15, but does not impair activation by BCG. These effects of HIV-1 are associated with reduced STAT5 phosphorylation in the IL-15 activated signaling cascade. These observations suggest that HIV may impair the anti-bacterial function of NK cells and have implications for clinical use of IL-15 to augment innate cell mediated immunity in HIV+ patients.
Collapse
Affiliation(s)
- Alison Hogg
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|