1
|
Veltmaat N, Tan GW, Zhong Y, Teesink S, Terpstra M, Bult J, Nijland M, Kluiver J, Diepstra A, van den Berg A, Plattel WJ. Molecular profiling of cell-free DNA from classic Hodgkin lymphoma patients identifies potential prognostic clusters and corresponds with disease dynamics. Ann Hematol 2025; 104:1789-1800. [PMID: 40198333 DOI: 10.1007/s00277-025-06328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Cell-free DNA (cfDNA) analysis has advantages over tissue analysis for molecular profiling of classic Hodgkin lymphoma (cHL) at diagnosis and offers additional opportunities for sensitive non-invasive disease tracking during treatment. The aim of this study is to correlate cfDNA based molecular profiling with disease characteristics including serum Thymus and Activation Regulated Chemokine (TARC) levels and FDG-PET imaging, which are established markers of disease assessment. cfDNA isolated from plasma samples of 42 cHL patients was analyzed using low coverage whole genome and targeted next-generation sequencing. Patients were clustered in three groups based on Epstein-Barr virus (EBV) and SOCS1 mutational status. Patients in the EBV-negative (EBV-) & SOCS1 mutated (m) cluster had more extensive disease based on significantly higher serum TARC (sTARC) levels, higher metabolic tumor volume and increased risk of treatment failure. Additionally, the median variant allele frequency and mutational load was highest in the EBV- & SOCS1m cluster, which was validated in two external cohorts. The estimated tumor fraction and median variant allele frequency of the single nucleotide variants correlated with sTARC levels. Disease tracking over time demonstrated cfDNA level dynamics that partly resembled sTARC levels and imaging results. In conclusion, we show that cfDNA based clustering on EBV status and SOCS1 mutational status correlates with adverse disease characteristics and increased risk of treatment failure. CfDNA-based disease tracking has the potential to serve as a sensitive tool that can complement existing response assessment methods in cHL patients.
Collapse
Affiliation(s)
- Nick Veltmaat
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geok-Wee Tan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yujie Zhong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sophie Teesink
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Terpstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johanna Bult
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Govindarajan P, Zeng Y, Larijani M. Biochemical assays for AID/APOBECs and the identification of AID/APOBEC inhibitors. Methods Enzymol 2025; 713:163-200. [PMID: 40250953 DOI: 10.1016/bs.mie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Activation-induced cytidine deaminase (AID) and apolipoprotein B-mRNA editing catalytic polypeptide 3 (APOBEC3 or A3) proteins belong to the AID/APOBEC family of cytidine deaminases. While AID mediates somatic hypermutation and class-switch recombination in adaptive immunity, A3s restrict viruses and retroelements by hypermutation. Mis-regulated expression and off-target activity of AID/A3 can cause genome-wide mutations promoting oncogenesis, immune evasion, and therapeutic resistance due to tumor and viral evolution. In these contexts, inhibition of AID/A3 represents a promising therapeutic approach. Competitive inhibition could be achieved with different strategies: one class would be small molecules that bind in the catalytic pocket (active site) and block access for the substrate cytidine. Another type of larger molecule inhibitor would bind the enzymes' surface more broadly and compete with the binding of the polynucleotide substrates prior to deamination catalysis. Several biochemical assays developed to assess AID/A3 activity can be employed to screen for potential inhibitors. These include in cellulo and in vitro activity-based as well as binding-based assays. In this chapter, we discuss the key considerations for designing robust enzyme assays and provide an overview of assays that we and others have established or modified for specific applications in AID/A3 enzymology, including measurement of inhibition. We provide detailed protocols for the two most widely used in vitro enzyme assays that directly measure the activities of purified AID/A3s on DNA and/or RNA substrates, namely, the gel-based alkaline cleavage assay and multiple variations of PCR/sequencing-based assays.
Collapse
Affiliation(s)
| | - Ying Zeng
- Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
3
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Ullah A, Mabood N, Ullah M, Shafi M, Maqbool M. Single‐molecule methods, activation‐induced cytidine deaminase, and quantum mechanical approach to explore and prevent carcinogenesis. VIEW 2024; 5. [DOI: 10.1002/viw.20240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 01/21/2025] Open
Abstract
AbstractRecent advancements in single‐molecule methods have not only made it possible to obtain precise measurements for complex biological processes but also to produce simple mathematical models for intricate biochemical mechanisms, which would otherwise be speculative. These developments have strengthened our ability to respond through mathematical modeling to concepts of protein‒protein and protein‒DNA interactions on a nanometer level and address‐related questions. In this article, we examine an intriguing biological phenomenon in which a protein and an enzyme co‐jointly encounter carcinogenic adducts during transcription. We are focusing mainly on the dysregulation of the protein involved and the possible consequences that may arise. By providing a quantum mechanical model, we have demonstrated that the presence of carcinogenic adducts in a transcriptional bubble deregulates the protein that could cause lethal mutations. Next, we present a case study to explore carcinogenesis by suggesting an alternative experimental design. Our quantum mechanical model emphasizes the use of a quantized energies approach for specific mechanisms within the living cells. Radiation‐induced carcinogenicity can be prevented if radiation interacting with tissue is not given the energies that satisfy the quantization conditions.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry University of Alberta Edmonton Alberta Canada
| | - Neelam Mabood
- Department of Pediatrics Faculty of Medicine & Dentistry University of Alberta Edmonton Alberta Canada
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine Stanford University Stanford California USA
| | | | - Muhammad Maqbool
- Health Physics Program, Department of Clinical & Diagnostic Sciences The University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
5
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
7
|
Synthesis and Biological Evaluation of PEGylated MWO 4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217143. [PMID: 36363970 PMCID: PMC9654119 DOI: 10.3390/molecules27217143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
Sonodynamic therapy (SDT) triggered by ultrasound (US) has attracted increasing attention owing to its ability to overcome critical limitations, including low tissue-penetration depth and phototoxicity in photodynamic therapy (PDT). Biogenic metal oxide nanoparticles (NPs) have been used as anti-cancer drugs due to their biocompatibility properties with most biological systems. Here, sonosensitizer MWO4-PEG NPs (M = Fe Mn Co Ni) were synthesized as inhibitors to activation-induced cytidine deaminase (AID), thus neutralizing the extensive carcinogenesis of AID in diffuse large B-cell lymphoma (DLBCL). The physiological properties of these nanomaterials were examined using transmission electron microscopy (TEM). The inhibition of NPs to AID was primarily identified by the affinity interaction prediction between reactive oxygen species (ROS) and AID through molecular dynamics and molecular docking technology. The cell apoptosis and ROS generation in US-triggered NPs treated DLBCL cells (with high levels of AID) were also detected to indicate the sonosensitivity and toxicity of MWO4-PEG NPs to DLBCL cells. The anti-lymphoma studies using DLBCL and AID-deficient DLBCL cell lines indicated a concentration-dependent profile. The synthesized MWO4-PEG NPs in this study manifested good sonodynamic inhibitory effects to AID and well treatment for AID-positive hematopoietic cancers.
Collapse
|
8
|
Singularity and Commonality in Response to SARS-CoV-2 in Lung and Colon Cell Models. Int J Mol Sci 2022; 23:ijms231810451. [PMID: 36142362 PMCID: PMC9499647 DOI: 10.3390/ijms231810451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The systemic nature of COVID-19 with multiple extrapulmonary manifestations of disease, largely due to the wide tissue expression of SARS-CoV-2 major entry factors, as well as the patient-specific features of COVID-19 pathobiology, determine important directions for basic and translational research. In the current study, we addressed the questions of singularities and commonalities in cellular responses to SARS-CoV-2 and related SARS-CoV on the basis of compendium-wide analysis of publicly available transcriptomic datasets as part of the herein implemented multi-modular UNCOVIDING approach. We focused on cellular models attributed to the epithelial cells of the respiratory system, the Calu-3 cell line, and epithelial cells of the gastrointestinal tract, the Caco-2 cell line, infected with either SARS-CoV-2 or SARS-CoV. Here, we report the outcome of a comparative analysis based on differentially expressed genes in terms of perturbations and diseases, Canonical pathways, and Upstream Regulators. We furthermore performed compendium-wide analysis across more than 19,000 mRNASeq datasets and dissected the condition-specific gene signatures. Information was gained with respect to common and unique cellular responses and molecular events. We identified that in cell lines of colon or lung origin, both viruses show similarities in cellular responses; by contrast, there are cell type-specific regulators that differed for Calu-3 and Caco-2 cells. Among the major findings is the impact of the interferon system for lung Calu-3 cells and novel links to the liver- and lipid-metabolism-associated responses for colon Caco-2 cells as part of the extrapulmonary pathomechanisms in the course of COVID-19. Among differently expressed genes, we specifically dissected the expression pattern of the APOBEC family members and propose APOBEC3G as a promising intrinsic antiviral factor of the host response to SARS-CoV-2. Overall, our study provides gene expression level evidence for the cellular responses attributed to pulmonary and gastrointestinal manifestations of COVID-19.
Collapse
|
9
|
Prediction of Regulatory SNPs in Putative Minor Genes of the Neuro-Cardiovascular Variant in Fabry Reveals Insights into Autophagy/Apoptosis and Fibrosis. BIOLOGY 2022; 11:biology11091287. [PMID: 36138766 PMCID: PMC9495465 DOI: 10.3390/biology11091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Even though a mutation in monogenic diseases leads to a “classic” manifestation, many disorders exhibit great clinical variability that could be due to modifying genes also called minor genes. Fabry disease (FD) is an X-linked inborn error resulting from the deficient or absent activity of alpha-galactosidase A (α-GAL) enzyme, that leads to deposits of globotriaosylceramide. With our proprietary software SNPclinic v.1.0, we analyzed 110 single nucleotide polymorphisms (SNPs) in the proximal promoter of 14 genes that could modify the FD phenotype FD. We found seven regulatory-SNP (rSNPs) in three genes (IL10, TGFB1 and EDN1) in five cell lines relevant to FD (Cardiac myocytes and fibroblasts, Astrocytes-cerebellar, endothelial cells and T helper cells 1-TH1). Each SNP was confirmed as a true rSNP in public eQTL databases, and additional software suggested the prediction of variants. The two proposed rSNPs in IL10, could explain components for the regulation of active B cells that influence the fibrosis process. The three predicted rSNPs in TGFB1, could act in apoptosis-autophagy regulation. The two putative rSNPs in EDN1, putatively regulate chronic inflammation. The seven rSNPs described here could act to modulate Fabry’s clinical phenotype so we propose that IL10, TGFB1 and EDN1 be considered minor genes in FD.
Collapse
|
10
|
Inflammation accelerates BCR-ABL1+ B-ALL development through upregulation of AID. Blood Adv 2022; 6:4060-4072. [PMID: 35816360 PMCID: PMC9278295 DOI: 10.1182/bloodadvances.2021005017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory stimulation promotes BCR-ABL1+ B-ALL disease progression by upregulating AID. Combination of imatinib and Hsp90 inhibitors significantly delays the inflammation-induced progression of BCR-ABL1+ B-ALL.
Inflammation contributes to the initiation and disease progression of several lymphoid malignancies. BCR-ABL1-positive B-cell acute lymphoblastic leukemia (BCR-ABL1+ B-ALL) is triggered by the malignant cloning of immature B cells promoted by the BCR-ABL1 fusion gene. However, it is unclear whether the mechanism driving the disease progression of BCR-ABL1+ B-ALL involves inflammatory stimulation. Here, we evaluate BCR-ABL1+ B-ALL cells’ response to inflammatory stimuli lipopolysaccharide (LPS) in vitro and in vivo. The results indicate that LPS promotes cell growth and genomic instability in cultured BCR-ABL1+ B-ALL cells and accelerates the BCR-ABL1+ B-ALL development in a mouse model. We show that the LPS-induced upregulation of activation-induced deaminase (AID) is required for the cell growth and disease progression of BCR-ABL1+ B-ALL. Moreover, AID modulates the expression of various genes that are dominated by suppressing apoptosis genes and upregulating DNA damage-repair genes. These genes lead to facilitation for BCR-ABL1+ B-ALL progression. The heat shock protein 90 (Hsp90) inhibitors significantly reduce AID protein level and delay the disease progression of BCR-ABL1+ B-ALL upon inflammatory stimulation. The present data demonstrate the causative role of AID in the development and progression of BCR-ABL1+ B-ALL during inflammation, thus highlighting potential therapeutic targets.
Collapse
|
11
|
Műzes G, Bohusné Barta B, Sipos F. Colitis and Colorectal Carcinogenesis: The Focus on Isolated Lymphoid Follicles. Biomedicines 2022; 10:226. [PMID: 35203436 PMCID: PMC8869724 DOI: 10.3390/biomedicines10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Gut-associated lymphoid tissue is one of the most diverse and complex immune compartments in the human body. The subepithelial compartment of the gut consists of immune cells of innate and adaptive immunity, non-hematopoietic mesenchymal cells, and stem cells of different origins, and is organized into secondary (and even tertiary) lymphoid organs, such as Peyer's patches, cryptopatches, and isolated lymphoid follicles. The function of isolated lymphoid follicles is multifaceted; they play a role in the development and regeneration of the large intestine and the maintenance of (immune) homeostasis. Isolated lymphoid follicles are also extensively associated with the epithelium and its conventional and non-conventional immune cells; hence, they can also function as a starting point or maintainer of pathological processes such as inflammatory bowel diseases or colorectal carcinogenesis. These relationships can significantly affect both physiological and pathological processes of the intestines. We aim to provide an overview of the latest knowledge of isolated lymphoid follicles in colonic inflammation and colorectal carcinogenesis. Further studies of these lymphoid organs will likely lead to an extended understanding of how immune responses are initiated and controlled within the large intestine, along with the possibility of creating novel mucosal vaccinations and ways to treat inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
| | | | - Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary; (G.M.); (B.B.B.)
| |
Collapse
|
12
|
Wang L, Xu Y, Zhang L, Kang K, Kobryn A, Portman K, Gordon RE, Pan PY, Taioli E, Aaronson SA, Chen SH, Mulholland DJ. World Trade Center dust exposure promotes cancer in PTEN-deficient mouse prostates. CANCER RESEARCH COMMUNICATIONS 2022; 2:518-532. [PMID: 35911788 PMCID: PMC9336209 DOI: 10.1158/2767-9764.crc-21-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/21/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
During the 9/11 attacks individuals were exposed to World Trade Center (WTC) dust which contained a complex mixture of carcinogens. Epidemiological studies have revealed the increased incidence of prostate and thyroid cancer in WTC survivors and responders. While reports have shown that WTC-dust associates with the increased prevalence of inflammatory related disorders, studies to date have not determined whether this exposure impacts cancer progression. In this study, we have used genetically engineered mouse (GEM) models with prostate specific deletion of the PTEN tumor suppressor to study the impact of WTC-dust exposure on deposition of dust particles, inflammation, and cancer progression. In normal C57/BL6 mice, dust exposure increased cellular expression of inflammatory genes with highest levels in the lung and peripheral blood. In normal and tumor bearing GEM mice, increased immune cell infiltration to the lungs was observed. Pathological evaluation of mice at different time points showed that WTC-dust exposure promoted PI3K-AKT activation, increased epithelial proliferation and acinar invasion in prostates with heterozygous and homozygous Pten loss. Using autochthonous and transplant GEM models of prostate cancer we demonstrated that dust exposure caused reduced survival as compared to control cohorts. Finally, we used imaging mass cytometry (IMC) to detect elevated immune cell infiltration and cellular expression of inflammatory markers in prostate tumors isolated from human WTC survivors. Collectively, our study shows that chronic inflammation, induced by WTC dust exposure, promotes more aggressive cancer in genetically predisposed prostates and potentially in patients.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yitian Xu
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas
| | - Licheng Zhang
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas
| | - Kyeongah Kang
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas
| | - Andriy Kobryn
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kensey Portman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine, New York, New York
| | - Ping-Ying Pan
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, New York, New York
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, New York, New York
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas
| | - David J Mulholland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, New York, New York
| |
Collapse
|
13
|
Meshcheryakova A, Pietschmann P, Zimmermann P, Rogozin IB, Mechtcheriakova D. AID and APOBECs as Multifaceted Intrinsic Virus-Restricting Factors: Emerging Concepts in the Light of COVID-19. Front Immunol 2021; 12:690416. [PMID: 34276680 PMCID: PMC8282206 DOI: 10.3389/fimmu.2021.690416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
The AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2. Among those is our discovery that APOBEC4 shows high expression in cell types and anatomical parts targeted by SARS-CoV-2. Additional focus is given by us to the lymphoid structures and AID as the master regulator of germinal center reactions, which result in antibody production by plasma and memory B cells. We propose the dissection of the AID/APOBECs gene signature towards decisive determinants of the patient-specific and/or the patient group-specific antiviral response. Finally, the patient-specific mapping of the AID/APOBEC polymorphisms should be considered in the light of COVID-19.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Zhang P, Zhang Y, Pan M, Liu Z, Li J, Peng L, Zhou J, Hu C, Liu S, Zeng X, Ge W, Zhang W. Proteomic analyses of plasma-derived exosomes in immunoglobulin (Ig) G4-related disease and their potential roles in B cell differentiation and tissue damage. J Autoimmun 2021; 122:102650. [PMID: 34107438 DOI: 10.1016/j.jaut.2021.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the proteomic profiles of plasma exosomes isolated from patients with immunoglobulin (Ig) G4-related disease (IgG4-RD) and to determine their potential roles in B cell differentiation and tissue damage. METHODS One hundred untreated IgG4-RD patients and 135 sex- and age-matched healthy controls (HCs) were enrolled in this study. A combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tandem mass tag (TMT)-label quantitation was used for proteomic profiling. Differentially expressed proteins were validated by Western blot, enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR) analyses. B cell activation, apoptosis, differentiation and reactive oxygen species (ROS) production were analyzed by flow cytometry. We also analyzed the correlations between differentially expressed complement proteins and laboratory parameters. RESULTS A total of 178 differentially expressed proteins were identified in plasma exosomes in IgG4-RD patients compared with HCs, and these proteins were enriched predominantly in the complement cascade pathway. Furthermore, reduced expression levels of complement components C3 and C5 in IgG4-RD were correlated with clinical parameters. Following stimulation with IgG4-RD plasma exosomes, the percentages of naïve B cells decreased, while those of memory B cells and plasmablasts increased; the levels of cytochrome c, somatic (CYCS) and downstream complement system activation also increased. Moreover, ROS production was greater in B cells of IgG4-RD patients than in those of HCs. In affected submandibular glands, the BCR signalling pathway was activated, and exosomes were enriched. CONCLUSION Proteomic profiling revealed that plasma exosome proteins may participate in the pathogenesis of IgG4-RD through complement activation and may be involved in B cell differentiation and activation of the B cell auto-oxidative damage pathway.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, China
| | - Yusheng Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zheng Liu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Shengyun Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| |
Collapse
|
15
|
The other side of the coin: IgE deficiency, a susceptibility factor for malignancy occurrence. World Allergy Organ J 2021; 14:100505. [PMID: 33664932 PMCID: PMC7887422 DOI: 10.1016/j.waojou.2020.100505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Since the discovery of IgE, almost all attention was given to conditions with elevated specific or total IgE levels such as atopy, type I hypersensitivity reactions, or parasitic infestations. Recent prospective and retrospective studies show that having very low IgE levels, such as those seen in IgE deficiency (IgE<2.5 kU/L), is not without clinical consequences. Patients with ultra-low IgE levels have an elevated risk of cancer of any type. These results are in agreement with murine models research which demonstrated that grafted tumors grow faster and bigger on an IgE knockout background. The novel finding that IgE deficiency is a susceptibility factor for cancer, fits very well with the AllergoOncology concept. The reports on a beneficial, cytotoxic function of IgE, in cooperation with its high (FcεRI) and low (FcεRII, CD23) affinity IgE receptors resulting in tumor cell phagocytosis, propose a role of IgE in cancer surveillance. It appears that not only deficiency of serum IgE, but also lack of tissue-bound IgE is important in malignancy susceptibility in these patients. As such, IgE deficient individuals with absent serum and cell-bound IgE as suggested by negative type I hypersensitivity skin tests, are at the highest risk for a malignancy diagnosis. In contrast, IgE deficient individuals with cell-bound IgE depicted through positive type I hypersensitivity skin tests, have lower rates of malignancy diagnosis. The present report discusses the evidence and potential role of ultra-low IgE as a novel biomarker for cancer susceptibility.
Collapse
|
16
|
The Immune Phenotype of Isolated Lymphoid Structures in Non-Tumorous Colon Mucosa Encrypts the Information on Pathobiology of Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12113117. [PMID: 33113874 PMCID: PMC7692185 DOI: 10.3390/cancers12113117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Today, the presence of well-organized functional structures of immune cells at tumor sites, known as ectopic lymphoid structures, and their strong association with patient survival have been reported in more than ten different cancer types. We aimed to investigate whether there is a link between the patient-specific characteristics of pre-formed isolated lymphoid structures in non-tumorous colon tissue and the disease pathobiology for patients with metastatic colorectal cancer. The study employed a powerful approach of quantitative tissue image cytometry to compare lymphoid structures of different anatomical locations within the same patients. We showed that the properties of isolated lymphoid structures in non-tumorous colon tissue predefine the immune phenotype of ectopic lymphoid structures at primary and metastatic sites. We discovered that B-cell-enriched and highly proliferative lymphoid structures are prognostic towards an improved clinical outcome. The knowledge gained from this study expands our understanding of tumor-immune interactions and draws particular attention to the anti-tumor immune response guided by isolated lymphoid structures outside of tumor tissue. Abstract The gut-associated lymphoid tissue represents an integral part of the immune system. Among the powerful players of the mucosa-associated lymphoid tissue are isolated lymphoid structures (ILSs), which as information centers, drive the local (and systemic) adaptive immune responses. Germinal center reactions, taking place within ILSs, involve the coordinated action of various immune cell types with a central role given to B cells. In the current study, we aimed at dissecting the impact of ILSs within non-tumorous colon tissue (NT) on the pathobiology of colorectal cancer (CRC) with metastasis in the liver (CRCLM). In particular, we focused on the immune phenotypes of ILSs and ectopic lymphoid structures (ELSs), built up at matching primary and metastatic tumor sites. We implemented an integrative analysis strategy on the basis of tissue image cytometry and clonality assessment to explore the immune phenotype of ILS/ELS at three tissue entities: NT, CRC, and CRCLM (69 specimens in total). Applying a panel of lineage markers used for immunostaining, we characterized and compared the anatomical features, the cellular composition, the activation, and proliferation status of ILSs and ELSs, and assessed the clinical relevance of staining-derived data sets. Our major discovery was that ILS characteristics at the NT site predefine the immune phenotype of ELSs at CRC and CRCLM. Thereby, B-cell-enriched (CD20) and highly proliferative (Ki67) ILSs and ELSs were found to be associated with improved clinical outcome in terms of survival and enabled patient stratification into risk groups. Moreover, the data revealed a linkage between B-cell clonality at the NT site and the metastatic characteristics of the tumor in the distant liver tissue. Consolidation of immunostaining-based findings with the results of compendium-wide transcriptomic analysis furthermore proposed CD27 as a novel marker of T follicular helper cells within lymphoid structures. Overall, the study nominates the ILS immune phenotype as a novel prognostic marker for patients with metastatic CRC.
Collapse
|
17
|
Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma - an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS 2020; 128:129-135. [PMID: 32133709 DOI: 10.1111/apm.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma. The prevalence of BL is ten-fold higher in areas with stable transmission of Plasmodium falciparum malaria, where it is the most common childhood cancer, and is referred to as endemic BL (eBL). In addition to its association with exposure to P. falciparum infection, eBL is strongly associated with Epstein-Barr virus (EBV) infection (>90%). This is in contrast to BL as it occurs outside P. falciparum-endemic areas (sporadic BL), where only a minority of the tumours are EBV-positive. Although the striking geographical overlap in the distribution of eBL and P. falciparum was noted shortly after the first detailed description of eBL in 1958, the molecular details of the interaction between malaria and eBL remain unresolved. It is furthermore unexplained why exposure to P. falciparum appears to be essentially a prerequisite to the development of eBL, whereas other types of malaria parasites that infect humans have no impact. In this brief review, we summarize how malaria exposure may precipitate the malignant transformation of a B-cell clone that leads to eBL, and propose an explanation for why P. falciparum uniquely has this capacity.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilia Smith-Togobo
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry, Cell and Molecular Biology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ann Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Mozdarani H, Kiaee F, Fekrvand S, Azizi G, Yazdani R, Zaki-Dizaji M, Mozdarani S, Mozdarani S, Nosrati H, Abolhassani H, Aghamohammadi A. G2-lymphocyte chromosomal radiosensitivity in patients with LPS responsive beige-like anchor protein (LRBA) deficiency. Int J Radiat Biol 2019; 95:680-690. [PMID: 30714845 DOI: 10.1080/09553002.2019.1577570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide-responsive, beige-like anchor protein (LRBA) deficiency is an autosomal recessive primary immunodeficiency disease characterized by a CVID-like phenotype, particularly severe autoimmunity and inflammatory bowel disease. This study was undertaken to evaluate radiation sensitivity in 11 LRBA-deficient patients. Therefore, stimulated lymphocytes of the studied subjects were exposed to a low dose γ-radiation (100 cGy) in the G2 phase of the cell cycle and chromosomal aberrations were scored. Lymphocytes of age-sex matched healthy individuals used in the same way as controls. Based on the G2-assay, six (54.5%) of the patients had higher radiosensitivity score comparing to the healthy control group, forming the radiosensitive LRBA-deficient patients. This chromosomal radiosensitivity showed that these patients are predisposed to autoimmunity and/or malignancy, and should be protected from unnecessary diagnostic and therapeutic procedures using ionizing radiation and exposure to other DNA damaging agents.
Collapse
Affiliation(s)
- Hossein Mozdarani
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Fatemeh Kiaee
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Medical Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saba Fekrvand
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Majid Zaki-Dizaji
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Sahar Mozdarani
- e Cytogenome Medical Genetics laboratory , Chamran Medical Building , Tehran , Iran
| | - Sohail Mozdarani
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Hassan Nosrati
- f Radiotherapy Department , Cancer Institute, Imam Khomeini Hospital , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institutet at the Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
|
20
|
Shimizu A, Fujimori H, Minakawa Y, Matsuno Y, Hyodo M, Murakami Y, Yoshioka KI. Onset of deaminase APOBEC3B induction in response to DNA double-strand breaks. Biochem Biophys Rep 2018; 16:115-121. [PMID: 30417129 PMCID: PMC6216020 DOI: 10.1016/j.bbrep.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.
Collapse
Affiliation(s)
- Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yasufumi Murakami
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ken-ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
21
|
Zong C, Kimura Y, Kinoshita K, Takasu S, Zhang X, Sakurai T, Sekido Y, Ichihara S, Endo G, Ichihara G. Exposure to 1,2-Dichloropropane Upregulates the Expression of Activation-Induced Cytidine Deaminase (AID) in Human Cholangiocytes Co-Cultured With Macrophages. Toxicol Sci 2018; 168:137-148. [DOI: 10.1093/toxsci/kfy280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama 524-8524, Japan
| | - Shigetada Takasu
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | | | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Ginji Endo
- Osaka Occupational Health Service Centre, Japan Industrial Safety and Health Association, Osaka 550-0001, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
22
|
Stojanovska V, McQuade RM, Fraser S, Prakash M, Gondalia S, Stavely R, Palombo E, Apostolopoulos V, Sakkal S, Nurgali K. Oxaliplatin-induced changes in microbiota, TLR4+ cells and enhanced HMGB1 expression in the murine colon. PLoS One 2018; 13:e0198359. [PMID: 29894476 PMCID: PMC5997344 DOI: 10.1371/journal.pone.0198359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is a platinum-based chemotherapeutic used for cancer treatment. Its use associates with peripheral neuropathies and chronic gastrointestinal side-effects. Oxaliplatin induces immunogenic cell death by provoking the presentation of damage associated molecular patterns. The damage associated molecular patterns high-mobility group box 1 (HMGB1) protein exerts pro-inflammatory cytokine-like activity and binds to toll-like receptors (namely TLR4). Gastrointestinal microbiota may influence chemotherapeutic efficacy and contribute to local and systemic inflammation. We studied effects of oxaliplatin treatment on 1) TLR4 and high-mobility group box 1 expression within the colon; 2) gastrointestinal microbiota composition; 3) inflammation within the colon; 4) changes in Peyer's patches and mesenteric lymph nodes immune populations in mice. TLR4+ cells displayed pseudopodia-like extensions characteristic of antigen sampling co-localised with high-mobility group box 1 -overexpressing cells in the colonic lamina propria from oxaliplatin-treated animals. Oxaliplatin treatment caused significant reduction in Parabacteroides and Prevotella1, but increase in Prevotella2 and Odoribacter bacteria at the genus level. Downregulation of pro-inflammatory cytokines and chemokines in colon samples, a reduction in macrophages and dendritic cells in mesenteric lymph nodes were found after oxaliplatin treatment. In conclusion, oxaliplatin treatment caused morphological changes in TLR4+ cells, increase in gram-negative microbiota and enhanced HMGB1 expression associated with immunosuppression in the colon.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Rachel M. McQuade
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Sarah Fraser
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Monica Prakash
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Medicine Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Tepper S, Jeschke J, Böttcher K, Schmidt A, Davari K, Müller P, Kremmer E, Hemmerich P, Pfeil I, Jungnickel B. PARP activation promotes nuclear AID accumulation in lymphoma cells. Oncotarget 2017; 7:13197-208. [PMID: 26921193 PMCID: PMC4914351 DOI: 10.18632/oncotarget.7603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.
Collapse
Affiliation(s)
- Sandra Tepper
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany
| | - Julia Jeschke
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany.,Institute of Clinical and Molecular Biology, Helmholtz Center Munich, 81377 Munich, Germany
| | - Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany
| | - Angelika Schmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany
| | - Kathrin Davari
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany
| | - Peter Müller
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, 81377 Munich, Germany
| | - Peter Hemmerich
- Imaging Facility, Leibniz- Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Ines Pfeil
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, 81377 Munich, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, 07745 Jena, Germany.,Institute of Clinical and Molecular Biology, Helmholtz Center Munich, 81377 Munich, Germany
| |
Collapse
|
24
|
Failure of ocular photodynamic therapy for secondary choroidal metastasis: a case report and literature review. Oncotarget 2017; 8:95030-95035. [PMID: 29212288 PMCID: PMC5706934 DOI: 10.18632/oncotarget.21847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
The choroid is the most common site for intraocular metastatic disease. Photodynamic therapy (PDT) can effectively destroy malignant tissue and induce anti-tumor activity. Recent publications support its use as an effective therapy for the treatment of choroidal metastases, especially in the subfoveal region, resulting in subsequent vision preservation or improvement. Here, we introduce a case of choroidal metastasis, secondary to primary lung cancer. The progression of choroidal metastasis after PDT was followed up using spectral domain optical coherence tomography with point-to-point follow-up. Unfortunately, both the choroidal metastasis and serous retinal detachment increased after PDT. Since the mechanism underlying the therapeutic effect of PDT on choroidal metastasis is still not fully understood, deeper investigations into its safety, underlying molecular mechanisms, and treatment effects are critical for further PDT clinical usage in intraocular choroidal metastases.
Collapse
|
25
|
Jensen‐Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels‐Wells TR, Fazekas J, Fiebiger E, Gatault S, Gould HJ, Janda J, Josephs DH, Karagiannis P, Levi‐Schaffer F, Meshcheryakova A, Mechtcheriakova D, Mekori Y, Mungenast F, Nigro EA, Penichet ML, Redegeld F, Saul L, Singer J, Spicer JF, Siccardi AG, Spillner E, Turner MC, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy 2017; 72:866-887. [PMID: 28032353 PMCID: PMC5498751 DOI: 10.1111/all.13119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment.
Collapse
Affiliation(s)
- E. Jensen‐Jarolim
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - H. J. Bax
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - R. Bianchini
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
| | - M. Capron
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - C. Corrigan
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
| | - M. Castells
- Division of Rheumatology, Immunology and AllergyDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - D. Dombrowicz
- INSERMCHU LilleEuropean Genomic Institute of DiabetesInstitut Pasteur de LilleU1011 – récepteurs nucléaires, maladies cardiovasculaires et diabèteUniversité de LilleLilleFrance
| | - T. R. Daniels‐Wells
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - J. Fazekas
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition ResearchDepartment of Medicine ResearchChildren's University Hospital BostonBostonMAUSA
| | - S. Gatault
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - H. J. Gould
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - J. Janda
- Center PigmodInstitute of Animal Physiology and GeneticsAcademy of Sciences of Czech RepublicLibechovCzech Republic
| | - D. H. Josephs
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - P. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - F. Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitFaculty of MedicineSchool of PharmacyThe Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - A. Meshcheryakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - D. Mechtcheriakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - Y. Mekori
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - F. Mungenast
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. A. Nigro
- IRCCS San Raffaele Scientific InstituteMilanItaly
| | - M. L. Penichet
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCAUSA
| | - F. Redegeld
- Division of PharmacologyFaculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - L. Saul
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - J. Singer
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - J. F. Spicer
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | | | - E. Spillner
- Immunological EngineeringDepartment of EngineeringAarhus UniversityAarhusDenmark
| | - M. C. Turner
- ISGlobalCentre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaONCanada
| | - E. Untersmayr
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - L. Vangelista
- Department of Biomedical SciencesNazarbayev University School of MedicineAstanaKazakhstan
| | - S. N. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| |
Collapse
|
26
|
Moormann AM, Bailey JA. Malaria - how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis. Curr Opin Virol 2016; 20:78-84. [PMID: 27689909 DOI: 10.1016/j.coviro.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/27/2022]
Abstract
Burkitt lymphoma (BL) is >90% EBV-associated when this pediatric cancer is diagnosed in regions heavily burden by endemic Plasmodium falciparum malaria and thus has been geographically classified as endemic BL. The incidence of endemic BL is 10-fold higher compared to BL diagnosed in non-malarious regions of the world. The other forms of BL have been classified as sporadic BL which contain EBV in ∼30% of cases and immunodeficiency BL which occurs in HIV-infected adults with ∼40% of tumors containing EBV. Within malaria endemic regions, epidemiologic studies replicating Denis Burkitt's seminal observation continue to show differences in endemic BL incidence linked to intensity of malaria transmission. However, the mechanisms by which malaria contributes to B cell tumorigenesis have not been resolved to the point of designing cancer prevention strategies. The focus of this review is to summarize our current knowledge regarding the influence of prolonged, chronic malaria exposure on defects in immunosurveillance that would otherwise control persistent EBV infections. And thus, set the stage for ensuing mechanisms by which malaria could instigate B cell activation and aberrant activation-induced cytidine deaminase expression initiating somatic hypermutation and thereby increasing the likelihood of an Ig/Myc translocation, the hallmark of all BL tumors. Malaria appears to play multiple, sequential and simultaneous roles in endemic BL etiology; the complexity of these interactions are being revealed by applying computational methods to human immunology. Remaining questions yet to be addressed and prevention strategies will also be discussed.
Collapse
Affiliation(s)
- Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Jeffrey A Bailey
- Program for Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
27
|
|
28
|
AID/APOBEC-network reconstruction identifies pathways associated with survival in ovarian cancer. BMC Genomics 2016; 17:643. [PMID: 27527602 PMCID: PMC4986275 DOI: 10.1186/s12864-016-3001-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Building up of pathway-/disease-relevant signatures provides a persuasive tool for understanding the functional relevance of gene alterations and gene network associations in multifactorial human diseases. Ovarian cancer is a highly complex heterogeneous malignancy in respect of tumor anatomy, tumor microenvironment including pro-/antitumor immunity and inflammation; still, it is generally treated as single disease. Thus, further approaches to investigate novel aspects of ovarian cancer pathogenesis aiming to provide a personalized strategy to clinical decision making are of high priority. Herein we assessed the contribution of the AID/APOBEC family and their associated genes given the remarkable ability of AID and APOBECs to edit DNA/RNA, and as such, providing tools for genetic and epigenetic alterations potentially leading to reprogramming of tumor cells, stroma and immune cells. RESULTS We structured the study by three consecutive analytical modules, which include the multigene-based expression profiling in a cohort of patients with primary serous ovarian cancer using a self-created AID/APOBEC-associated gene signature, building up of multivariable survival models with high predictive accuracy and nomination of top-ranked candidate/target genes according to their prognostic impact, and systems biology-based reconstruction of the AID/APOBEC-driven disease-relevant mechanisms using transcriptomics data from ovarian cancer samples. We demonstrated that inclusion of the AID/APOBEC signature-based variables significantly improves the clinicopathological variables-based survival prognostication allowing significant patient stratification. Furthermore, several of the profiling-derived variables such as ID3, PTPRC/CD45, AID, APOBEC3G, and ID2 exceed the prognostic impact of some clinicopathological variables. We next extended the signature-/modeling-based knowledge by extracting top genes co-regulated with target molecules in ovarian cancer tissues and dissected potential networks/pathways/regulators contributing to pathomechanisms. We thereby revealed that the AID/APOBEC-related network in ovarian cancer is particularly associated with remodeling/fibrotic pathways, altered immune response, and autoimmune disorders with inflammatory background. CONCLUSIONS The herein study is, to our knowledge, the first one linking expression of entire AID/APOBECs and interacting genes with clinical outcome with respect to survival of cancer patients. Overall, data propose a novel AID/APOBEC-derived survival model for patient risk assessment and reconstitute mapping to molecular pathways. The established study algorithm can be applied further for any biologically relevant signature and any type of diseased tissue.
Collapse
|
29
|
Raju S, Kretzmer LZ, Koues OI, Payton JE, Oltz EM, Cashen A, Polic B, Schreiber RD, Shaw AS, Markiewicz MA. NKG2D-NKG2D Ligand Interaction Inhibits the Outgrowth of Naturally Arising Low-Grade B Cell Lymphoma In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 196:4805-13. [PMID: 27183590 DOI: 10.4049/jimmunol.1501982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
It is now clear that recognition of nascent tumors by the immune system is critical for survival of the host against cancer. During cancer immunoediting, the ability of the tumor to escape immune recognition is important for tumor development. The immune system recognizes tumors via the presence of classical Ags and also by conserved innate mechanisms. One of these mechanisms is the NKG2D receptor that recognizes ligands whose expression is induced by cell transformation. In this study, we show that in NKG2D receptor-deficient mice, increasing numbers of B cells begin to express NKG2D ligands as they age. Their absence in wild-type mice suggests that these cells are normally cleared by NKG2D-expressing cells. NKG2D-deficient mice and mice constitutively expressing NKG2D ligands had increased incidence of B cell tumors, confirming that the inability to clear NKG2D ligand-expressing cells was important in tumor suppression and that NKG2D ligand expression is a marker of nascent tumors. Supporting a role for NKG2D ligand expression in controlling the progression of early-stage B cell lymphomas in humans, we found higher expression of a microRNA that inhibits human NKG2D ligand expression in tumor cells from high-grade compared with low-grade follicular lymphoma patients.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Lena Z Kretzmer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Amanda Cashen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63105
| | - Bojan Polic
- Department of Histology and Embryology, Medical Faculty University of Rijeka, 51000 Rijeka, Croatia
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110; and
| | - Mary A Markiewicz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
30
|
Kawamura K, Wada A, Wang JY, Li Q, Ishii A, Tsujimura H, Takagi T, Itami M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Expression of activation-induced cytidine deaminase is associated with a poor prognosis of diffuse large B cell lymphoma patients treated with CHOP-based chemotherapy. J Cancer Res Clin Oncol 2016; 142:27-36. [PMID: 26077666 DOI: 10.1007/s00432-015-2001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Activation-induced cytidine deaminase (AID) is involved in somatic hypermutation and class switch recombination processes in the antibody formation. The AID activity induces gene mutations and could be associated with transformation processes of B cells. Nevertheless, the relation between AID expression and the prognosis of B cell lymphoma patients remains uncharacterized. METHODS We examined expression levels of the AID gene in 89 lymph node specimens from lymphoma and non-lymphoma patients with Northern blot analysis and investigated an association with their survival. RESULTS The AID gene was preferentially expressed in B cell lymphoma in particular in diffuse large B cell lymphoma and follicular lymphoma. We confirmed AID protein expression in the mRNA-positive but not in the negative specimens with Western blot analysis and immunohistochemical staining. Survival of the patients treated with cyclophosphamide-/doxorubicin-/vincristine-/prednisone-based chemotherapy demonstrated that the prognosis of diffuse large B cell patients was unfavorable in the mRNA-positive group compared with the negative group, and that AID expression levels were correlated with the poor prognosis. In contrast, AID expression was not linked with the prognosis of follicular lymphoma patients. CONCLUSIONS AID expression is a predictive marker for an unfavorable outcome in DLBCL patients treated with the chemotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Northern
- Blotting, Western
- Cyclophosphamide/therapeutic use
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Doxorubicin/therapeutic use
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prednisone/therapeutic use
- Prognosis
- Survival Rate
- Vincristine/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Akihiko Wada
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ji-Yang Wang
- Department of Immunology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Quanhai Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akihiro Ishii
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hideki Tsujimura
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Toshiyuki Takagi
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadasinden, Yachiyo, 276-8524, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
31
|
Lalani AI, Luo C, Han Y, Xie P. TRAF3: a novel tumor suppressor gene in macrophages. ACTA ACUST UNITED AC 2015; 2:e1009. [PMID: 26661944 DOI: 10.14800/macrophage.1009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3), a member of the TRAF family of cytoplasmic adaptor proteins with E3 ligase activity, is ubiquitously expressed in various cell types of the immune system. It is shared for signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. Previous studies examining conditional TRAF3-deficient mouse models that have the Traf3 gene specifically deleted in B lymphocytes or T lymphocytes have revealed the diverse and critical in vivo functions of TRAF3 in adaptive immunity. Although in vitro evidence points to a pivotal and indispensable role for TRAF3 in type I interferon production induced by pattern recognition receptors in macrophages and dendritic cells, the in vivo functions of TRAF3 in the innate immune system had long remained unclear. Three laboratories have recently addressed this gap in knowledge by investigating myeloid cell-specific TRAF3-deficient (genotype: TRAF3flox/floxLysM+/Cre) mice. The new evidence together demonstrates that specific ablation of TRAF3 in myeloid cells leads to inflammatory diseases, altered progression of diabetes, and spontaneous development of different types of tumors and infections in mice. These new findings indicate that TRAF3 acts as an anti-inflammatory factor and is required for optimal innate immunity in myeloid cells. Strikingly, the new evidence also identifies TRAF3 as a novel tumor suppressor gene in macrophages and other myeloid cells. In this review, we discuss and summarize the new findings and current knowledge about the multi-faceted regulatory roles and complex signaling mechanisms of myeloid cell TRAF3 in inflammation, innate immunity, and tumor development.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA ; Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yeming Han
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA ; Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
32
|
Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of Osteoporosis: A Mini-Review. Gerontology 2015; 62:128-37. [PMID: 26088283 DOI: 10.1159/000431091] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a major cause of fractures and associated morbidity in the aged population. The pathogenesis of osteoporosis is multifactorial; whereas traditional pathophysiological concepts emphasize endocrine mechanisms, it has been recognized that also components of the immune system have a significant impact on bone. Since 2000, when the term 'osteoimmunology' was coined, novel insights into the role of inflammatory cytokines by influencing the fine-tuned balance between bone resorption and bone formation have helped to explain the occurrence of osteoporosis in conjunction with chronic inflammatory reactions. Moreover, the phenomenon of a low-grade, chronic, systemic inflammatory state associated with aging has been defined as 'inflamm-aging' by Claudio Franceschi and has been linked to age-related diseases such as osteoporosis. Given the tight anatomical and physiological coexistence of B cells and the bone-forming units in the bone marrow, a role of B cells in osteoimmunological interactions has long been suspected. Recent findings of B cells as active regulators of the RANK/RANKL/OPG axis, of altered RANKL/OPG production by B cells in HIV-associated bone loss or of a modulated expression of genes linked to B-cell biology in response to estrogen deficiency support this assumption. Furthermore, oxidative stress and the generation of advanced glycation end products have emerged as links between inflammation and bone destruction.
Collapse
Affiliation(s)
- Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
33
|
Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and cancer. Oncoscience 2015; 2:320-33. [PMID: 26097867 PMCID: PMC4468319 DOI: 10.18632/oncoscience.155] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Mutations are the basis for evolution and the development of genetic diseases. Especially in cancer, somatic mutations in oncogenes and tumor suppressor genes alongside the occurrence of passenger mutations have been observed by recent deep-sequencing approaches. While mutations have long been considered random events induced by DNA-replication errors or by DNA damaging agents, genome sequencing led to the discovery of non-random mutation signatures in many human cancer. Common non-random mutations comprise DNA strand-biased mutation showers and mutations restricted to certain DNA motifs, which recently have become attributed to the activity of the AID/APOBEC family of DNA deaminases. Hence, APOBEC enzymes, which have evolved as key players in natural and adaptive immunity, have been proposed to contribute to cancer development and clonal evolution of cancer by inducing collateral genomic damage due to their DNA deaminating activity. This review focuses on how mutagenic events through AID/APOBEC deaminases may contribute to cancer development.
Collapse
Affiliation(s)
- Stefan Rebhandl
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Michael Huemer
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Richard Greil
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Roland Geisberger
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
34
|
Researcher of the month. Wien Klin Wochenschr 2015; 127:160-1. [DOI: 10.1007/s00508-015-0763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Lalani AI, Moore CR, Luo C, Kreider BZ, Liu Y, Morse HC, Xie P. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:334-48. [PMID: 25422508 DOI: 10.4049/jimmunol.1401548] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNFR and TLR families, whose signals are transduced by TNFR-associated factor (TRAF) molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I IFN production, but the in vivo function of TRAF3 in myeloid cells remains unknown. In this article, we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3(-/-)) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyinosinic-polycytidylic acid (a viral mimic), M-TRAF3(-/-) mice exhibited an altered profile of cytokine production. M-TRAF3(-/-) mice immunized with T cell-independent and -dependent Ags displayed elevated T cell-independent IgG3 and T cell-dependent IgG2b responses. Interestingly, 15- to 22-mo-old M-TRAF3(-/-) mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Benjamin Z Kreider
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
| |
Collapse
|
36
|
Meshcheryakova A, Tamandl D, Bajna E, Stift J, Mittlboeck M, Svoboda M, Heiden D, Stremitzer S, Jensen-Jarolim E, Grünberger T, Bergmann M, Mechtcheriakova D. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer. PLoS One 2014; 9:e99008. [PMID: 24905750 PMCID: PMC4048213 DOI: 10.1371/journal.pone.0099008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/01/2023] Open
Abstract
Remarkably limited information is available about biological mechanisms that determine the disease entity of metastatic colorectal cancer in the liver (CRCLM) with no good clinical parameters to estimate prognosis. For the last few years, understanding the relationship between tumor characteristics and local immune response has gained increasing attention. Given the multifaceted roles of B-cell-driven responses, we aimed to elucidate the immunological imprint of B lymphocytes at the metastatic site, the interrelation with macrophages, and their prognostic relevance. Here we present novel algorithm allowing to assess a link between the local patient-specific immunological capacity and clinical outcome. The microscopy-based imaging platform was used for automated scanning of large-scale tissue sections and subsequent qualitative and quantitative analyses of immune cell subtypes using lineage markers and single-cell recognition strategy. Results indicate massive infiltration of CD45-positive leukocytes confined to the metastatic border. We report for the first time the accumulation of CD20-positive B lymphocytes at the tumor – liver interface comprising the major population within the large CD45-positive aggregates. Strikingly, functionally active, activation-induced cytidine deaminase (AID)-positive ectopic lymphoid structures were found to be assembled within the metastatic margin. Furthermore, the CD20-based data set revealed a strong prognostic power: patients with high CD20 content and/or ectopic follicles had significantly lower risk for disease recurrence as revealed by univariate analysis (p<0.001 for both) and in models adjusted for clinicopathological variables (p<0.001 and p = 0.01, respectively), and showed prolonged overall survival. In contrast, CD68 staining-derived data set did not show an association with clinical outcome. Taken together, we nominate the magnitude of B lymphocytes, including those organized in ectopic follicles, as novel prognostic marker which is superior to clinicopathological parameters. Findings emphasize anti-tumoral role of B cell-driven mechanism(s) and thus indicate a new way of thinking about potential treatment strategies for CRCLM patients.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- * E-mail: (DT); (DM)
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Martina Mittlboeck
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Denise Heiden
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Stefan Stremitzer
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the Medical University of Vienna, Veterinary University of Vienna and University of Vienna, Vienna, Austria
| | - Thomas Grünberger
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail: (DT); (DM)
| |
Collapse
|
37
|
Lamont KR, Hasham MG, Donghia NM, Branca J, Chavaree M, Chase B, Breggia A, Hedlund J, Emery I, Cavallo F, Jasin M, Rüter J, Mills KD. Attenuating homologous recombination stimulates an AID-induced antileukemic effect. ACTA ACUST UNITED AC 2013; 210:1021-33. [PMID: 23589568 PMCID: PMC3646491 DOI: 10.1084/jem.20121258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inhibition of the RAD51 homologous recombination factor prevents the repair of AID-initiated DNA breaks and induces apoptosis preferentially in AID-expressing human CLL. Activation-induced cytidine deaminase (AID) is critical in normal B cells to initiate somatic hypermutation and immunoglobulin class switch recombination. Accumulating evidence suggests that AID is also prooncogenic, inducing cancer-promoting mutations or chromosome rearrangements. In this context, we find that AID is expressed in >40% of primary human chronic lymphocytic leukemia (CLL) cases, consistent with other reports. Using a combination of human B lymphoid leukemia cells and mouse models, we now show that AID expression can be harnessed for antileukemic effect, after inhibition of the RAD51 homologous recombination (HR) factor with 4,4′-diisothiocyanatostilbene-2-2′-disulfonic acid (DIDS). As a proof of principle, we show that DIDS treatment inhibits repair of AID-initiated DNA breaks, induces apoptosis, and promotes cytotoxicity preferentially in AID-expressing human CLL. This reveals a novel antineoplastic role of AID that can be triggered by inhibition of HR, suggesting a potential new paradigm to treat AID-expressing tumors. Given the growing list of tumor types with aberrant AID expression, this novel therapeutic approach has potential to impact a significant patient population.
Collapse
|
38
|
Stessman HAF, Mansoor A, Linden MA, Van Ness B, Baughn LB. Stabilization of activation induced cytidine deaminase by bortezomib does not confer increased drug target mutation frequency. Leuk Lymphoma 2013; 55:220-2. [PMID: 23734619 DOI: 10.3109/10428194.2013.797575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Park SR. Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers. Immune Netw 2012; 12:230-9. [PMID: 23396757 PMCID: PMC3566417 DOI: 10.4110/in.2012.12.6.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 01/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.
Collapse
Affiliation(s)
- Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
40
|
The Completed Self: An Immunological View of the Human-Microbiome Superorganism and Risk of Chronic Diseases. ENTROPY 2012. [DOI: 10.3390/e14112036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Jensen-Jarolim E, Pawelec G. The nascent field of AllergoOncology. Cancer Immunol Immunother 2012; 61:1355-7. [PMID: 22911119 PMCID: PMC4429180 DOI: 10.1007/s00262-012-1315-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/29/2012] [Indexed: 01/21/2023]
Abstract
Many intriguing relationships between allergy and cancer continue to pose important unanswered questions. Is there a correlation between IgE and atopy, and cancer? Which are the most important IgE effector cells and do they inhibit or promote tumor growth? Will IgE-mediated antigen uptake and cross-presentation by DCs activate CTLs or Tregs? What animal models are useful in this context and should we design specific anti-tumor immunotherapies, active or passive, based on IgE? Recombinant IgE has already been generated against the tumor-associated antigens folate-binding receptor, HER-2 and EGFR--how to exclude the risk of anaphylaxis in passive immunotherapy with IgE? How can we deal with hypersensitivity to antineoplastic drugs? What is the role of chemotherapeutics and biologicals in the modulation of IgE responses and the impact of the aberrant expression of mutated enzyme AID in cancer tissue? In an effort to survey the state-of-the-art in this area and to answer some of these questions, we invited leaders in the field to participate in a "Symposium-in-Writing". This represents a collection of peer-reviewed papers covering each group's specialist area of expertise. In this way, we aim to target the most important topics in these areas and to provide a comprehensive view of the state-of-the-art in the emerging multi-disciplinary field of "AllergoOncology".
Collapse
|