1
|
Sigirli S, Karakas D. Fibrotic Fortresses and Therapeutic Frontiers: Pancreatic Stellate Cells and the Extracellular Matrix in Pancreatic Cancer. Cancer Med 2025; 14:e70788. [PMID: 40437741 PMCID: PMC12119906 DOI: 10.1002/cam4.70788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a unique tumor microenvironment (TME) that plays pivotal roles in cancer progression, angiogenesis, metastasis, and drug resistance. This complex and dynamic ecosystem comprises cancer cells, stromal cells, and extracellular matrix (ECM) components, which interact synergistically to drive cancer aggressiveness. Among the stromal cells, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs), mainly accepted as a group of CAFs, are central players in shaping the desmoplastic, hypoxic, and immunosuppressive stroma of PDAC. PSCs, the most abundant stromal cells in PDAC, are resident pancreatic cells that undergo phenotypic changes upon activation, driving tumor progression through the secretion of cytokines, growth factors, ECM components (e.g., collagen, hyaluronic acid, fibronectin), and matrix metalloproteinases. In addition to cellular elements, ECM components significantly contribute to cancer aggressiveness by forming a physical barrier that hinders drug penetration, activating signaling pathways through specific receptor interactions, and generating peptides originating from the fragmentation of proteins to induce cancer migration. Regarding their critical roles in tumor progression, therapeutic approaches targeting PSCs and the ECM have garnered increasing interest in recent years. However, PSCs and stromal components may exhibit dual roles, with the potential to both promote and suppress tumor progression under different conditions. Therefore, targeting PSCs or stroma may lead to unintended outcomes, including exacerbation of cancer aggressiveness. METHODS This review focuses on the multifaceted roles of PSCs in PDAC, particularly their interactions with cancer cells and their contributions to therapy resistance. Additionally, we discuss current and emerging therapeutic strategies targeting PSCs and the ECM components, including both preclinical and clinical efforts. CONCLUSION By synthesizing insights from recent literature, this review provides a comprehensive understanding of the role of PSCs in PDAC pathobiology and highlights potential therapeutic approaches targeting PSCs or ECM components to improve patient outcomes.
Collapse
Affiliation(s)
- Sila Sigirli
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| | - Didem Karakas
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| |
Collapse
|
2
|
Wang T, Song W, Tang Y, Yi J, Pan H. Breaking the immune desert: Strategies for overcoming the immunological challenges of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189353. [PMID: 40412630 DOI: 10.1016/j.bbcan.2025.189353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Pancreatic cancer is characterised by its highly aggressive nature and extremely poor prognosis, with a uniquely complex tumour immune microenvironment that manifests as a prototypical "immune desert." This immune-desert phenotype primarily arises from the inherently low immunogenicity of the tumour, the formation of a dense fibrotic stroma, severe deficiency in immune cell infiltration, and profound immunosuppressive effects of the metabolic landscape. Specifically, dysregulated tryptophan metabolism, such as indoleamine 2,3-dioxygenase (IDO)-mediated catabolism, and excessive lactate accumulation contribute to impaired T-cell functionality. Collectively, these factors severely limit the efficacy of current immunotherapy strategies, particularly those based on immune checkpoint inhibitors, which have demonstrated significantly lower clinical response rates in pancreatic cancer than in other malignancies. In response to these therapeutic challenges, this review explores integrated treatment strategies that combine metabolic reprogramming, tumour microenvironment remodelling, and next-generation immune checkpoint blockades, such as LAG-3, TIM-3, and VISTA. These emerging approaches hold substantial promise for clinical application. For example, targeting key metabolic pathways, including glycolysis (Warburg effect) and glutamine metabolism, may help restore T-cell activity by alleviating metabolic stress within the tumour milieu. Additionally, localised administration of immune stimulators such as interleukin-12 (IL-12) and CD40 agonists may enhance immune cell infiltration and promote tumour-specific immune activation. Future research should prioritise large-scale, multicentre clinical trials to validate the therapeutic efficacy of these innovative strategies, aiming to achieve meaningful breakthroughs in pancreatic cancer immunotherapy and significantly improve long-term survival and clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Tianming Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China; Zhengning County Community Health Service Center, Qingyang 745300, Gansu Province, China
| | - Wenjing Song
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yuan Tang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Jianfeng Yi
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| | - Haibang Pan
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
3
|
Christopher BN, Golick L, Basar A, Reyes L, Robinson RM, Angerstein AO, Krieg C, Hobbs GA, Guttridge DC, O’Bryan JP, Dolloff NG. Modulating the CXCR2 Signaling Axis Using Engineered Chemokine Fusion Proteins to Disrupt Myeloid Cell Infiltration in Pancreatic Cancer. Biomolecules 2025; 15:645. [PMID: 40427538 PMCID: PMC12108577 DOI: 10.3390/biom15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers, and limited treatment options exist. Immunotherapy is effective in some cancer types, but the immunosuppressive tumor microenvironment (TME) of PDAC is a barrier to effective immunotherapy. CXCR2+ myeloid-derived suppressor cells (MDSCs) are abundant in PDAC tumors in humans and in mouse models. MDSCs suppress effector cell function, making them attractive targets for restoring anti-tumor immunity. In this study, we show that the most abundant soluble factors released from a genetically diverse set of human and mouse PDAC cells are CXCR2 ligands, including CXCL8, CXCL5, and CXCL1. Expression of CXCR2 ligands is at least partially dependent on mutant KRAS and NFκB signaling, which are two of the most commonly dysregulated pathways in PDAC. We show that MDSCs are the most prevalent immune cells in PDAC tumors. MDSCs expressed high levels of CXCR2, and we found that myeloid cells readily migrate toward conditioned media (CM) prepared from PDAC cultures. We designed CXCR2 ligand-Fc fusion proteins to modulate the CXCR2 chemotactic signaling axis. Unexpectedly, these fusion proteins were superior to native chemokines in binding and activation of CXCR2 on myeloid cells. These "superkines" were potent inhibitors of PDAC CM-induced myeloid cell migration and were superior to CXCR2 small-molecule inhibitors and neutralizing antibodies. Our findings suggest that CXCR2 superkines may disrupt myeloid cell recruitment to PDAC tumors, ultimately improving immunotherapy outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Benjamin N. Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Ashton Basar
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Reeder M. Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Aaron O. Angerstein
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - G. Aaron Hobbs
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA; (G.A.H.); (J.P.O.)
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA;
| | - Denis C. Guttridge
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA;
- MUSC Darby Children’s Research Institute, Charleston, SC 29425, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John P. O’Bryan
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA; (G.A.H.); (J.P.O.)
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA;
| | - Nathan G. Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (B.N.C.); (L.G.); (A.B.); (L.R.); (R.M.R.); (A.O.A.)
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA;
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Garstka MA, Kedzierski L, Maj T. Diabetes can impact cellular immunity in solid tumors. Trends Immunol 2025; 46:295-309. [PMID: 40133163 DOI: 10.1016/j.it.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Cancer is increasingly prevalent worldwide, often coexisting with type 2 diabetes (T2D). Recent breakthroughs reveal the immune system's pivotal role in eliminating tumors and how the metabolic environment, such as glucose availability, affects antitumor immunity. Diabetes is known to dysregulate both innate and adaptive immune responses, while cancer creates an immunosuppressive microenvironment. We hypothesize that diabetes in cancer subjects may exacerbate this immunosuppression. Here, we examine the current understanding of the interplay between T2D and solid tumors and the associated challenges. Despite inconsistencies in data from mouse models and human tissues, evidence suggests that T2D can impact the antitumor response. Possible mechanisms may involve myeloid cells, inducing local immunosuppression and impairing antigen presentation, and certain lymphoid cell populations, exhibiting exhaustion.
Collapse
Affiliation(s)
- Malgorzata A Garstka
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China; Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maj
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
5
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
6
|
Schwarz E, Benner B, Wesolowski R, Quiroga D, Good L, Sun SH, Savardekar H, Li J, Jung KJ, Duggan MC, Lapurga G, Shaffer J, Scarberry L, Konda B, Verschraegen C, Kendra K, Shah M, Rupert R, Monk P, Shah HA, Noonan AM, Bixel K, Hays J, Wei L, Pan X, Behbehani G, Hu Y, Elemento O, Chung D, Xin G, Blaser BW, Carson WE. Inhibition of Bruton's tyrosine kinase with PD-1 blockade modulates T cell activation in solid tumors. JCI Insight 2024; 9:e169927. [PMID: 39513363 PMCID: PMC11601564 DOI: 10.1172/jci.insight.169927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDInhibition of Bruton's tyrosine kinase with ibrutinib blocks the function of myeloid-derived suppressor cells (MDSC). The combination of ibrutinib and nivolumab was tested in patients with metastatic solid tumors.METHODSSixteen patients received ibrutinib 420 mg p.o. daily with nivolumab 240 mg i.v. on days 1 and 15 of a 28-day cycle. The effect of ibrutinib and nivolumab on MDSC, the immune profile, and cytokine levels were measured. Single-cell RNA-Seq and T cell receptor sequencing of immune cells was performed.RESULTSCommon adverse events were fatigue and anorexia. Four patients had partial responses and 4 had stable disease at 3 months (average 6.5 months, range 3.5-14.6). Median overall survival (OS) was 10.8 months. Seven days of Bruton's tyrosine kinase (BTK) inhibition significantly increased the proportion of monocytic-MDSC (M-MDSC) and significantly decreased chemokines associated with MDSC recruitment and accumulation (CCL2, CCL3, CCL4, CCL13). Single-cell RNA-Seq revealed ibrutinib-induced downregulation of genes associated with MDSC-suppressive function (TIMP1, CXCL8, VEGFA, HIF1A), reduced MDSC interactions with exhausted CD8+ T cells, and decreased TCR repertoire diversity. The addition of nivolumab significantly increased circulating NK and CD8+ T cells and increased CD8+ T cell proliferation. Exploratory analyses suggest that MDSC and T cell gene expression and TCR repertoire diversity were differentially affected by BTK inhibition according to patient response.CONCLUSIONIbrutinib and nivolumab were well tolerated and affected MDSC and T cell function in patients with solid metastatic tumors.TRIAL REGISTRATIONClinicalTrials.gov NCT03525925.FUNDINGNIH; National Cancer Institute Cancer; National Center for Advancing Translational Sciences; Pelotonia.
Collapse
Affiliation(s)
| | | | - Robert Wesolowski
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Dionisia Quiroga
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | | | - Steven H. Sun
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| | | | - Jianying Li
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Kyeong Joo Jung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | | | | | | | - Bhavana Konda
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Claire Verschraegen
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kari Kendra
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Manisha Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Robert Rupert
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Paul Monk
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Hiral A. Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Anne M. Noonan
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kristin Bixel
- Comprehensive Cancer Center
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - John Hays
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Lai Wei
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | - Gregory Behbehani
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Dongjun Chung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Gang Xin
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Bradley W. Blaser
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - William E. Carson
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| |
Collapse
|
7
|
Lei K, Sun M, Chen X, Wang J, Liu X, Ning Y, Ping S, Gong R, Zhang Y, Qing G, Zhao C, Ren H. hnRNPAB Promotes Pancreatic Ductal Adenocarcinoma Extravasation and Liver Metastasis by Stabilizing MYC mRNA. Mol Cancer Res 2024; 22:1022-1035. [PMID: 38967522 DOI: 10.1158/1541-7786.mcr-24-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. hnRNPAB was highly expressed in PDAC tissues compared with normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in patients with PDAC. hnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. hnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life. hnRNPAB induced PDAC cells to secrete CXCL8 via MYC, which promoted neutrophil recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: hnRNPAB participates in the posttranscriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.
Collapse
Affiliation(s)
- Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Mingyue Sun
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Xianghan Chen
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Jia Wang
- Qingdao Medical College, Qingdao University, Qingdao, P. R. China
| | - Xiaolan Liu
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ying Ning
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Shuai Ping
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ruining Gong
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Yu Zhang
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Gong Qing
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Chenyang Zhao
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - He Ren
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Center for GI Cancer Diagnosis and Treatment, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| |
Collapse
|
8
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 PMCID: PMC11352508 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| |
Collapse
|
10
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Grauers Wiktorin H, Aydin E, Kiffin R, Vilhav C, Bourghardt Fagman J, Kaya M, Paul S, Westman B, Bratlie SO, Naredi P, Hellstrand K, Martner A. Impact of Surgery-Induced Myeloid-derived Suppressor Cells and the NOX2/ROS Axis on Postoperative Survival in Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1135-1149. [PMID: 38598844 PMCID: PMC11044860 DOI: 10.1158/2767-9764.crc-23-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Vilhav
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Westman
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Svein Olav Bratlie
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Savardekar H, Allen C, Jeon H, Li J, Quiroga D, Schwarz E, Wu RC, Zelinskas S, Lapurga G, Abreo A, Stiff A, Shaffer J, Blaser BW, Old M, Wesolowski R, Xin G, Kendra KL, Chung D, Carson WE. Single-Cell RNA-Seq Analysis of Patient Myeloid-Derived Suppressor Cells and the Response to Inhibition of Bruton's Tyrosine Kinase. Mol Cancer Res 2024; 22:308-321. [PMID: 38015751 PMCID: PMC10922705 DOI: 10.1158/1541-7786.mcr-22-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 μmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1β, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.
Collapse
Affiliation(s)
- Himanshu Savardekar
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carter Allen
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jianying Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Emily Schwarz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Richard C. Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alexander Abreo
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Jami Shaffer
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Bradley W. Blaser
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Old
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L. Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Basnet A, Landreth KM, Nohoesu R, Santiago SP, Geldenhuys WJ, Boone BA, Liu TW. Targeting myeloperoxidase limits myeloid cell immunosuppression enhancing immune checkpoint therapy for pancreatic cancer. Cancer Immunol Immunother 2024; 73:57. [PMID: 38367056 PMCID: PMC10874341 DOI: 10.1007/s00262-024-03647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease characterized by an extreme resistance to current therapies, including immune checkpoint therapy. The limited success of immunotherapies can be attributed to a highly immunosuppressive pancreatic cancer microenvironment characterized by an extensive infiltration of immune suppressing myeloid cells. While there are several pathways through which myeloid cells contribute to immunosuppression, one important mechanism is the increased production of reactive oxygen species. Here, we evaluated the contribution of myeloperoxidase, a myeloid-lineage restricted enzyme and primary source of reactive oxygen species, to regulate immune checkpoint therapy response in preclinical pancreatic cancer models. We compared treatment outcome, immune composition and characterized myeloid cells using wild-type, myeloperoxidase-deficient, and myeloperoxidase inhibitor treated wild-type mice using established subcutaneous pancreatic cancer models. Loss of host myeloperoxidase and pharmacological inhibition of myeloperoxidase in combination with immune checkpoint therapy significantly delayed tumor growth. The tumor microenvironment and systemic immune landscape demonstrated significant decreases in myeloid cells, exhausted T cells and T regulatory cell subsets when myeloperoxidase was deficient. Loss of myeloperoxidase in isolated myeloid cell subsets from tumor-bearing mice resulted in decreased reactive oxygen species production and T cell suppression. These data suggest that myeloperoxidase contributes to an immunosuppressive microenvironment and immune checkpoint therapy resistance where myeloperoxidase inhibitors have the potential to enhance immunotherapy response. Repurposing myeloperoxidase specific inhibitors may provide a promising therapeutic strategy to expand therapeutic options for pancreatic cancer patients to include immunotherapies.
Collapse
Affiliation(s)
- Angisha Basnet
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Kaitlyn M Landreth
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Remi Nohoesu
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Stell P Santiago
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Werner J Geldenhuys
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Brian A Boone
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV, 26506, USA
| | - Tracy W Liu
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
14
|
Ucgul E, Guven DC, Ucgul AN, Ozbay Y, Onur MR, Akin S. Factors Influencing Immunotherapy Outcomes in Cancer: Sarcopenia and Systemic Inflammation. Cancer Control 2024; 31:10732748241302248. [PMID: 39547932 PMCID: PMC11569492 DOI: 10.1177/10732748241302248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Immunotherapy has shown promise in treating various subtypes of metastatic cancers, but many patients are frail and may have compromised immune systems, which can influence treatment outcomes. Sarcopenia, a condition characterized by loss of muscle mass and systemic inflammation, is a potential factor that may negatively impact the response to immunotherapy. However, more data must be collected on the extent of its influence. Therefore, this study aims to investigate the effects of sarcopenia, systemic inflammation, and Eastern Cooperative Oncology Group Performance Status (ECOG PS) on the response to immunotherapy. METHODS We enrolled 100 patients treated with immune checkpoint inhibitors between 2015 and 2021 who underwent computed tomography of the abdomen before the first immunotherapy dose. This study was conducted retrospectively. Gender-specific thresholds were used for the diagnosis of sarcopenia. C-reactive protein (CRP), erythrocyte sedimentation rate, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), albumin, and lactate dehydrogenase (LDH) were used as markers of systemic inflammation. Systemic inflammatory markers and sarcopenia were assessed using univariable and multivariable analyses for overall survival (OS) and progression-free survival (PFS). RESULTS Sarcopenia was found to be a significant prognostic factor associated with poor PFS (HR, 2.33; 95% confidence interval [CI], 1.45-3.74; P < 0.001). In addition, hypoalbuminemia was identified as a significant prognostic factor for predicting OS (HR, 2.10; 95% CI, 1.21-3.66; P = 0.008). CONCLUSIONS Closer monitoring and prevention of sarcopenia may enhance both OS and PFS. Additionally, our composite model may assist oncologists in predicting responses to immunotherapy more accurately. However, further prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Enes Ucgul
- Division of Endocrinology and Metabolism, Etlik City Hospital, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Aybala Nur Ucgul
- Department of Radiation Oncology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Yakup Ozbay
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ruhi Onur
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Serkan Akin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
15
|
Sun SH, Angell CD, Savardekar H, Sundi D, Abood D, Benner B, DiVincenzo MJ, Duggan M, Choueiry F, Mace T, Trikha P, Lapurga G, Johnson C, Carlson EJ, Chung C, Peterson BR, Lianbo Yu, Zhao J, Kendra KL, Carson WE. BTK inhibition potentiates anti-PD-L1 treatment in murine melanoma: potential role for MDSC modulation in immunotherapy. Cancer Immunol Immunother 2023; 72:3461-3474. [PMID: 37528320 PMCID: PMC10592087 DOI: 10.1007/s00262-023-03497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) have been linked to loss of immune effector cell function through a variety of mechanisms such as the generation of reactive oxygen and nitrogen species and the production of inhibitory cytokines. Our group has shown that signaling through Bruton's tyrosine kinase (BTK) is important for MDSC function. Ibrutinib is an orally administered targeted agent that inhibits BTK activation and is currently used for the treatment of B cell malignancies. Using a syngeneic murine model of melanoma, the effect of BTK inhibition with ibrutinib on the therapeutic response to systemic PD-L1 blockade was studied. BTK was expressed by murine MDSC and their activation was inhibited by ibrutinib. Ibrutinib was not directly cytotoxic to cancer cells in vitro, but it inhibited BTK activation in MDSC and reduced expression of inducible nitric oxide synthase (NOS2) and production of nitric oxide. Ibrutinib treatments decreased the levels of circulating MDSC in vivo and increased the therapeutic efficacy of anti-PD-L1 antibody treatment. Gene expression profiling showed that ibrutinib decreased Cybb (NOX2) signaling, and increased IL-17 signaling (upregulating downstream targets Mmp9, Ptgs2, and S100a8). These results suggest that further exploration of MDSC inhibition could enhance the immunotherapy of advanced melanoma.PrécisInhibition of Bruton's tyrosine kinase, a key enzyme in myeloid cellular function, improves therapeutic response to an anti-PD-L1 antibody in an otherwise fairly resistant murine melanoma model.
Collapse
Affiliation(s)
- Steven H Sun
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Colin D Angell
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Himanshu Savardekar
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Debasish Sundi
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Abood
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brooke Benner
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mallory J DiVincenzo
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan Duggan
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fouad Choueiry
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas Mace
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Gastrointestinal Oncology, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Prashant Trikha
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gabriella Lapurga
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Courtney Johnson
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Erick J Carlson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Catherine Chung
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jing Zhao
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kari L Kendra
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - William E Carson
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
16
|
Okabe J, Kodama T, Sato Y, Shigeno S, Matsumae T, Daiku K, Sato K, Yoshioka T, Shigekawa M, Higashiguchi M, Kobayashi S, Hikita H, Tatsumi T, Okamoto T, Satoh T, Eguchi H, Akira S, Takehara T. Regnase-1 downregulation promotes pancreatic cancer through myeloid-derived suppressor cell-mediated evasion of anticancer immunity. J Exp Clin Cancer Res 2023; 42:262. [PMID: 37814340 PMCID: PMC10561497 DOI: 10.1186/s13046-023-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatitis is known to be an important risk factor for pancreatic ductal adenocarcinoma (PDAC). However, the exact molecular mechanisms of how inflammation promotes PDAC are still not fully understood. Regnase-1, an endoribonuclease, regulates immune responses by degrading mRNAs of inflammation-related genes. Herein, we investigated the role of Regnase-1 in PDAC. METHODS Clinical significance of intratumor Regnase-1 expression was evaluated by immunohistochemistry in 39 surgically-resected PDAC patients. The functional role of Regnase-1 was investigated by pancreas-specific Regnase-1 knockout mice and Kras-mutant Regnase-1 knockout mice. The mechanistic studies with gene silencing, RNA immunoprecipitation sequencing (RIP-seq) and immune cell reconstitution were performed in human/mouse PDAC cell lines and a syngeneic orthotopic tumor transplantation model of KrasG12D-mutant and Trp53-deficient PDAC cells. RESULTS Regnase-1 expression was negatively correlated with the clinical outcomes and an independent predictor of poor relapse-free and overall survival in PDAC patients. Pancreas-specific Regnase-1 deletion in mice promoteed pancreatic cancer with PMN-MDSC infiltration and shortened their survival. A syngeneic orthotopic PDAC model exhibited that Regnase-1 downregulation accelerated tumor progression via recruitment of intratumor CD11b+ MDSCs. Mechanistically, Regnase-1 directly negatively regulated a variety of chemokines/cytokines important for MDSC recruitment and activation, including CXCL1, CXCL2, CSF2, and TGFβ, in pancreatic cancer cells. We subsequently showed that IL-1β-mediated Regnase-1 downregulation recruited MDSCs to tumor sites and promoted pancreatic cancer progression via mitigation of cytotoxic T lympohocytes-mediated antitumor immunity. CONCLUSIONS IL-1b-mediated Regnase-1 downregulation induces MDSCs and promotes pancreatic cancer through the evasion of anticancer immunity.
Collapse
Affiliation(s)
- Junya Okabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Matsumae
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuma Daiku
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaya Higashiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
17
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
18
|
Stouten I, van Montfoort N, Hawinkels LJAC. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24108707. [PMID: 37240052 DOI: 10.3390/ijms24108707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.
Collapse
Affiliation(s)
- Imke Stouten
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
19
|
Olson DJ, Luke JJ. Myeloid Maturity: ATRA to Enhance Anti-PD-1? Clin Cancer Res 2023; 29:1167-1169. [PMID: 36656164 PMCID: PMC10073251 DOI: 10.1158/1078-0432.ccr-22-3652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are associated with resistance to anti-PD-1 therapies. All-trans retinoic acid (ATRA) may induce maturation of MDSCs and alter their immunosuppressive effects. Adding ATRA to pembrolizumab may target this resistance mechanism to enhance the overall impact of anti-PD-1-based immunotherapy. See related article by Tobin et al., p. 1209.
Collapse
Affiliation(s)
- Daniel J. Olson
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Jason J. Luke
- UPMC Hillman Cancer Center, UPMC, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Genduso S, Freytag V, Schetler D, Kirchner L, Schiecke A, Maar H, Wicklein D, Gebauer F, Bröker K, Stürken C, Milde-Langosch K, Oliveira-Ferrer L, Ricklefs FL, Ewald F, Wolters-Eisfeld G, Riecken K, Unrau L, Krause L, Bohnenberger H, Offermann A, Perner S, Sebens S, Lamszus K, Diehl L, Linder S, Jücker M, Schumacher U, Lange T. Tumor cell integrin β4 and tumor stroma E-/P-selectin cooperatively regulate tumor growth in vivo. J Hematol Oncol 2023; 16:23. [PMID: 36932441 PMCID: PMC10022201 DOI: 10.1186/s13045-023-01413-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin β4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.
Collapse
Affiliation(s)
- Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniela Schetler
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lennart Kirchner
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Florian Gebauer
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Katharina Bröker
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Stürken
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Faculty of Medicine, MSH Medical School Hamburg, Medical University, 20251, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Ewald
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Childrens' Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Institue of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Anne Offermann
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Diehl
- Institue of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Medical School Berlin, Leipziger Platz 10, 10117, Berlin, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany.
| |
Collapse
|
21
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
22
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, Han J, Dey P, Li J, Deng P, Sei E, Maeda DY, Zebala JA, Spring DJ, Kim M, Wang H, Maitra A, Moore D, Clise-Dwyer K, Wang YA, Navin NE, DePinho RA. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. NATURE CANCER 2023; 4:62-80. [PMID: 36585453 PMCID: PMC9925045 DOI: 10.1038/s43018-022-00500-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.
Collapse
Affiliation(s)
- Pat Gulhati
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia Hernandez Ruiz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dirk Moore
- Department of Biostatistics, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
25
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Smith C, Zheng W, Dong J, Wang Y, Lai J, Liu X, Yin F. Tumor microenvironment in pancreatic ductal adenocarcinoma: Implications in immunotherapy. World J Gastroenterol 2022; 28:3297-3313. [PMID: 36158269 PMCID: PMC9346457 DOI: 10.3748/wjg.v28.i27.3297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/22/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive and lethal cancers. Surgical resection is the only curable treatment option, but it is available for only a small fraction of patients at the time of diagnosis. With current therapeutic regimens, the average 5-year survival rate is less than 10% in pancreatic cancer patients. Immunotherapy has emerged as one of the most promising treatment options for multiple solid tumors of advanced stage. However, its clinical efficacy is suboptimal in most clinical trials on pancreatic cancer. Current studies have suggested that the tumor microenvironment is likely the underlying barrier affecting immunotherapy drug efficacy in pancreatic cancer. In this review, we discuss the role of the tumor microenvironment in pancreatic cancer and the latest advances in immunotherapy on pancreatic cancer.
Collapse
Affiliation(s)
- Caitlyn Smith
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Wei Zheng
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yaohong Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, United States
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, United States
| | - Feng Yin
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
27
|
Li R, Hu Y, Hou S. An Exploration of Oral-Gut Pathogens Mediating Immune Escape of Pancreatic Cancer via miR-21/PTEN Axis. Front Microbiol 2022; 13:928846. [PMID: 35814712 PMCID: PMC9258743 DOI: 10.3389/fmicb.2022.928846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Oral-gut pathogens are closely associated with pancreatic cancer, such as Campylobacter jejuni, Clostridium difficile, Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Helicobacter pylori, Porphyromonas gingivalis, and Vibrio cholera, but the related mechanisms remain not well understood. Phosphatase and tensin homolog (PTEN, a widely known tumor suppressor) play a key role in the anti-cancer immune system. Pancreatic cancer cells with PTEN loss are often in the immunosuppressive tumor microenvironment regulated by myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and M2 macrophages, which are regarded as the mechanism in the immune escape of cancers. The miR-21, as an oncogene in human cancers, plays an important role in pancreatic cancer progression, downregulates the levels of PTEN, and may promote cancer to evade host immune surveillance. Some oral-gut pathogens have been found to promote miR-21 expression and reduce PTEN expression. On the other hand, most gut pathogens infection is thought to produce reactive oxygen species (ROS) or activate inflammatory cytokines, which may also induce ROS-mediated miR-21 expression. These pathogens' infection is involved with the cell density of MDSCs, Tregs, and M2 macrophages. Therefore, it is quite reasonable to propose that oral-gut pathogens possibly promote pancreatic cancer escaping from host immune surveillance by activating the miR-21/PTEN axis and immune-suppressive cells. The present exploration suggests that an increased understanding of the pattern of the effects of gut pathogens on the miR-21/PTEN axis will lead to better insights into the specific mechanisms associated with the immune escape of pancreatic cancer caused by oral-gut microbiota.
Collapse
|
28
|
Mun JY, Leem SH, Lee JH, Kim HS. Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Front Immunol 2022; 13:864739. [PMID: 35464435 PMCID: PMC9019709 DOI: 10.3389/fimmu.2022.864739] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised of different components, including tumor cells, stromal cells, and immune cells. Among them, the relationship between each mediator involved in the construction of the TME can be understood by focusing on the secreting or expressing factors from each cells. Therefore, understanding the various interactions between each cellular component of the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are well known to influence extracellular matrix (ECM) formation and tumor progression through multiple mediators. Immune cells respond to tumor cells by causing cytotoxicity or inflammatory responses. However, they are involved in tumor escape through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been focused on cancer cells themselves or the interactions between cancer cells and specific cell components. However, cancer cells directly or indirectly influence other TME partners, and members such as stromal cells and immune cells also participate in TME organization through their mutual communication. In this review, we summarized the relationship between stromal cells and immune cells in the TME and discussed the positive and negative relationships from the point of view of tumor development for use in research applications and therapeutic strategies.
Collapse
Affiliation(s)
- Jeong-Yeon Mun
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
29
|
Dong P, Yan Y, Fan Y, Wang H, Wu D, Yang L, Zhang J, Yin X, Lv Y, Zhang J, Hou Y, Liu F, Yu X. The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technol Cancer Res Treat 2022; 21:15330338221142472. [PMID: 36573015 PMCID: PMC9806441 DOI: 10.1177/15330338221142472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has the highest mortality rate of all major cancers, with a 5-year survival rate of about 10%. Early warning signs and symptoms of pancreatic cancer are vague or nonexistent, and most patients are diagnosed in Stage IV, when surgery is not an option for about 80%-85% of patients. For patients with inoperable pancreatic cancer, current conventional treatment modalities such as chemotherapy and radiotherapy (RT) have suboptimal efficacy. Tumor progression is closely associated with the tumor microenvironment, which includes peripheral blood vessels, bone marrow-derived inflammatory cells, fibroblasts, immune cells, signaling molecules, and extracellular matrix. Tumor cells affect the microenvironment by releasing extracellular signaling molecules, inducing peripheral immune tolerance, and promoting tumor angiogenesis. In turn, the immune cells of the tumor affect the survival and proliferation of cancer cells. Myeloid-derived suppressor cells are key cellular components in the tumor microenvironment and exert immunosuppressive functions by producing cytokines, recognizing other immune cells, and promoting tumor growth and metastasis. Myeloid-derived suppressor cells are the main regulator of the tumor immune response and a key target for tumor treatments. Since the combination of RT and immunotherapy is the main strategy for the treatment of pancreatic cancer, it is very important to understand the immune mechanisms which lead to MDSCs generation and the failure of current therapies in order to develop new target-based therapies. This review summarizes the research advances on the role of Myeloid-derived suppressor cells in the progression of pancreatic cancer and its treatment application in recent years.
Collapse
Affiliation(s)
- Peng Dong
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yu Yan
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yujun Fan
- Medical Management Center,Health Commission of Shandong Province, Jinan, Shandong, China
| | - Hui Wang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Danzhu Wu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
- Department of Oncology, Clinical Medical College of Jining Medical University, Jining, Shandong, China
| | - Liyuan Yang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Junpeng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine Shandong University, Jinan, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yajuan Lv
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Jiandong Zhang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Fengjun Liu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Xinshuang Yu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| |
Collapse
|
30
|
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, Frassineti GL, Bravaccini S. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci 2021; 23:ijms23010254. [PMID: 35008679 PMCID: PMC8745092 DOI: 10.3390/ijms23010254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
- Correspondence:
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| |
Collapse
|
31
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
32
|
Wang B, Yang L, Liu T, Xun J, Zhuo Y, Zhang L, Zhang Q, Wang X. Hydroxytyrosol Inhibits MDSCs and Promotes M1 Macrophages in Mice With Orthotopic Pancreatic Tumor. Front Pharmacol 2021; 12:759172. [PMID: 34858184 PMCID: PMC8632498 DOI: 10.3389/fphar.2021.759172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
The poor immunotherapy of pancreatic cancer is mainly due to its complex immunosuppressive microenvironment. The Mediterranean diet contributes to low cancer incidence. Hydroxytyrosol (HT) derived from olive oil has multiple health-promoting effects, but its therapeutic effect on pancreatic cancer remains controversial. Here, we evaluated the inhibitory effect of HT on mouse pancreatic cancer, and the effect of HT on the immune microenvironment. We found that HT can inhibit the proliferation of Panc 02 cells through signal transducer and activator of transcription (STAT) 3/Cyclin D1 signaling pathway. In the tumor-bearing mice treated with HT, the orthotopic pancreatic tumors were suppressed, accompanied by a decrease in the proportion of myeloid-derived suppressor cells (MDSCs) and an increase in the proportion of M1 macrophages. In addition, we found that HT inhibited the expression of immunosuppressive molecules in bone marrow (BM)-derived MDSCs, as well as down-regulated CCAAT/enhancer-binding protein beta (C/EBPβ) and phosphorylation of STAT3. Moreover, HT enhanced the anti-tumor effect of anti-CD47 antibody in vivo. HT combined with plumbagin (PLB) induced more Panc 02 cells death than HT or PLB alone. This combination therapy not only inhibited the accumulation of MDSCs, but also promoted the infiltration of CD4+ and CD8+ T cells in the tumors. In summary, HT is a potential immunomodulatory drug for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Botao Wang
- Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Tianyu Liu
- Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China.,The Clinical Research Center of Tianjin for Treating Acute Abdominal Diseases with Integrated Medicine, Tianjin, China
| |
Collapse
|
33
|
Grover A, Sanseviero E, Timosenko E, Gabrilovich DI. Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discov 2021; 11:2693-2706. [PMID: 34635571 DOI: 10.1158/2159-8290.cd-21-0764] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important regulators of immune responses in cancer. They represent a relatively stable form of pathologic activation of neutrophils and monocytes and are characterized by distinct transcriptional, biochemical, functional, and phenotypical features. The close association of MDSCs with clinical outcomes in cancer suggests that these cells can be an attractive target for therapeutic intervention. However, the complex nature of MDSC biology represents a substantial challenge for the development of selective therapies. Here, we discuss the mechanisms regulating MDSC development and fate and recent research advances that have demonstrated opportunities for therapeutic regulation of these cells. SIGNIFICANCE: MDSCs are attractive therapeutic targets because of their close association with negative clinical outcomes in cancer and established biology as potent immunosuppressive cells. However, the complex nature of MDSC biology presents a substantial challenge for therapeutic targeting. In this review, we discuss those challenges and possible solutions.
Collapse
Affiliation(s)
- Amit Grover
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | | - Elina Timosenko
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | |
Collapse
|
34
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
35
|
Li Y, He H, Jihu R, Zhou J, Zeng R, Yan H. Novel Characterization of Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Front Cell Dev Biol 2021; 9:698532. [PMID: 34527668 PMCID: PMC8435631 DOI: 10.3389/fcell.2021.698532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells generated in various pathologic conditions, which have been known to be key components of the tumor microenvironment (TME) involving in tumor immune tolerance. So MDSCs have been extensively researched recently. As its name suggests, immunosuppression is the widely accepted function of MDSCs. Aside from suppressing antitumor immune responses, MDSCs in the TME also stimulate tumor angiogenesis and metastasis, thereby promoting tumor growth and development. Therefore, altering the recruitment, expansion, activation, and immunosuppression of MDSCs could partially restore antitumor immunity. So, this view focused on the favorable TME conditions that promote the immunosuppressive effects of MDSCs and contribute to targeted therapies with increased precision for MDSCs.
Collapse
Affiliation(s)
- Yanan Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hongdan He
- Immunotherapy Laboratory, Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Ribu Jihu
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Rui Zeng
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
36
|
Colloca G, Venturino A. Peripheral Blood Cell Variables Related to Systemic Inflammation in Patients With Unresectable or Metastatic Pancreatic Cancer: A Systematic Review and Meta-Analysis. Pancreas 2021; 50:1131-1136. [PMID: 34714276 DOI: 10.1097/mpa.0000000000001878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Systemic inflammatory response (SIR) plays a central role in the prognosis of unresectable or metastatic pancreatic ductal adenocarcinoma (mPDAC), and many SIR-related peripheral blood cell (PBC)-derived variables have been proposed as prognostic factors. The study aims to perform a systematic review and, for the more studied PBC-derived variables, a meta-analysis. A systematic review from 2000 to 2020 on 2 databases by predefined criteria was performed for PBC-derived variables in patients with mPDAC receiving chemotherapy in relation with overall survival. Eligible studies were selected by inclusion criteria, and only the PBC variables reported in at least 10 studies were evaluated by meta-analysis. Three hundred and eighty articles were found, and 28 studies were selected. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were reported in 28 and 10 articles, respectively. The subsequent meta-analyses supported the prognostic effect for both, NLR (hazard ratio, 2.10; 95% confidence interval, 1.87-2.37) and PLR (hazard ratio, 1.22; 95% confidence interval, 1.08-1.37). Heterogeneity was significant for NLR (I2 = 62%) and low for PLR (I2 = 24%). Among SIR-related PBC-derived variables, NLR is the most suitable prognostic factor for future clinical trials of patients with mPDAC.
Collapse
Affiliation(s)
- Giuseppe Colloca
- From the Department of Oncology, Ospedale Saint Charles, Bordighera, Italy
| | | |
Collapse
|
37
|
Michl P, Löhr M, Neoptolemos JP, Capurso G, Rebours V, Malats N, Ollivier M, Ricciardiello L. UEG position paper on pancreatic cancer. Bringing pancreatic cancer to the 21st century: Prevent, detect, and treat the disease earlier and better. United European Gastroenterol J 2021; 9:860-871. [PMID: 34431604 PMCID: PMC8435257 DOI: 10.1002/ueg2.12123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is the deadliest cancer worldwide with a 98% loss-of-life expectancy and a 30% increase in the disability-adjusted life years during the last decade in Europe. The disease cannot be effectively prevented nor being early detected. When diagnosed, 80% of patients have tumors that are in incurable stages, while for those who undergo surgery, 80% of patients will present with local or distant metastasis. Importantly, chemotherapies are far from being effective. OBJECTIVE Pancreatic cancer represents a great challenge and, at the same time, a huge opportunity for advancing our understanding on the basis of the disease, the molecular profiles, that would lead to develop tools for early detection and effective treatments, thus, boosting patient survival. RESULTS Research on pancreatic cancer has being receiving little or minimal funds from European funding bodies. UEG is calling for public-private partnerships that would effectively fund research on pancreatic cancer. CONCLUSION This would increase our understanding of this disease and better treatment, through pan-European efforts that take advantage of the strong academic European research landscape on pancreatic cancer, and the contribution by the industry of all sizes.
Collapse
Affiliation(s)
- Patrick Michl
- Department of Internal Medicine IUniversity Medicine Halle (Saale)HalleGermany
| | - Matthias Löhr
- Department of CancerKarolinska University Hospital and Karolinska InstitutetStockholmSweden
| | | | - Gabriele Capurso
- Pancreato‐Biliary Endoscopy and Endosonography DivisionPancreas Translational and Clinical Research CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Vinciane Rebours
- Pancreatology UnitBeaujon HospitalAPHPUniversité de ParisParisFrance
| | - Nuria Malats
- Genetic and Molecular Epidemiology GroupSpanish National Cancer Research Centre (CNIO)CIBERONCPancreatic Cancer Europe (PCE)MadridSpain
| | | | - Luigi Ricciardiello
- IRCCS Azienda Ospedaliero Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
38
|
Tang H, Li H, Sun Z. Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0806. [PMID: 34403220 PMCID: PMC8610166 DOI: 10.20892/j.issn.2095-3941.2020.0806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to enhance the antitumor efficacy of ICB.
Collapse
Affiliation(s)
- Hongchao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
39
|
Mao M, Ling H, Lin Y, Chen Y, Xu B, Zheng R. Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Front Genet 2021; 12:702102. [PMID: 34335699 PMCID: PMC8318842 DOI: 10.3389/fgene.2021.702102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive tumor with poor prognoses. The predictive capability of immune-related genes (IRGs) in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes and develop a prediction model for indicating prognosis in PAAD. Methods The messenger (m)RNA expression profiles acquired from public databases were comprehensively integrated and differentially expressed genes were identified. Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter, a multigene signature in the Cancer Genome Atlas cohort was established based on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Moreover, a transcription factors regulatory network was constructed to reveal potential molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression Omnibus database were applied for the validations. Finally, correlation analysis between the prognostic model and immunocyte infiltration was investigated. Results Totally, 446 differentially expressed immune-related genes were screened in PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the overall survival of PAAD patients. An immune-based prognostic model was developed, which contained eight IRGs. Univariate and multivariate Cox regression revealed that the risk score model was an independent prognostic indicator in PAAD (HR > 1, P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the eight-gene signature possibly played a pivotal role in the status of the PAAD immune microenvironment. Conclusion A novel prognostic model based on immune genes may serve to characterize the immune microenvironment and provide a basis for PAAD immunotherapy.
Collapse
Affiliation(s)
- Miaobin Mao
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Hongjian Ling
- The Graduate School, Fujian Medical University, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuping Lin
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
40
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Dendritic cell vaccination combined with a conventional chemotherapy for patients with relapsed or advanced pancreatic ductal adenocarcinoma: a single-center phase I/II trial. Ther Apher Dial 2021; 25:415-424. [PMID: 33886156 DOI: 10.1111/1744-9987.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
The prognosis of patients with advanced pancreatic cancer is poor. In the present phase I/II study, we have evaluated the safety and the feasibility of Wilms' tumor 1 (WT1) and/or mucin1 (MUC1) peptide-pulsed dendritic cell (DC) vaccination in combination with chemotherapy in patients with advanced or relapsed pancreatic ductal adenocarcinoma (PDAC). Sixty-five eligible patients were enrolled. No severe adverse events related to the vaccinations were observed. Objective response rate and disease control rate was 12.3% and 50.8%, respectively. Median progression-free survival and overall survival were 4.9 and 9.6 months, respectively. DC vaccinations augmented WT1- and MUC1-specific immunity which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and feasible for patients in advanced stage of PDAC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
41
|
Yoon JH, Jung YJ, Moon SH. Immunotherapy for pancreatic cancer. World J Clin Cases 2021; 9:2969-2982. [PMID: 33969083 PMCID: PMC8080736 DOI: 10.12998/wjcc.v9.i13.2969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, a highly lethal cancer, has the lowest 5-year survival rate for several reasons, including its tendency for the late diagnosis, a lack of serologic markers for screening, aggressive local invasion, its early metastatic dissemination, and its resistance to chemotherapy/radiotherapy. Pancreatic cancer evades immunologic elimination by a variety of mechanisms, including induction of an immunosuppressive microenvironment. Cancer-associated fibroblasts interact with inhibitory immune cells, such as tumor-associated macrophages and regulatory T cells, to form an inflammatory shell-like desmoplastic stroma around tumor cells. Immunotherapy has the potential to mobilize the immune system to eliminate cancer cells. Nevertheless, although immunotherapy has shown brilliant results across a wide range of malignancies, only anti-programmed cell death 1 antibodies have been approved for use in patients with pancreatic cancer who test positive for microsatellite instability or mismatch repair deficiency. Some patients treated with immunotherapy who show progression based on conventional response criteria may prove to have a durable response later. Continuation of immune-based treatment beyond disease progression can be chosen if the patient is clinically stable. Immunotherapeutic approaches for pancreatic cancer treatment deserve further exploration, given the plethora of combination trials with other immunotherapeutic agents, targeted therapy, stroma-modulating agents, chemotherapy, and multi-way combination therapies.
Collapse
Affiliation(s)
- Jai Hoon Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Ye-Ji Jung
- Department of Internal Medicine, Hallym University, Anyang 14068, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, South Korea
| |
Collapse
|
42
|
Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scand J Immunol 2021; 93:e13021. [PMID: 33455004 DOI: 10.1111/sji.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer has been identified as one of the deadliest malignancies because it remains asymptomatic and usually presents in the advanced stage. Tumour immune evasion is a well-known mechanism of tumorigenesis in various forms of human malignancies. Chronic inflammation via complex networking of various inflammatory cytokines in the local tissue microenvironment dysregulates the immune system and support tumour development. Pro-inflammatory mediators present in the tumour microenvironment increase the tumour burden by causing immune suppression through the generation of myeloid-derived suppressor cells (MDSCs) and T regulatory cells. These cells, along-with myofibroblasts, create a highly immunosuppressive and resistant tumour microenvironment and are thus considered as one of the culprits for the failure of anti-cancer chemotherapies in pancreatic adenocarcinoma patients. Targeting these MDSCs using various combinatorial approaches might have the potential for abrogating the resistance and suppressive nature of the pancreatic tumour microenvironment. Therefore, there is more curiosity in studying the crosstalk of MDSCs with other immune cells during pathological conditions and the underlying mechanisms of immunosuppression in the current scenario. In this article, the possible role of MDSCs in inflammation-mediated tumour progression of pancreatic adenocarcinoma has been discussed.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
43
|
Review of clinical and emerging biomarkers for early diagnosis and treatment management of pancreatic cancer: towards personalised medicine. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Pancreatic cancer is the 12th most commonly diagnosed cancer and the 3rd leading cause of cancer mortality and accounts for approximately 2·7% of all newly diagnosed cancer cases and 6·4% of all cancer mortalities in Canada. It has a very poor survival rate mainly due to the difficulty of detecting the disease at an early stage. Consequently, in the advancement of disease management towards the concept of precision medicine that takes individual patient variabilities into account, several investigators have focused on the identification of effective clinical biomarkers with high specificity and sensitivity, capable of early diagnosis of symptomatic patients and early detection of the disease in asymptomatic individuals at high risk for developing pancreatic cancer.
Materials and methods:
We searched several databases from August to December 2020 for relevant studies published in English between 2000 and 2020 and reporting on biomarkers for the management of pancreatic cancer. In this narrative review paper, we describe 13 clinical and emerging biomarkers for pancreatic cancers used in screening for early detection and diagnosis, to identify patients’ risk for metastatic disease and subsequent relapse, to monitor patient response to specific treatment and to provide clinicians the possibility of prospectively identifying groups of patients who will benefit from a particular treatment.
Conclusions:
Current and emerging biomarkers for pancreatic cancer with high specificity and sensitivity has the potential to account for individual patient variabilities, for early detection of disease before the onset of metastasis to improve treatment outcome and patients’ survival, help screen high-risk populations, predict prognosis, provide accurate information of patient response to specific treatment and improve patients monitoring during treatment. Thus, the future holds promise for the use of effective clinical biomarkers or a panel of biomarkers for personalised patient-specific targeted medicine for pancreatic cancer.
Collapse
|
44
|
Brouwer TP, Vahrmeijer AL, de Miranda NFCC. Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cell Oncol (Dordr) 2021; 44:261-278. [PMID: 33710604 PMCID: PMC7985121 DOI: 10.1007/s13402-021-00587-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy has had a significant impact on the survival of a subset of patients with advanced cancers. It has been particularly effective in immunogenic cancer types that present large numbers of somatic mutations in their genomes. To date, all conventional immunotherapies have failed to produce significant clinical benefits for patients diagnosed with pancreatic cancer, probably due to its poor immunogenic properties, including low numbers of neoantigens and highly immune-suppressive microenvironments. CONCLUSIONS Herein, we discuss advances that have recently been made in cancer immunotherapy and the potential of this field to deliver effective treatment options for pancreatic cancer patients. Preclinical investigations, combining different types of therapies, highlight possibilities to enhance anti-tumor immunity and to generate meaningful clinical responses in pancreatic cancer patients. Results from completed and ongoing (pre)clinical trials are discussed.
Collapse
Affiliation(s)
- Thomas P Brouwer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC
| | | | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC.
| |
Collapse
|
45
|
Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond) 2021; 41:442-471. [PMID: 33773092 PMCID: PMC8211353 DOI: 10.1002/cac2.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer encompasses a range of malignancies that originate in the digestive system, which together represent the most common form of cancer diagnosed worldwide. However, despite numerous advances in both diagnostics and treatment, the incidence and mortality rate of GI cancer are on the rise. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that increase in number under certain pathological conditions, such as infection and inflammation, and this expansion is of particular relevance to cancer. MDSCs are heavily involved in the regulation of the immune system and act to dampen its response to tumors, favoring the escape of tumor cells from immunosurveillance and increasing both metastasis and recurrence. Several recent studies have supported the use of MDSCs as a prognostic and predictive biomarker in patients with cancer, and potentially as a novel treatment target. In the present review, the mechanisms underlying the immunosuppressive functions of MDSCs are described, and recent researches concerning the involvement of MDSCs in the progression, prognosis, and therapies of GI cancer are reviewed. The aim of this work was to present the development of novel treatments targeting MDSCs in GI cancer in the hope of improving outcomes for patients with this condition.
Collapse
Affiliation(s)
- Cheng Cui
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Penglin Lan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
46
|
Carpenter E, Nelson S, Bednar F, Cho C, Nathan H, Sahai V, di Magliano MP, Frankel TL. Immunotherapy for pancreatic ductal adenocarcinoma. J Surg Oncol 2021; 123:751-759. [PMID: 33595893 DOI: 10.1002/jso.26312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer with an urgent need for better medical therapies. Efforts have been made to investigate the efficacy of immunotherapy, particularly given the hallmarks of immune suppression and exhaustion in PDAC tumors. Here, we review the molecular components responsible for the immune-privileged state in PDAC and provide an overview of the immunotherapeutic strategies for PDAC including vaccine therapy, checkpoint blockade, myeloid-targeted therapy, and immune agonist therapy.
Collapse
Affiliation(s)
- Eileen Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Clifford Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Väyrynen SA, Zhang J, Yuan C, Väyrynen JP, Dias Costa A, Williams H, Morales-Oyarvide V, Lau MC, Rubinson DA, Dunne RF, Kozak MM, Wang W, Agostini-Vulaj D, Drage MG, Brais L, Reilly E, Rahma O, Clancy T, Wang J, Linehan DC, Aguirre AJ, Fuchs CS, Coussens LM, Chang DT, Koong AC, Hezel AF, Ogino S, Nowak JA, Wolpin BM. Composition, Spatial Characteristics, and Prognostic Significance of Myeloid Cell Infiltration in Pancreatic Cancer. Clin Cancer Res 2021; 27:1069-1081. [PMID: 33262135 PMCID: PMC8345232 DOI: 10.1158/1078-0432.ccr-20-3141] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Although abundant myeloid cell populations in the pancreatic ductal adenocarcinoma (PDAC) microenvironment have been postulated to suppress antitumor immunity, the composition of these populations, their spatial locations, and how they relate to patient outcomes are poorly understood. EXPERIMENTAL DESIGN To generate spatially resolved tumor and immune cell data at single-cell resolution, we developed two quantitative multiplex immunofluorescence assays to interrogate myeloid cells (CD15, CD14, ARG1, CD33, HLA-DR) and macrophages [CD68, CD163, CD86, IFN regulatory factor 5, MRC1 (CD206)] in the PDAC tumor microenvironment. Spatial point pattern analyses were conducted to assess the degree of colocalization between tumor cells and immune cells. Multivariable-adjusted Cox proportional hazards regression was used to assess associations with patient outcomes. RESULTS In a multi-institutional cohort of 305 primary PDAC resection specimens, myeloid cells were abundant, enriched within stromal regions, highly heterogeneous across tumors, and differed by somatic genotype. High densities of CD15+ARG1+ immunosuppressive granulocytic cells and M2-polarized macrophages were associated with worse patient survival. Moreover, beyond cell density, closer proximity of M2-polarized macrophages to tumor cells was strongly associated with disease-free survival, revealing the clinical significance and biologic importance of immune cell localization within tumor areas. CONCLUSIONS A diverse set of myeloid cells are present within the PDAC tumor microenvironment and are distributed heterogeneously across patient tumors. Not only the densities but also the spatial locations of myeloid immune cells are associated with patient outcomes, highlighting the potential role of spatially resolved myeloid cell subtypes as quantitative biomarkers for PDAC prognosis and therapy.
Collapse
Affiliation(s)
- Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Juha P Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Hannah Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Wenjia Wang
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Michael G Drage
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emma Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Clancy
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jiping Wang
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David C Linehan
- Department of General Surgery, University of Rochester Medical Center, Rochester, New York
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Medical Oncology, Smilow Cancer Hospital, New Haven, Connecticut
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aram F Hezel
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Martinez-Useros J, Martin-Galan M, Garcia-Foncillas J. The Match between Molecular Subtypes, Histology and Microenvironment of Pancreatic Cancer and Its Relevance for Chemoresistance. Cancers (Basel) 2021; 13:322. [PMID: 33477288 PMCID: PMC7829908 DOI: 10.3390/cancers13020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decade, several studies based on whole transcriptomic and genomic analyses of pancreatic tumors and their stroma have come to light to supplement histopathological stratification of pancreatic cancers with a molecular point-of-view. Three main molecular studies: Collisson et al. 2011, Moffitt et al. 2015 and Bailey et al. 2016 have found specific gene signatures, which identify different molecular subtypes of pancreatic cancer and provide a comprehensive stratification for both a personalized treatment or to identify potential druggable targets. However, the routine clinical management of pancreatic cancer does not consider a broad molecular analysis of each patient, due probably to the lack of target therapies for this tumor. Therefore, the current treatment decision is taken based on patients´ clinicopathological features and performance status. Histopathological evaluation of tumor samples could reveal many other attributes not only from tumor cells but also from their microenvironment specially about the presence of pancreatic stellate cells, regulatory T cells, tumor-associated macrophages, myeloid derived suppressor cells and extracellular matrix structure. In the present article, we revise the four molecular subtypes proposed by Bailey et al. and associate each subtype with other reported molecular subtypes. Moreover, we provide for each subtype a potential description of the tumor microenvironment that may influence treatment response according to the gene expression profile, the mutational landscape and their associated histology.
Collapse
|
49
|
Wu Y, Zhang C, Jiang K, Werner J, Bazhin AV, D'Haese JG. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front Oncol 2021; 10:621937. [PMID: 33520728 PMCID: PMC7841014 DOI: 10.3389/fonc.2020.621937] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.
Collapse
Affiliation(s)
- Yang Wu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chun Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center and Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
50
|
Importance of myeloid derived suppressor cells in cancer from a biomarker perspective. Cell Immunol 2020; 361:104280. [PMID: 33445053 DOI: 10.1016/j.cellimm.2020.104280] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Myeloid derived suppressor cells (MDSC) are a heterogenous population of immature myeloid cells that accumulate in tumor bearing host and migrate to lymphoid organs and tumor tissues. This process is controlled by a set of defined pro-inflammatory cytokines and chemokines, which are upregulated in malignancies. MDSC have strong immunosuppressive potential and constitute a major component of the tumor microenvironment (TME). Tumor cells take advantage of the suppressive mechanisms of MDSC to establish an immunosuppressive TME which inhibits antitumor immune responses thereby promoting cancer progression. An immunosuppressive TME acts as a significant barrier to immunotherapeutic interventions. Pre-clinical and clinical studies have demonstrated that enrichment and activation of MDSC is correlated with tumor progression, recurrence and metastasis. In this review we discuss the potential impact of MDSC on tumor progression and its role as a biomarker of prognostic significance in cancer with a special focus on hepatocellular cancer (HCC).
Collapse
|