1
|
Zhang H, Xia L, Xuzhang W, Li Z, Zhang J, Li F, Cheng C, Wang J, Zong X, Yang X, Lu S. BCL-2 mutant B7H6-CAR-T cells synergized with venetoclax for treating small cell lung cancer. J Immunother Cancer 2025; 13:e010073. [PMID: 40341023 PMCID: PMC12067830 DOI: 10.1136/jitc-2024-010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Patients with small cell lung cancer (SCLC) generally have a poor prognosis, with an exceptionally high proliferative rate and a strong propensity for early metastasis, indicating the urgent need for novel therapies. The development of chimeric antigen receptor (CAR)s targeting solid tumors is limited owing to the lack of target antigens and low efficacy. In this study, we aimed to discover new targets for SCLC CAR-T therapy and develop CAR-T-based combinational treatment against SCLC in preclinical models. METHODS The in vitro antitumor activity of B7H6-specific CAR-T cell was evaluated. Venetoclax-resistant B7H6 CAR-T cell were designed and the synergistic effect of venetoclax and B7-H6 CAR-T cells was tested in vitro and in vivo. RESULT B7H6 is highly expressed in SCLC tumors. CAR-T cell against B7H6 displayed antigen-specific antitumor efficacy. BCL-2(D103E)-expressing CAR-T cells showed resistance to venetoclax-induced apoptosis. The combinational treatment of venetoclax and BCL-2(D103E)-expressing B7H6-targeting showed potent anti-SCLC effect in vitro and in vivo. CONCLUSIONS Our findings suggest that the combination of BCL-2 mutant-expressing B7H6-targeting CAR-T cells and venetoclax could be a promising novel strategy against B7H6-expressing SCLCs and other solid tumors, providing the foundation for CAR-T cells and proapoptotic small molecules therapy in patients with SCLCs in a clinical trial.
Collapse
Affiliation(s)
- Huihui Zhang
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wendi Xuzhang
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junshi Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Cheng
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xincheng Zong
- Faculty of Art & Science, University of Toronto, Toronto, Ontario, Canada
| | - Xuanming Yang
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Gynaecology and Obstetrics, Shanghai Pudong New Area people's Hospital, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
周 智, 柳 硕, 李 洁, 陈 明, 林 辉, 陈 宇, 陈 伟, 林 军, 周 航, 郑 庆. [Modification with IL-21 and CCL19 enhances killing efficiency and tumor infiltration of NKP30 CAR-T cells in lung cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1926-1936. [PMID: 39523093 PMCID: PMC11526451 DOI: 10.12122/j.issn.1673-4254.2024.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate whether modification with IL-21 and CCL19 enhances killing and tumor-infiltrating efficiency of NKP30 CAR-T cells in lung cancer. METHODS The modified IL-21-CCL19 NKP30 CAR-T cells expressing IL-21 and CCL19 fusion gene was constructed based on NKP30 CAR-T cells and stimulated with CD3CD28 antibodies and IL-2. The immunophenotype and migration of the cells in the presence of IL-21 were investigated using flow cytometry and migration experiments. Lactate dehydrogenase (LDH) release and sphere formation assays were used to assess the killing and infiltration capabilities of CAR-T cells, and the secretion levels of IFN-γ, IL-21 and CCL19 were determined with enzyme-linked immunospot assay (ELISPOT) and ELISA. A zebrafish model bearing HCG-27 cell xenograft was established by microinjection of the tumor cells into the yolk sac followed 24 h later by injection of the immune cells at the same site, and the fluorescence signals were captured using a fluorescent microscopy. RESULTS The NKP30 ligand B7H6, which was almost undetectable in normal tissues and blood cells, was highly expressed (over 90%) in lung cancer cells. Compared with NKP30 CAR-T cells and conventional T cells, IL-21-CCL19 NKP30 CAR-T cells exhibited stronger proliferative and migration capabilities with the formation of central memory T cells. The reduced expressions of CTLA4 and PD1 in the constructed cells resulted in enhanced killing efficiency against lung cancer cells accompanied by significantly increased production of IFN-γ, IL-21 and CCL19. In the zebrafish models, CAR-T cells exhibited stronger cytotoxicity and proliferative abilities than typical T cells, but these differences were not statistically significant between the two CAR-T cells. CONCLUSION Modification of NKP30 CAR-T cells with IL-21 and CCL19 facilitates their access into solid tumors for more effective tumor cell killing while producing a large number of memory T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - 庆丰 郑
- 郑庆丰,博士,主任医师,硕士生导师,E-mail:
| |
Collapse
|
3
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Graber DJ, Cook WJ, Sentman ML, Murad-Mabaera JM, Sentman CL. Human CD4+CD25+ T cells expressing a chimeric antigen receptor against aberrant superoxide dismutase 1 trigger antigen-specific immunomodulation. Cytotherapy 2024; 26:126-135. [PMID: 38043051 PMCID: PMC10872388 DOI: 10.1016/j.jcyt.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is a fatal disease associated with motor neuron degeneration, accumulation of aggregated misfolded proteins and neuroinflammation in motor regions of the central nervous system (CNS). Clinical trials using regulatory T cells (Tregs) are ongoing because of Tregs' immunomodulatory function, ability to traffic to the CNS, high numbers correlating with slower disease in ALS and disease-modifying activity in ALS mouse models. In the current study, a chimeric antigen receptor (CAR) was developed and characterized in human Tregs to enhance their immunomodulatory activity when in contact with an ALS protein aggregate. METHODS A CAR (DG05-28-3z) consisting of a human superoxide dismutase 1 (hSOD1)-binding single-chain variable fragment, CD28 hinge, transmembrane and co-stimulatory domain and CD3ζ signaling domain was created and expressed in human Tregs. Human Tregs were isolated by either magnetic enrichment for CD4+CD25hi cells (Enr-Tregs) or cell sorting for CD4+CD25hiCD127lo cells (FP-Tregs), transduced and expanded for 17 days. RESULTS The CAR bound preferentially to the ALS mutant G93A-hSOD1 protein relative to the wild-type hSOD1 protein. The CAR Tregs produced IL-10 when cultured with aggregated G93A-hSOD1 proteins or spinal cord explants from G93A-hSOD1 transgenic mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages inhibited production of tumor necrosis factor alpha and reactive oxygen species. Expanded FP-Tregs resulted in more robust Tregs compared with Enr-Tregs. FP-Tregs produced similar IL-10 and less interferon gamma, had lower Treg-specific demethylated region methylation and expressed higher FoxP3 and CD39. CONCLUSIONS Taken together, this study demonstrates that gene-modified Tregs can be developed to target an aggregated ALS-relevant protein to elicit CAR-mediated Treg effector functions and provides an approach for generating Treg therapies for ALS with the goal of enhanced disease site-specific immunomodulation.
Collapse
Affiliation(s)
- David J Graber
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Marie-Louise Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
5
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
6
|
Wang Y, Li M, Wang G, Wu H. Role of B7 family members in glioma: Promising new targets for tumor immunotherapy. Front Oncol 2023; 12:1091383. [PMID: 36741734 PMCID: PMC9890054 DOI: 10.3389/fonc.2022.1091383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Glioma, is a representative type of intracranial tumor among adults, usually has a weak prognosis and limited treatment options. Traditional therapies, including surgery, chemotherapy, and radiotherapy, have had little impact on patient survival time. Immunotherapies designed to target the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling pathway have successfully treated various human cancers, informing the development of similar therapies for glioma. However, anti-PD-L1 response rates remain limited in glioma patients. Thus, exploring novel checkpoints targeting additional immunomodulatory pathways for activating durable antitumor immune responses and improving glioma outcomes is needed. Researchers have identified other B7 family checkpoint molecules, including PD-L2, B7-H2, B7-H3, B7-H4, and B7-H6. The current review article evaluates the expression of all 10 reported members of the B7 family in human glioma using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) data, as well as summarizes studies evaluating the clinical meanings and functions of B7 family molecules in gliomas. B7 family checkpoints may contribute to different immunotherapeutic management options for glioma patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiation Oncology, Third People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Mengxi Li
- Department of Radiation Oncology, Third People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Gang Wang
- Department of Radiation Oncology, Third People’s Hospital of Zhengzhou, Zhengzhou, Henan, China,*Correspondence: Gang Wang, ; Hui Wu,
| | - Hui Wu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Gang Wang, ; Hui Wu,
| |
Collapse
|
7
|
Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, Yang L, Sayedian F, Fabits M, Bergmann M, Binder C, Corrales L, Vogt AB, Hudson LJ, Barnes MP, Bisht A, Giragossian C, Voynov V, Adam PJ, Hipp S. A Novel B7-H6-Targeted IgG-Like T Cell-Engaging Antibody for the Treatment of Gastrointestinal Tumors. Clin Cancer Res 2022; 28:5190-5201. [PMID: 36166004 PMCID: PMC9713360 DOI: 10.1158/1078-0432.ccr-22-2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.
Collapse
Affiliation(s)
- Wei Zhang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Aurélie Auguste
- Boehringer Ingelheim Pharma, GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach an der Riß, Germany
| | - Xiaoyun Liao
- Boehringer Ingelheim Pharmaceuticals, Inc., Oncology Translational Science, Ridgefield, Connecticut
| | | | - Kathrin Bauer
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Yu-Hsi Lin
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Ling Yang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | | | - Markus Fabits
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leticia Corrales
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Arnima Bisht
- Oxford BioTherapeutics, Inc., San Jose, California
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.,Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, Connecticut.,Corresponding Author: Susanne Hipp, Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877-0368. Phone: 203-798-4567; E-mail:
| |
Collapse
|
8
|
Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, Ren H, Zhu X, Dong Y. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol 2022; 13:1003651. [PMID: 36466873 PMCID: PMC9712217 DOI: 10.3389/fimmu.2022.1003651] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 08/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in adults, characterized by extensive infiltrative growth, high vascularization, and resistance to multiple therapeutic approaches. Among the many factors affecting the therapeutic effect, the immunosuppressive GBM microenvironment that is created by cells and associated molecules via complex mechanisms plays a particularly important role in facilitating evasion of the tumor from the immune response. Accumulating evidence is also revealing a close association of the gut microbiota with the challenges in the treatment of GBM. The gut microbiota establishes a connection with the central nervous system through bidirectional signals of the gut-brain axis, thus affecting the occurrence and development of GBM. In this review, we discuss the key immunosuppressive components in the tumor microenvironment, along with the regulatory mechanism of the gut microbiota involved in immunity and metabolism in the GBM microenvironment. Lastly, we concentrate on the immunotherapeutic strategies currently under investigation, which hold promise to overcome the hurdles of the immunosuppressive tumor microenvironment and improve the therapeutic outcome for patients with GBM.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Brog RA, Ferry SL, Schiebout CT, Messier CM, Cook WJ, Abdullah L, Zou J, Kumar P, Sentman CL, Frost HR, Huang YH. Superkine IL-2 and IL-33 Armored CAR T Cells Reshape the Tumor Microenvironment and Reduce Growth of Multiple Solid Tumors. Cancer Immunol Res 2022; 10:962-977. [PMID: 35696724 PMCID: PMC9357153 DOI: 10.1158/2326-6066.cir-21-0536] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Chimeric-antigen receptor (CAR) T-cell therapy has shown remarkable efficacy against hematologic tumors. Yet, CAR T-cell therapy has had little success against solid tumors due to obstacles presented by the tumor microenvironment (TME) of these cancers. Here, we show that CAR T cells armored with the engineered IL-2 superkine Super2 and IL-33 were able to promote tumor control as a single-agent therapy. IFNγ and perforin were dispensable for the effects of Super2- and IL-33-armored CAR T cells. Super2 and IL-33 synergized to shift leukocyte proportions in the TME and to recruit and activate a broad repertoire of endogenous innate and adaptive immune cells including tumor-specific T cells. However, depletion of CD8+ T cells or NK cells did not disrupt tumor control, suggesting that broad immune activation compensated for loss of individual cell subsets. Thus, we have shown that Super2 and IL-33 CAR T cells can promote antitumor immunity in multiple solid tumor models and can potentially overcome antigen loss, highlighting the potential of this universal CAR T-cell platform for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rachel A Brog
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Courtney T Schiebout
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Cameron M Messier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jia Zou
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Prathna Kumar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
10
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Mohammadi A, Najafi S, Amini M, Mansoori B, Baghbanzadeh A, Hoheisel JD, Baradaran B. The potential of B7-H6 as a therapeutic target in cancer immunotherapy. Life Sci 2022; 304:120709. [PMID: 35697295 DOI: 10.1016/j.lfs.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
Immune checkpoints are vital molecules that regulate T-cell function by activation or inhibition. Among the immune checkpoint molecules, the B7-family proteins are significantly involved in the immune escape of tumor cells. By binding to inhibitory receptors, they can suppress T-cell-mediated immunity. B7-family proteins are found at various stages of tumor microenvironment formation and promote tumorigenesis and tumor progression. B7-H6 (encoded by gene NCR3LG1) is a prominent member of the family. It has unique immunogenic properties and is involved in natural killer (NK) cell immunosurveillance by binding to the NKp30 receptor. High B7-H6 expression in certain tumor types and shortage of or low expression in healthy cells - except in cases of inflammatory or microbial stimulation - have made the protein an attractive target of research activities in recent years. The avoidance of NK-mediated B7-H6 detection is a mechanism through which tumor cells escape immune surveillance. The stimulation of tumorigenesis occurs by suppressing caspase cascade initiation and anti-apoptosis activity stimulation via the STAT3 pathway. The B7-H6-NKp30 complex on the tumor membrane activates the NK cells and releases both tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). B7-H6 is highly expressed in a wide range of tumor cells, including glioma, hematologic malignant tumors, and breast cancer cells. Clinical examination of cancer patients indicated that the expression of B7-H6 is related to distant metastasis status and permits postoperative prognosis. Because of its unique properties, B7-H6 has a high potential be utilized as a biological marker for cancer diagnosis and prognosis, as well as a target for novel treatment options.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
13
|
Thomas PL, Groves SM, Zhang YK, Li J, Gonzalez-Ericsson P, Sivagnanam S, Betts CB, Chen HC, Liu Q, Lowe C, Chen H, Boyd KL, Kopparapu PR, Yan Y, Coussens LM, Quaranta V, Tyson DR, Iams W, Lovly CM. Beyond Programmed Death-Ligand 1: B7-H6 Emerges as a Potential Immunotherapy Target in SCLC. J Thorac Oncol 2021; 16:1211-1223. [PMID: 33839362 DOI: 10.1016/j.jtho.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors, atezolizumab and durvalumab, have received regulatory approval for the first-line treatment of patients with extensive-stage SCLC. Nevertheless, when used in combination with platinum-based chemotherapy, these PD-L1 inhibitors only improve overall survival by 2 to 3 months. This may be due to the observation that less than 20% of SCLC tumors express PD-L1 at greater than 1%. Evaluating the composition and abundance of checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to therapeutic targeting. METHODS We analyzed RNA-sequencing data from SCLC cell lines (n = 108) and primary tumor specimens (n = 81) for expression of 39 functionally validated inhibitory checkpoint ligands. Furthermore, we generated tissue microarrays containing SCLC cell lines and patient with SCLC specimens to confirm expression of these molecules by immunohistochemistry. We annotated patient outcomes data, including treatment response and overall survival. RESULTS The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression relative to PD-L1 in cell lines and tumors (p < 0.05). Higher B7-H6 protein expression correlated with longer progression-free survival (p = 0.0368) and increased total immune infiltrates (CD45+) in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a decreased activated natural killer cell gene signature, suggesting a complex interplay between B7-H6 expression and immune signature in SCLC. CONCLUSIONS We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-H6 is highly expressed and associated with progression-free survival. In addition, 26 of 39 immune checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.
Collapse
Affiliation(s)
- Portia L Thomas
- Department of Microbiology, Immunology & Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee; School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Yun-Kai Zhang
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jia Li
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Shamilene Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Courtney B Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cindy Lowe
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelli L Boyd
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Prasad R Kopparapu
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingjun Yan
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Wade Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee; Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
14
|
Abstract
ABSTRACT The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.
Collapse
|
15
|
Yuan L, Sun L, Yang S, Chen X, Wang J, Jing H, Zhao Y, Ke X. B7-H6 is a new potential biomarker and therapeutic target of T-lymphoblastic lymphoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:328. [PMID: 33708955 PMCID: PMC7944329 DOI: 10.21037/atm-20-5308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background B7-H6 is a novel co-stimulatory protein exclusively expressed on a variety of cancer cells and associated with poor prognosis. T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive hematological malignancy whose treatment requires reliable prognostic biomarkers and therapeutic targets. However, the rare nature and delayed progression of T-LBL have limited its clinical management. Methods The expression of B7-H6 was analyzed by immunohistochemistry (IHC) in 65 T-LBL samples; the association with the clinicopathological characteristics and prognosis was also investigated. B7-H6-depleted Jurkat cells were also generated to investigate the effect of B7-H6 on cell proliferation, migration, and invasion. RNA sequencing was used to explore differentially expressed genes. Results B7-H6 was expressed in 61.5% (40/65) of T-LBL patients; of note, 38.5% (25/65) of patients showed membrane/cytoplasmic expression of B7-H6. Although the expression of B7-H6 varied across samples and did not correlate with patient survival, it was significantly associated with B symptoms, high ECOG scores (3 to 4), elevated serum lactate dehydrogenase level, and reduced complete remission at interim evaluation. B7-H6 underwent translocation into the nucleus of T-LBL cells, showing a specific nuclear localization sequence in the C-terminus. Moreover, the depletion of B7-H6 in Jurkat cells impaired cell proliferation, migration, and invasion. RNAseq showed the differential expression of RAG-1, which may be involved in the tumorigenesis of T-LBL. Conclusions B7-H6 may serve as a novel prognostic biomarker and therapeutic target of T-LBL.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lu Sun
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yu Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
17
|
Sun X, Zhao J, Ma L, Sun X, Ge J, Yu Y, Ma J, Zhang M. B7-H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest New Drugs 2020; 39:24-33. [PMID: 32770284 DOI: 10.1007/s10637-020-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
T cells play crucial roles in the antitumour immune response. However, their dysfunction leads to inefficient tumour eradication. New members of the B7 family have moved to the fore of cancer research because of their involvement in T cell-mediated immune escape and tumorigenesis. Recently, bispecific antibodies (Bi-Abs) have become attractive because of their ability to activate T cells to target tumours. In this study, we examined the expression of new B7 family members B7-H4, B7-H5, B7-H6, and B7-H7 in human haematological tumour cells. Furthermore, we explored whether B7-H6 is an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. We determined the capability of T cells armed with the bispecific antibody anti-CD3 × anti-B7-H6 (B7-H6Bi-Ab) to target haematological tumours in K562, Thp-1, Daudi, Jurkat, and U266 cells. Compared with their T cell counterparts, B7-H6Bi-Ab-armed T cells demonstrated significant cytotoxicity induction in B7-H6+ haematological tumour cells, according to quantitative luciferase and lactate dehydrogenase assays, and their activity was accompanied by increased levels of the secreted killing mediators granzyme B and perforin. Moreover, B7-H6Bi-Ab-armed T cells produced more T cell-derived cytokines: TNF-α, IFN-γ, and IL-2. In addition, compared to the control T cells, a higher level of the activation marker CD69 was detected on the B7-H6Bi-Ab-armed T cells. Taken together, these data suggest that the antitumour effect of B7-H6Bi-Ab-armed T cells may be a promising immunotherapy for use in future haematologic treatments.
Collapse
Affiliation(s)
- Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jingyuan Zhao
- Department of Orthopaedic, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijng, 100049, China
| | - Li Ma
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Ximing Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Jing Ge
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Yang Yu
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
18
|
Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers (Basel) 2020; 12:cancers12071998. [PMID: 32708305 PMCID: PMC7409301 DOI: 10.3390/cancers12071998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
Collapse
|
19
|
Bjørnsen EG, Thiruchelvam-Kyle L, Hoelsbrekken SE, Henden C, Saether PC, Boysen P, Daws MR, Dissen E. B7H6 is a functional ligand for NKp30 in rat and cattle and determines NKp30 reactivity toward human cancer cell lines. Eur J Immunol 2018; 49:54-65. [PMID: 30512185 DOI: 10.1002/eji.201847746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
NK cells kill cancer cells and infected cells upon activation by cell surface receptors. Human NKp30 is an activating receptor expressed by all mature NK cells. The B7 family member B7H6 has been identified as one ligand for NKp30. Several alternative ligands have also been reported, and the field remains unsettled. To this end, we have identified full-length functional B7H6 orthologs in rat and cattle, demonstrated by phylogenetic analysis and transfection experiments. In cell-cell contact-dependent assays, chimeric NKp30 reporter cells responded strongly to B7H6 in rat and cattle. Likewise, rat NKp30 expressing target cells induced strong activation of B7H6 reporter cells. Together, these observations demonstrate that B7H6 is conserved as a functional ligand for NKp30 in mammalian species separated by more than 100 million years of evolution. B7H6 and NKp30 are pseudogenes in laboratory mice. The rat thus represents an attractive experimental animal model to study the NKp30-B7H6 interaction in vivo. B7H6 was widely expressed among human cancer cell lines, and the expression level correlated strongly with the activation of human NKp30 reporter cells. Furthermore, siRNA knockdown of B7H6 abolished NKp30 reporter responses, suggesting that B7H6 is the major functionally relevant expressed ligand for NKp30 on these cancer cell lines.
Collapse
Affiliation(s)
- Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sigurd E Hoelsbrekken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per C Saether
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Baragaño Raneros A, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other. Oncoimmunology 2018; 8:e1539617. [PMID: 30713800 DOI: 10.1080/2162402x.2018.1539617] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease whose therapies currently show elevated toxicity and a high rate of relapse. Recently, the burgeoning of new anti-tumor therapeutic strategies aimed at enhancing the immune response has pushed natural killer cells (NKs) into the spotlight. These cells are powerful warriors that can bring about the lysis of tumor cells through their cytotoxic ability. However, tumor cells have developed strategies to evade recognition mediated by NKs. Here, we review the mechanisms triggered by AML cells and discuss the emerging immunotherapeutic strategies that potentiate the anti-tumor functions of NKs.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Suárez-Álvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|