1
|
Paul S, Kaya M, Johnsson O, Grauers Wiktorin H, Törnell A, Arabpour M, Hellstrand K, Martner A. Targeting murine metastatic cancers with cholera toxin A1-adjuvanted peptide vaccines. Hum Vaccin Immunother 2025; 21:2455240. [PMID: 39848921 PMCID: PMC11760229 DOI: 10.1080/21645515.2025.2455240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells. Cholera toxin-based adjuvants have shown efficacy in vaccines for infectious diseases, but their role in cancer vaccine therapies remains to be elucidated. Here, we explored the potential of cholera toxin A1 (CTA1)-based adjuvants to boost anti-tumor T cell responses and protect against metastasis. We report that an adjuvant where CTA1 was fused to a dimer from Staphylococcus aureus protein A (DD) enhanced immune responses against the tumor-associated antigens TRP2 and Twist1 in mice, providing protection against B16F1 melanoma and 4T1 breast cancer metastasis, respectively. Both mucosal (intranasal) and systemic (intraperitoneal) vaccine administration provided effective protection against intravenously injected tumor cells, with intranasal administration leading to superior induction of CD4+ T cells at metastatic sites. When comparing antigens admixed with CTA1-DD to those fused with a CTA1-based adjuvant, the fusion construct elicited the strongest immunogenicity. Nevertheless, by administrating a 20-fold higher antigen dose also the admix formulation provided efficient protection against metastasis.
Collapse
MESH Headings
- Animals
- Cholera Toxin/administration & dosage
- Cholera Toxin/immunology
- Cholera Toxin/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Female
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Metastasis/prevention & control
- Adjuvants, Vaccine/administration & dosage
- Melanoma, Experimental
- CD4-Positive T-Lymphocytes/immunology
- Administration, Intranasal
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Protein Subunit Vaccines
Collapse
Affiliation(s)
- Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivia Johnsson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Immunology, Genetics and Pathology, Science of Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Törnell
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad Arabpour
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Guo J, Chen J, Wang Y, Bai X, Feng H, Sheng S, Wang H, Xu K, Huang M, Lei Z, Chu X. Putative function and prognostic molecular marker of mast cells in colorectal cancer. BMC Med Genomics 2025; 18:65. [PMID: 40205370 PMCID: PMC11983841 DOI: 10.1186/s12920-025-02117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND The increased demand for markers for colorectal cancer (CRC) highlights the importance of investigating immune cells involved in CRC progression. This study aims to dissect the mast cells in CRC, characterize the role of mast cells in CRC development, coordinate molecular communication between mast cells and malignant cells, and construct and validate a prognostic classification model based on mast cell markers. METHODS Single-cell transcriptome data of CRC patients were extracted from GSE146771 for cell classification and annotation. The malignant cells were identified by copykat and the communication between mast cells and malignant cells was analyzed by CellChat. Least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis of mast cell markers were performed in the TCGA-COAD cohort to construct a prognostic classification model. qRT-PCR was performed to detect the mRNA expression of the molecules in the classification model in P815 and MC-9 cells. The co-culture experiment of MC38 and P815 cells were performed in 12-well transwell dish. Wound healing assay and Transwell assay were performed to detect cell migration and invasion. RESULTS 10,186 high-quality cells in GSE146771 were annotated to 9 cell types. Six markers in mast cells (HDC, GATA2, ASAH1, BTBD19, TIMP1, FAM110A) were selected to construct a classification model. The high-risk score defined showed high infiltration of immunosuppressive cells, including endothelial cells, CAFs, Tregs and high angiogenesis and epithelial-mesenchymal transition (EMT) activities. In the model, HDC were abnormally low expressed in P815 cells, while BTBD19, FAM110A, GATA2, ASAH1 and TIMP1 showed excessive expression in P815 cells. Knockdown of GATA2 in the co-culture system of P815 and MC38 cells blocked cell migration and invasion. CONCLUSION This study identified the cell types within CRC, elaborated the cellular functions of mast cells in CRC development and their molecular communication to coordinate malignant cells, and highlighted the molecular components and biological features that constitute promising prognostic classification model.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Chen
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ke Xu
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
3
|
O'Reilly A, Zhao W, Wickström S, Arnér ESJ, Kiessling R. Reactive oxygen species: Janus-faced molecules in the era of modern cancer therapy. J Immunother Cancer 2024; 12:e009409. [PMID: 39645234 PMCID: PMC11629020 DOI: 10.1136/jitc-2024-009409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells. Inflammatory cell-derived ROS mediate immunosuppressive effects of myeloid-derived suppressor cells and activated granulocytes, hampering antitumor effector cells such as T cells and natural killer (NK) cells. Cancer therapies modulating ROS levels in tumors may thus have entirely different consequences when targeting cancer cells versus immune cells. Here we discuss the possibility of developing more efficient cancer therapies based on reduction-oxidation modulation, as either monotherapies or in combination with immunotherapy. Short-term, systemic administration of antioxidants or drugs blocking ROS production can boost the immune system and act in synergy with immunotherapy. However, prolonged use of antioxidants can instead enhance tumor progression. Alternatives to systemic antioxidant administration are under development where gene-modified or activated T cells and NK cells are shielded ex vivo against the harmful effects of ROS before the infusion to patients with cancer.
Collapse
Affiliation(s)
- Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, University College Cork, Cork, Ireland
- The Christie NHS Foundation Trust, Manchester, UK
| | - Wenchao Zhao
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Nie SC, Jing YH, Lu L, Ren SS, Ji G, Xu HC. Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies. World J Gastrointest Oncol 2024; 16:1690-1704. [PMID: 38764816 PMCID: PMC11099432 DOI: 10.4251/wjgo.v16.i5.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
Collapse
Affiliation(s)
- Shu-Chang Nie
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Hua Jing
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Si-Si Ren
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| |
Collapse
|
8
|
Montesinos P, Buccisano F, Cluzeau T, Vennström L, Heuser M. Relapse Prevention in Acute Myeloid Leukemia: The Role of Immunotherapy with Histamine Dihydrochloride and Low-Dose Interleukin-2. Cancers (Basel) 2024; 16:1824. [PMID: 38791903 PMCID: PMC11119683 DOI: 10.3390/cancers16101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment and management of acute myeloid leukemia (AML) has improved in recent decennia by targeted therapy for subgroups of patients, expanded indications for allogeneic stem cell transplantation (allo-SCT) and surveillance of residual or arising leukemia. However, hematological relapse among patients who have attained complete remission (CR) after the initial courses of chemotherapy remains a significant cause of morbidity and mortality. Here, we review an immunotherapeutic option using histamine dihydrochloride and low-dose interleukin-2 (HDC/LD-IL-2) for remission maintenance in AML. The treatment is approved in Europe in the post-consolidation phase to avoid relapse among patients in CR who are not candidates for upfront allo-SCT. We present aspects of the purported anti-leukemic mechanism of this regimen, including translation of preclinical results into the clinical setting, along with relapse prevention in subgroups of patients. We consider that HDC/LD-IL-2 is a conceivable option for younger adults, in particular patients with AML of normal karyotype and those with favorable responses to the initial chemotherapy. HDC/LD-IL-2 may form an emerging landscape of remission maintenance in AML.
Collapse
Affiliation(s)
- Pau Montesinos
- Hematology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Thomas Cluzeau
- Department of Hematology, University Hospital Centre of Nice, 06200 Nice, France;
| | - Lovisa Vennström
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, 41345 Goteborg, Sweden;
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Grauers Wiktorin H, Aydin E, Kiffin R, Vilhav C, Bourghardt Fagman J, Kaya M, Paul S, Westman B, Bratlie SO, Naredi P, Hellstrand K, Martner A. Impact of Surgery-Induced Myeloid-derived Suppressor Cells and the NOX2/ROS Axis on Postoperative Survival in Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1135-1149. [PMID: 38598844 PMCID: PMC11044860 DOI: 10.1158/2767-9764.crc-23-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Vilhav
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Westman
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Svein Olav Bratlie
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Arshad J, Rao A, Repp ML, Rao R, Wu C, Merchant JL. Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. Int J Mol Sci 2024; 25:2985. [PMID: 38474232 PMCID: PMC10931832 DOI: 10.3390/ijms25052985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal cancers represent one of the more challenging cancers to treat. Current strategies to cure and control gastrointestinal (GI) cancers like surgery, radiation, chemotherapy, and immunotherapy have met with limited success, and research has turned towards further characterizing the tumor microenvironment to develop novel therapeutics. Myeloid-derived suppressor cells (MDSCs) have emerged as crucial drivers of pathogenesis and progression within the tumor microenvironment in GI malignancies. Many MDSCs clinical targets have been defined in preclinical models, that potentially play an integral role in blocking recruitment and expansion, promoting MDSC differentiation into mature myeloid cells, depleting existing MDSCs, altering MDSC metabolic pathways, and directly inhibiting MDSC function. This review article analyzes the role of MDSCs in GI cancers as viable therapeutic targets for gastrointestinal malignancies and reviews the existing clinical trial landscape of recently completed and ongoing clinical studies testing novel therapeutics in GI cancers.
Collapse
Affiliation(s)
- Junaid Arshad
- University of Arizona Cancer Center, GI Medical Oncology, Tucson, AZ 85724, USA;
| | - Amith Rao
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Matthew L. Repp
- College of Medicine, University of Arizona, Tucson, AZ 85719, USA;
| | - Rohit Rao
- University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA;
| | - Clinton Wu
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
11
|
Gao J, Mo S, Wang J, Zhang M, Shi Y, Zhu C, Shang Y, Tang X, Zhang S, Wu X, Xu X, Wang Y, Li Z, Zheng G, Chen Z, Wang Q, Tang K, Cao Z. MACC: a visual interactive knowledgebase of metabolite-associated cell communications. Nucleic Acids Res 2024; 52:D633-D639. [PMID: 37897362 PMCID: PMC10767829 DOI: 10.1093/nar/gkad914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023] Open
Abstract
Metabolite-associated cell communications play critical roles in maintaining the normal biological function of human through coordinating cells, organs and physiological systems. Though substantial information of MACCs has been continuously reported, no relevant database has become available so far. To address this gap, we here developed the first knowledgebase (MACC), to comprehensively describe human metabolite-associated cell communications through curation of experimental literatures. MACC currently contains: (a) 4206 carefully curated metabolite-associated cell communications pairs involving 244 human endogenous metabolites and reported biological effects in vivo and in vitro; (b) 226 comprehensive cell subtypes and 296 disease states, such as cancers, autoimmune diseases, and pathogenic infections; (c) 4508 metabolite-related enzymes and transporters, involving 542 pathways; (d) an interactive tool with user-friendly interface to visualize networks of multiple metabolite-cell interactions. (e) overall expression landscape of metabolite-associated gene sets derived from over 1500 single-cell expression profiles to infer metabolites variations across different cells in the sample. Also, MACC enables cross-links to well-known databases, such as HMDB, DrugBank, TTD and PubMed etc. In complement to ligand-receptor databases, MACC may give new perspectives of alternative communication between cells via metabolite secretion and adsorption, together with the resulting biological functions. MACC is publicly accessible at: http://macc.badd-cao.net/.
Collapse
Affiliation(s)
- Jian Gao
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Saifeng Mo
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mou Zhang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Shi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chuhan Zhu
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuxuan Shang
- Biological Sciences, University of California Santa Barbara, CA, USA
| | - Xinyue Tang
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shiyue Zhang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xinwen Wu
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyan Xu
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiheng Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zihao Li
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Genhui Zheng
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zikun Chen
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiming Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Kailin Tang
- Dept. of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| |
Collapse
|
12
|
Chen T, Li B, Zheng K, Liu Y, Zhang Z, Hu H, Qian G, Jiang J. Lactobacillus paracasei R3 Alleviates Tumor Progression in Mice with Colorectal Cancer. Curr Microbiol 2023; 81:38. [PMID: 38091085 DOI: 10.1007/s00284-023-03525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/25/2023] [Indexed: 12/18/2023]
Abstract
Lactobacillus paracasei (L. paracasei), a common probiotic lactobacillus, has important functions in the food industry and human health. However, different strains of L. paracasei inevitably show differences in activity and colonization resistance, leading to differentiation in their functions, as well as their physical or chemical properties. The purpose of this study was to evaluate the characteristics of L. paracasei R3 (L.p R3) isolated from healthy human feces and determine whether the criteria for edible probiotics is met. The hemolysis type, biofilm-forming ability, antibiotic susceptibility, toxicity, and effective activity of L.p R3 were determined by establishing its probiotic activity traits in vitro and in vivo. The results showed that L.p R3 had a moderate biofilm formation ability, was sensitive to 11 antibiotics, was resistant to eight antibiotics, and was not hemolytic. The culture characteristics, morphology, and biochemical responses of the strain were consistent with the seed batch characteristics. In toxicity assays, L.p R3-fed mice showed no abnormalities in body weight, growth, or various organs. Additionally, L.p R3 was found to be effective in the prevention and treatment of colorectal cancer. In conclusion, our results revealed that L.p R3 has potential value as an edible probiotic without toxic side effects and alleviated the tumor progression of colorectal cancer in mice.
Collapse
Affiliation(s)
- Tao Chen
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangdong Longsee Biomedical Corporation, Guangzhou, 510535, Guangdong, China
| | - Baoxia Li
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangdong Longsee Biomedical Corporation, Guangzhou, 510535, Guangdong, China
| | - Kangdi Zheng
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangdong Longsee Biomedical Corporation, Guangzhou, 510535, Guangdong, China
| | - Yan Liu
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangdong Longsee Biomedical Corporation, Guangzhou, 510535, Guangdong, China.
| | - Zhao Zhang
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangdong Longsee Biomedical Corporation, Guangzhou, 510535, Guangdong, China
| | - Huimei Hu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Guoqiang Qian
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Jianwei Jiang
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
13
|
Sun SH, Angell CD, Savardekar H, Sundi D, Abood D, Benner B, DiVincenzo MJ, Duggan M, Choueiry F, Mace T, Trikha P, Lapurga G, Johnson C, Carlson EJ, Chung C, Peterson BR, Lianbo Yu, Zhao J, Kendra KL, Carson WE. BTK inhibition potentiates anti-PD-L1 treatment in murine melanoma: potential role for MDSC modulation in immunotherapy. Cancer Immunol Immunother 2023; 72:3461-3474. [PMID: 37528320 PMCID: PMC10592087 DOI: 10.1007/s00262-023-03497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) have been linked to loss of immune effector cell function through a variety of mechanisms such as the generation of reactive oxygen and nitrogen species and the production of inhibitory cytokines. Our group has shown that signaling through Bruton's tyrosine kinase (BTK) is important for MDSC function. Ibrutinib is an orally administered targeted agent that inhibits BTK activation and is currently used for the treatment of B cell malignancies. Using a syngeneic murine model of melanoma, the effect of BTK inhibition with ibrutinib on the therapeutic response to systemic PD-L1 blockade was studied. BTK was expressed by murine MDSC and their activation was inhibited by ibrutinib. Ibrutinib was not directly cytotoxic to cancer cells in vitro, but it inhibited BTK activation in MDSC and reduced expression of inducible nitric oxide synthase (NOS2) and production of nitric oxide. Ibrutinib treatments decreased the levels of circulating MDSC in vivo and increased the therapeutic efficacy of anti-PD-L1 antibody treatment. Gene expression profiling showed that ibrutinib decreased Cybb (NOX2) signaling, and increased IL-17 signaling (upregulating downstream targets Mmp9, Ptgs2, and S100a8). These results suggest that further exploration of MDSC inhibition could enhance the immunotherapy of advanced melanoma.PrécisInhibition of Bruton's tyrosine kinase, a key enzyme in myeloid cellular function, improves therapeutic response to an anti-PD-L1 antibody in an otherwise fairly resistant murine melanoma model.
Collapse
Affiliation(s)
- Steven H Sun
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Colin D Angell
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Himanshu Savardekar
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Debasish Sundi
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Abood
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brooke Benner
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mallory J DiVincenzo
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan Duggan
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fouad Choueiry
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas Mace
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Gastrointestinal Oncology, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Prashant Trikha
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gabriella Lapurga
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Courtney Johnson
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Erick J Carlson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Catherine Chung
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jing Zhao
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kari L Kendra
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - William E Carson
- James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Törnell A, Blick E, Al-Dury S, Grauers Wiktorin H, Waern J, Ringlander J, Einarsdottir S, Lindh M, Hellstrand K, Lagging M, Martner A. Presence of MDSC associates with impaired antigen-specific T cell reactivity following COVID-19 vaccination in cirrhotic patients. Front Immunol 2023; 14:1287287. [PMID: 37928515 PMCID: PMC10623131 DOI: 10.3389/fimmu.2023.1287287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background and aims Cirrhosis entails high risk of serious infections and abated efficiency of vaccination, but the underlying mechanisms are only partially understood. This study aimed at characterizing innate and adaptive immune functions, including antigen-specific T cell responses to COVID-19 vaccination, in patients with compensated and decompensated cirrhosis. Methods Immune phenotype and function in peripheral blood from 42 cirrhotic patients and 44 age-matched healthy controls were analysed after two doses of the mRNA-based COVID-19 vaccines [BNT162b2 (Pfizer BioNTech) or mRNA-1273 (Moderna)]. Results Cirrhotic patients showed significantly reduced blood counts of antigen-presenting dendritic cells (DC) and high counts of monocytic myeloid-derived suppressor cells (M-MDSC) as compared to healthy controls. In addition, monocytic cells recovered from cirrhotic patients showed impaired expression of the antigen-presenting molecule HLA-DR and the co-stimulatory molecule CD86 upon Toll-like receptor (TLR) stimulation. These features were more prominent in patients with decompensated cirrhosis (Child-Pugh classes B & C). Interestingly, while patients with compensated cirrhosis (Child-Pugh class A) showed an inflammatory profile with myeloid cells producing the proinflammatory cytokines IL-6 and TNF, decompensated patients produced reduced levels of these cytokines. Cirrhotic patients, in particular those with more advanced end-stage liver disease, mounted reduced antigen-specific T cell reactivity to COVID-19 vaccination. Vaccine efficiency inversely correlated with levels of M-MDSC. Conclusion These results implicate MDSC as mediators of immunosuppression, with ensuing deficiency of vaccine-specific T cell responses, in cirrhosis.
Collapse
Affiliation(s)
- Andreas Törnell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Blick
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Samer Al-Dury
- Department of Medicine, Gastroenterology and Hepatology Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Waern
- Department of Medicine, Gastroenterology and Hepatology Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sigrun Einarsdottir
- Department of Hematology and Coagulation, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Martner
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Saberzadeh-Ardestani B, Graham RP, McMahon S, Ahanonu E, Shi Q, Williams C, Hubbard A, Zhang W, Muranyi A, Yan D, Jin Z, Shanmugam K, Sinicrope FA. Immune Marker Spatial Distribution and Clinical Outcome after PD-1 Blockade in Mismatch Repair-deficient, Advanced Colorectal Carcinomas. Clin Cancer Res 2023; 29:4268-4277. [PMID: 37566222 PMCID: PMC10592158 DOI: 10.1158/1078-0432.ccr-23-1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) interaction has led to durable responses in fewer than half of patients with mismatch repair-deficient (MMR-d) advanced colorectal cancers. Immune contexture, including spatial distribution of immune cells in the tumor microenvironment (TME), may predict immunotherapy outcome. EXPERIMENTAL DESIGN Immune contexture and spatial distribution, including cell-to-cell distance measurements, were analyzed by multiplex immunofluorescence (mIF) in primary colorectal cancers with d-MMR (N = 33) from patients treated with anti-PD-1 antibodies. By digital image analysis, density, ratio, intensity, and spatial distribution of PD-L1, PD-1, CD8, CD3, CD68, LAG3, TGFβR2, MHC-I, CD14, B2M, and pan-cytokeratin were computed. Feature selection was performed by regularized Cox regression with LASSO, and a proportional hazards model was fitted to predict progression-free survival (PFS). RESULTS For predicting survival among patients with MMR-d advanced colorectal cancer receiving PD-1 blockade, cell-to-cell distance measurements, but not cell densities or ratios, achieved statistical significance univariately. By multivariable feature selection, only mean number of PD-1+ cells within 10 μm of a PD-L1+ cell was significantly predictive of PFS. Dichotomization of this variable revealed that those with high versus low values had significantly prolonged PFS [median not reached (>83 months) vs. 8.5 months (95% confidence interval (95% CI), 4.7-NR)] with a median PFS of 28.4 months for all patients [adjusted HR (HRadj) = 0.14; 95% CI, 0.04-0.56; P = 0.005]. Expression of PD-1 was observed on CD8+ T cells; PD-L1 on CD3+ and CD8+ T lymphocytes, macrophages (CD68+), and tumor cells. CONCLUSIONS In d-MMR colorectal cancers, PD-1+ to PD-L1+ receptor to ligand proximity is a potential predictive biomarker for the effectiveness of PD-1 blockade.
Collapse
Affiliation(s)
- Bahar Saberzadeh-Ardestani
- Departments of Oncology and Medicine, Rochester, MN
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Sara McMahon
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Eze Ahanonu
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Qian Shi
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Crystal Williams
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Antony Hubbard
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Wenjun Zhang
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Andrea Muranyi
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Dongyao Yan
- Ventana Medical Systems, Inc./Roche Tissue Diagnostics, Tucson, AZ
| | - Zhaohui Jin
- Departments of Oncology and Medicine, Rochester, MN
| | | | - Frank A. Sinicrope
- Departments of Oncology and Medicine, Rochester, MN
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN
- Mayo Clinic Comprehensive Cancer Center Rochester, MN
| |
Collapse
|
16
|
Huang J, Zhao Y, Zhao K, Yin K, Wang S. Function of reactive oxygen species in myeloid-derived suppressor cells. Front Immunol 2023; 14:1226443. [PMID: 37646034 PMCID: PMC10461062 DOI: 10.3389/fimmu.2023.1226443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population and serve as a vital contributor to the tumor microenvironment. Reactive oxygen species (ROS) are byproducts of aerobic respiration and are involved in regulating normal biological activities and disease progression. MDSCs can produce ROS to fulfill their immunosuppressive activity and eliminate excessive ROS to survive comfily through the redox system. This review focuses on how MDSCs survive and function in high levels of ROS and summarizes immunotherapy targeting ROS in MDSCs. The distinctive role of ROS in MDSCs will inspire us to widely apply the blocked oxidative stress strategy in targeting MDSC therapy to future clinical therapeutics.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Kexin Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Li L, Li M, Jia Q. Myeloid-derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in cancer. Pathol Res Pract 2023; 248:154711. [PMID: 37494802 DOI: 10.1016/j.prp.2023.154711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Myeloid-derived suppressor cell (MDSC) mainly exists in tumor microenvironment (TME) and interferes with normal immune response of the body. These immature differentiated cells cooperate with tumor cells for immune escape and proliferation. The subtypes of MDSC are different in different organisms, and STAT become a high priority for the signaling pathway mediating the regulation of MDSC. The surface of MDSC cell population contains a variety of signal molecular receptors, and its differentiation degree is toilless to be chemotaxis by different factors. The role of MDSC in silencing T cells and promoting regulatory T cells (Treg) is particularly significant. This review mainly contains the origin of MDSC, the characteristics of subgroups, the focus of the study on MDSC heat molecules and signaling pathways, the relationship between MDSC and carcinoma, prognosis and hope to propose an overview of current MDSCs- targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Lingfei Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
18
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
20
|
Cheng X, Wang H, Wang Z, Zhu B, Long H. Tumor-associated myeloid cells in cancer immunotherapy. J Hematol Oncol 2023; 16:71. [PMID: 37415162 PMCID: PMC10324139 DOI: 10.1186/s13045-023-01473-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor-associated myeloid cells (TAMCs) are among the most important immune cell populations in the tumor microenvironment, and play a significant role on the efficacy of immune checkpoint blockade. Understanding the origin of TAMCs was found to be the essential to determining their functional heterogeneity and, developing cancer immunotherapy strategies. While myeloid-biased differentiation in the bone marrow has been traditionally considered as the primary source of TAMCs, the abnormal differentiation of splenic hematopoietic stem and progenitor cells, erythroid progenitor cells, and B precursor cells in the spleen, as well as embryo-derived TAMCs, have been depicted as important origins of TAMCs. This review article provides an overview of the literature with a focus on the recent research progress evaluating the heterogeneity of TAMCs origins. Moreover, this review summarizes the major therapeutic strategies targeting TAMCs with heterogeneous sources, shedding light on their implications for cancer antitumor immunotherapies.
Collapse
Affiliation(s)
- Xinyu Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Huilan Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
21
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
22
|
Ke P, Zhu Q, Xu T, Yang X, Wang Y, Qiu H, Wu D, Bao X, Chen S. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia based on aging-related genes. Aging (Albany NY) 2023; 15:5826-5853. [PMID: 37367950 PMCID: PMC10333094 DOI: 10.18632/aging.204843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
To explore effects of aging-related genes (ARGs) on the prognosis of Acute Myeloid Leukemia (AML), a seven-ARGs signature was developed and validated in AML patients. The numbers of seven-ARG sequences were selected to construct the survival prognostic signature in TCGA-LAML cohort, and two GEO datasets were used independently to verify the prognostic values of signature. According to seven-ARGs signature, patients were categorized into two subgroups. Patients with high-risk prognostic score were defined as HRPS-group/high-risk group, while others were set as LRPS-group/low-risk group. HRPS-group presented adverse overall survival (OS) than LRPS-group in TCGA-AML cohort (HR=3.39, P<0.001). In validation, the results emphasized a satisfactory discrimination in different time points, and confirmed the poor OS of HRPS-group both in GSE37642 (HR=1.96, P=0.001) and GSE106291 (HR=1.88, P<0.001). Many signal pathways, including immune- and tumor-related processes, especially NF-κB signaling, were highly enriched in HRPS-group. Coupled with high immune-inflamed infiltration, the HRPS-group was highly associated with the driver gene and oncogenic signaling pathway of TP53. Prediction of blockade therapy targeting immune checkpoint indicated varied benefits base on the different ARGs signature score, and the results of predicted drug response suggested that Pevonedistat, an inhibitor of NEDD8-activating enzyme, targeting NF-κB signaling, may have potential therapeutic value for HRPS-group. Compared with clinical factors alone, the signature had an independent value and more predictive power of AML prognosis. The 7-ARGs signature may help to guide clinical-decision making to predict drug response, and survival in AML patients.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qian Zhu
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
23
|
The Receptor for Advanced Glycation Endproducts (RAGE) and Its Ligands S100A8/A9 and High Mobility Group Box Protein 1 (HMGB1) Are Key Regulators of Myeloid-Derived Suppressor Cells. Cancers (Basel) 2023; 15:cancers15041026. [PMID: 36831371 PMCID: PMC9954573 DOI: 10.3390/cancers15041026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapies including checkpoint blockade immunotherapy (CBI) and chimeric antigen receptor T cells (CAR-T) have revolutionized cancer treatment for patients with certain cancers. However, these treatments are not effective for all cancers, and even for those cancers that do respond, not all patients benefit. Most cancer patients have elevated levels of myeloid-derived suppressor cells (MDSCs) that are potent inhibitors of antitumor immunity, and clinical and animal studies have demonstrated that neutralization of MDSCs may restore immune reactivity and enhance CBI and CAR-T immunotherapies. MDSCs are homeostatically regulated in that elimination of mature circulating and intratumoral MDSCs results in increased production of MDSCs from bone marrow progenitor cells. Therefore, targeting MDSC development may provide therapeutic benefit. The pro-inflammatory molecules S100A8/A9 and high mobility group box protein 1 (HMGB1) and their receptor RAGE are strongly associated with the initiation and progression of most cancers. This article summarizes the literature demonstrating that these molecules are integrally involved in the early development, accumulation, and suppressive activity of MDSCs, and postulates that S100A8/A9 and HMGB1 serve as early biomarkers of disease and in conjunction with RAGE are potential targets for reducing MDSC levels and enhancing CBI and CAR-T immunotherapies.
Collapse
|
24
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
25
|
Pan Z, Li SJ, Guo H, Li ZH, Fei X, Chang SM, Yang QC, Cheng DD. Ebastine exerts antitumor activity and induces autophagy by activating AMPK/ULK1 signaling in an IPMK-dependent manner in osteosarcoma. Int J Biol Sci 2023; 19:537-551. [PMID: 36632464 PMCID: PMC9830506 DOI: 10.7150/ijbs.69541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have confirmed that in addition to interfering with the tumor inflammatory environment, anti-inflammatory agents can directly increase apoptosis and sensitivity to conventional therapies and decrease invasion and metastasis, making them useful candidates for cancer therapy. Here, we first used high-throughput screening and had screened one compound candidate, ebastine (a H1-histamine receptor antagonist), for osteosarcoma therapy. Cell viability assays, colony formation assays, wound healing assays, and Transwell assays demonstrated that ebastine elicited antitumor effects in osteosarcoma cells. In addition, ebastine treatment exerted obvious effects on cell cycle arrest, metastasis inhibition, apoptosis and autophagy induction both in vitro and in vivo. Mechanistically, we observed that ebastine treatment triggered proapoptotic autophagy by activating AMPK/ULK1 signaling in osteosarcoma cells. Treatment with the AMPK inhibitor dorsomorphin reversed ebastine-induced apoptosis and autophagy. More importantly, we found that IPMK interacted with AMPK and functioned as a positive regulator of AMPK protein in osteosarcoma cells. A rescue study showed that the induction of autophagy and activation of the AMPK/ULK1 signaling pathway by ebastine treatment were reversed by IPMK knockdown, indicating that the activity of ebastine was IPMK dependent. We provide experimental evidence demonstrating that ebastine has antitumor activity in osteosarcoma and promotes autophagy by activating the AMPK/ULK1 signaling pathway, which is IPMK dependent. Our results provide insight into the clinical application potential of ebastine, which may represent a new potential therapeutic candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhen Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-jie Li
- Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Hua Guo
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhao-hui Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiang Fei
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-min Chang
- Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Qing-cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,✉ Corresponding author: Dong-dong Cheng, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China. E-mail: ; Qing-cheng Yang, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China. E-mail:
| | - Dong-dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,✉ Corresponding author: Dong-dong Cheng, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China. E-mail: ; Qing-cheng Yang, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China. E-mail:
| |
Collapse
|
26
|
Hu J, Gao J, Wang C, Liu W, Hu A, Xiao X, Kuang Y, Yu K, Gajendran B, Zacksenhaus E, Pan W, Ben-David Y. FLI1 Regulates Histamine Decarboxylase Expression to Control Inflammation Signaling and Leukemia Progression. J Inflamm Res 2023; 16:2007-2020. [PMID: 37193069 PMCID: PMC10183177 DOI: 10.2147/jir.s401566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Aim Histamine decarboxylase (HDC) catalyzes decarboxylation of histidine to generate histamine. This enzyme affects several biological processes including inflammation, allergy, asthma, and cancer, although the underlying mechanism is not fully understood. The present study provides a novel insight into the relationship between the transcription factor FLI1 and its downstream target HDC, and their effects on inflammation and leukemia progression. Methods Promoter analysis combined with chromatin immunoprecipitation (ChIp) was used to demonstrate binding of FLI1 to the promoter of HDC in leukemic cells. Western blotting and RT-qPCR were used to determine expression of HDC and allergy response genes, and lentivirus shRNA was used to knock-down target genes. Proliferation, cell cycle, apoptosis assays and molecular docking were used to determine the effect of HDC inhibitors in culture. An animal model of leukemia was employed to test the effect of HDC inhibitory compounds in vivo. Results Results presented herein demonstrate that FLI1 transcriptionally regulates HDC by direct binding to its promoter. Using genetic and pharmacological inhibition of HDC, or the addition of histamine, the enzymatic product of HDC, we show neither have a discernable effect on leukemic cell proliferation in culture. However, HDC controls several inflammatory genes including IL1B and CXCR2 that may influence leukemia progression in vivo through the tumor microenvironment. Indeed, diacerein, an IL1B inhibitor, strongly blocked Fli-1-induced leukemia in mice. In addition to allergy, FLI1 is shown to regulate genes associated with asthma such as IL1B, CPA3 and CXCR2. Toward treatment of these inflammatory conditions, epigallocatechin (EGC), a tea polyphenolic compound, is found strongly inhibit HDC independently of FLI1 and its downstream effector GATA2. Moreover, the HDC inhibitor, tetrandrine, suppressed HDC transcription by directly binding to and inhibiting the FLI1 DNA binding domain, and like other FLI1 inhibitors, tetrandrine strongly suppressed cell proliferation in culture and leukemia progression in vivo. Conclusion These results suggest a role for the transcription factor FLI1 in inflammation signaling and leukemia progression through HDC and point to the HDC pathway as potential therapeutics for FLI1-driven leukemia.
Collapse
Affiliation(s)
- Jifen Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Jian Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, People’s Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada, and Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Weidong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, People’s Republic of China
- Correspondence: Yaacov Ben-David, State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, People’s Republic of China, Email
| |
Collapse
|
27
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
28
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
29
|
Secreted immune metabolites that mediate immune cell communication and function. Trends Immunol 2022; 43:990-1005. [PMID: 36347788 DOI: 10.1016/j.it.2022.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Metabolites are emerging as essential factors for the immune system that are involved in both metabolic circuits and signaling cascades. Accumulated evidence suggests that altered metabolic programs initiated by the activation and maturation of immune cell types are accompanied by the delivery of various metabolites into the local environment. We propose that, in addition to protein/peptide ligands, secreted immune metabolites (SIMets) are essential components of immune communication networks that fine-tune immune responses under homeostatic and pathological conditions. We summarize recent advances in our understanding of SIMets and discuss the potential mechanisms by which some metabolites engage in immunological responses through receptor-, transporter-, and post-translational-mediated regulation. These insights may contribute to understanding physiology and developing effective therapeutics for inflammatory and immune-mediated diseases.
Collapse
|
30
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
31
|
Fan R, De Beule N, Maes A, De Bruyne E, Menu E, Vanderkerken K, Maes K, Breckpot K, De Veirman K. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers. Front Immunol 2022; 13:1016059. [PMID: 36304465 PMCID: PMC9592826 DOI: 10.3389/fimmu.2022.1016059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function. The phenotype, function and prognostic value of MDSC in hematological cancers has been intensively studied; however, the therapeutic targeting of this cell population remains challenging and needs further investigation. In this review, we will summarize the prognostic value of MDSC and the different attempts to target MDSC (or subtypes of MDSC) in hematological cancers. We will discuss the benefits, challenges and opportunities of using MDSC-targeting approaches, aiming to enhance anti-tumor immune responses of currently used cellular and non-cellular immunotherapies.
Collapse
Affiliation(s)
- Rong Fan
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anke Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Center for Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Kim De Veirman,
| |
Collapse
|
32
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
33
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
34
|
Li R, Wu X, Xue K, Li J. ITGAL infers adverse prognosis and correlates with immunity in acute myeloid leukemia. Cancer Cell Int 2022; 22:268. [PMID: 35999614 PMCID: PMC9400260 DOI: 10.1186/s12935-022-02684-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Integrin subunit alpha L (ITGAL) was found aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in acute myeloid leukemia and emphasize its associations with immunity. Here, we found ITGAL was highly expressed in AML patients and elevated expression was associated with poor prognosis. ITGAL was associated with age and cytogenetic risk classifications, but not relevant to AML driver gene mutations. Univariate and multivariate Cox regression analyses determined ITGAL as an independent prognostic factor. The nomogram integrating ITGAL and clinicopathologic variables was constructed to predict 1-, 3- and 5-year overall survival (OS). Functional analyses revealed that ITGAL was mainly responsible for the production and metabolic process of cytokine. As for immunity, ITGAL was positively associated with MDSCs including iDCs, and macrophages in the TCGA-LAML cohort. We also found that ITGAL was positively associated with most immune checkpoint genes and cytokines. In addition, we found that ITGAL knockdown caused substantial inhibition of cell growth and significant induction of early apoptosis in AML cells. The xenograft study indicated that ITGAL knockdown prolonged the survival of recipient mice. Overall, ITGAL is an independent prognostic factor and is closely related to the number of MDSCs and cytokine production.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 2022; 11:43. [PMID: 35854339 PMCID: PMC9295421 DOI: 10.1186/s40164-022-00296-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the development of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell transplantation, and finally discussed current targeted therapeutic strategies.Affiliation: Kindly check and confirm the processed affiliations are correct. Amend if any.correct
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China.
| |
Collapse
|
36
|
Wang T, Xu H. Multi-faced roles of reactive oxygen species in anti-tumor T cell immune responses and combination immunotherapy. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
T cells play a central role in anti-tumor immunity, and reactive oxygen species (ROS) lie at the crossroad on the anti-tumor T cell responses. To activate efficient T cell immunity, a moderate level of ROS is needed, however, excessive ROS would cause toxicity to the T cells, because the improper level leads to the formation and maintenance of an immunosuppressive tumor microenvironment. Up to date, strategies that modulate ROS, either increasing or decreasing, have been widely investigated. Some of them are utilized in anti-tumor therapies, showing inevitable impacts on the anti-tumor T cell immunity with both obverse and reverse sides. Herein, the impacts of ROS-increasing and ROS-decreasing treatments on the T cell responses in the tumor microenvironment are reviewed and discussed. At the same time, outcomes of combination immunotherapies are introduced to put forward inspirations to unleash the potential of immunotherapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
37
|
Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X, Wang C. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Front Immunol 2022; 12:754196. [PMID: 35003065 PMCID: PMC8727744 DOI: 10.3389/fimmu.2021.754196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are activated under pathological conditions, such as cancer, or mature myeloid cells that are converted immune-suppressive cells via tumor-derived exosomes, and potently support the tumor processes at different levels. Currently, multiple studies have demonstrated that MDSCs induce immune checkpoint blockade (ICB) therapy resistance through their contribution to the immunosuppressive network in the tumor microenvironment. In addition, non-immunosuppressive mechanisms of MDSCs such as promotion of angiogenesis and induction of cancer stem cells also exert a powerful role in tumor progression. Thus, MDSCs are potential therapeutic targets to enhance the antitumor efficacy of ICB therapy in cases of multiple cancers. This review focuses on the tumor-promoting mechanism of MDSCs and provides an overview of current strategies that target MDSCs with the objective of enhancing the antitumor efficacy of ICB therapy.
Collapse
Affiliation(s)
- Xueyan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Jiahui Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Guo
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yantong Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| |
Collapse
|
38
|
Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022; 11:cells11030554. [PMID: 35159363 PMCID: PMC8834417 DOI: 10.3390/cells11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor metabolism plays a crucial role in sustaining tumorigenesis. There have been increasing reports regarding the role of tumor metabolism in the control of immune cell functions, generating a potent immunosuppressive contexture that can lead to immune escape. The metabolic reprogramming of tumor cells and the immune escape are two major hallmarks of cancer, with several instances of crosstalk between them. In this paper, we review the effects of tumor metabolism on immune cells, focusing on myeloid cells due to their important role in tumorigenesis and immunosuppression from the early stages of the disease. We also discuss ways to target this specific crosstalk in cancer patients.
Collapse
Affiliation(s)
- Thomas Boyer
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Céline Blaye
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
- Department of Medical Oncology, Hôpital Saint-André, 1 rue Jean Burguet, University Hospital Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
39
|
Clauzure M, Táquez Delgado MA, Phillip JM, Revuelta MV, Cerchietti L, Medina VA. Histamine H4 Receptor Agonism Induces Antitumor Effects in Human T-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031378. [PMID: 35163302 PMCID: PMC8836034 DOI: 10.3390/ijms23031378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
The discovery of the human histamine H4 receptor (H4R) has contributed to our understanding of the role of histamine in numerous physiological and pathological conditions, including tumor development and progression. The lymph nodes of patients with malignant lymphomas have shown to contain high levels of histamine, however, less is known regarding the expression and function of the H4R in T-cell lymphoma (TCL). In this work we demonstrate the expression of H4R isoforms (mRNA and protein) in three human aggressive TCL (OCI-Ly12, Karpas 299, and HuT78). Histamine and specific H4R agonists (VUF8430 and JNJ28610244) significantly reduced cell viability in a dose-dependent manner (p < 0.05). The combined treatment with the H4R antagonist (JNJ7777120, 10 µM) reversed the effects of the H4R ligands. Importantly, we screened a drug repurposing library of 433 FDA-approved compounds (1 μM) in combination with histamine (10 μM) in Hut78 cells. Histamine produced a favorable antitumor effect with 18 of these compounds, including the histone deacetylase inhibitor panobinostat. Apoptosis, proliferation, and oxidative stress studies confirmed the antitumoral effects of the combination. We conclude that the H4R is expressed in TCL, and it is involved in histamine-mediated responses.
Collapse
Affiliation(s)
- Mariángeles Clauzure
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), General Pico 6360, Argentina
| | - Mónica A. Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
| | - Jude M. Phillip
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Maria V. Revuelta
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Vanina A. Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Correspondence: ; Tel.: +54-11-4349-0200 (ext. 6091)
| |
Collapse
|
40
|
Li H, Xiao Y, Li Q, Yao J, Yuan X, Zhang Y, Yin X, Saito Y, Fan H, Li P, Kuo WL, Halpin A, Gibbons DL, Yagita H, Zhao Z, Pang D, Ren G, Yee C, Lee JJ, Yu D. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 2022; 40:36-52.e9. [PMID: 34822775 PMCID: PMC8779329 DOI: 10.1016/j.ccell.2021.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Reinvigoration of antitumor immunity remains an unmet challenge. Our retrospective analyses revealed that cancer patients who took antihistamines during immunotherapy treatment had significantly improved survival. We uncovered that histamine and histamine receptor H1 (HRH1) are frequently increased in the tumor microenvironment and induce T cell dysfunction. Mechanistically, HRH1-activated macrophages polarize toward an M2-like immunosuppressive phenotype with increased expression of the immune checkpoint VISTA, rendering T cells dysfunctional. HRH1 knockout or antihistamine treatment reverted macrophage immunosuppression, revitalized T cell cytotoxic function, and restored immunotherapy response. Allergy, via the histamine-HRH1 axis, facilitated tumor growth and induced immunotherapy resistance in mice and humans. Importantly, cancer patients with low plasma histamine levels had a more than tripled objective response rate to anti-PD-1 treatment compared with patients with high plasma histamine. Altogether, pre-existing allergy or high histamine levels in cancer patients can dampen immunotherapy responses and warrant prospectively exploring antihistamines as adjuvant agents for combinatorial immunotherapy.
Collapse
Affiliation(s)
- Hongzhong Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuedong Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Ling Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angela Halpin
- Enterprise Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Guosheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
42
|
Chen C, Ding Y, Liu H, Sun M, Wang H, Wu D. Flubendazole Plays an Important Anti-Tumor Role in Different Types of Cancers. Int J Mol Sci 2022; 23:ijms23010519. [PMID: 35008943 PMCID: PMC8745596 DOI: 10.3390/ijms23010519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Flubendazole, belonging to benzimidazole, is a broad-spectrum insect repellent and has been repurposed as a promising anticancer drug. In recent years, many studies have shown that flubendazole plays an anti-tumor role in different types of cancers, including breast cancer, melanoma, prostate cancer, colorectal cancer, and lung cancer. Although the anti-tumor mechanism of flubendazole has been studied, it has not been fully understood. In this review, we summarized the recent studies regarding the anti-tumor effects of flubendazole in different types of cancers and analyzed the related mechanisms, in order to provide the theoretical reference for further studies in the future.
Collapse
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (C.C.); (Y.D.)
| | - Yueming Ding
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (C.C.); (Y.D.)
| | - Huiyang Liu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mengyao Sun
- School of Clinical Medicine, Henan University, Kaifeng 475004, China;
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
- Correspondence: (H.W.); (D.W.)
| | - Dongdong Wu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
- School of Stomatology, Henan University, Kaifeng 475004, China
- Correspondence: (H.W.); (D.W.)
| |
Collapse
|
43
|
Loss of H2R Signaling Disrupts Neutrophil Homeostasis and Promotes Inflammation-Associated Colonic Tumorigenesis in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:717-737. [PMID: 34781022 PMCID: PMC8783126 DOI: 10.1016/j.jcmgh.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS We previously showed that histamine suppressed inflammation-associated colonic tumorigenesis through histamine type 2 receptor (H2R) signaling in mice. This study aimed to precisely elucidate the downstream effects of H2R activation in innate immune cells. METHODS Analyses using online databases of single-cell RNA sequencing of intestinal epithelial cells in mice and RNA sequencing of mouse immune cells were performed to determine the relative abundances of 4 histamine receptors among different cell types. Mouse neutrophils, which expressed greater amounts of H2R, were collected from the peritoneum of wild-type and H2R-deficient mice, of which low-density and high-density neutrophils were extracted by centrifugation and were subjected to RNA sequencing. The effects of H2R activation on neutrophil differentiation and its functions in colitis and inflammation-associated colon tumors were investigated in a mouse model of dextran sulfate sodium-induced colitis. RESULTS Data analysis of RNA sequencing and quantitative reverse-transcription polymerase chain reaction showed that Hrh2 is highly expressed in neutrophils, but barely detectable in intestinal epithelial cells. In mice, the absence of H2R activation promoted infiltration of neutrophils into both sites of inflammation and colonic tumors. H2R-deficient high-density neutrophils yielded proinflammatory features via nuclear factor-κB and mitogen-activated protein kinase signaling pathways, and suppressed T-cell proliferation. On the other hand, low-density neutrophils, which totally lack H2R activation, showed an immature phenotype compared with wild-type low-density neutrophils, with enhanced MYC pathway signaling and reduced expression of the maturation marker Toll-like receptor 4. CONCLUSIONS Blocking H2R signaling enhanced proinflammatory responses of mature neutrophils and suppressed neutrophil maturation, leading to accelerated progression of inflammation-associated colonic tumorigenesis.
Collapse
|
44
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Mehtani D, Puri N. Steering Mast Cells or Their Mediators as a Prospective Novel Therapeutic Approach for the Treatment of Hematological Malignancies. Front Oncol 2021; 11:731323. [PMID: 34631562 PMCID: PMC8497976 DOI: 10.3389/fonc.2021.731323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor cells require signaling and close interaction with their microenvironment for their survival and proliferation. In the recent years, Mast cells have earned a greater importance for their presence and role in cancers. It is known that mast cells are attracted towards tumor microenvironment by secreted soluble chemotactic factors. Mast cells seem to exert a pro-tumorigenic role in hematological malignancies with a few exceptions where they showed anti-cancerous role. This dual role of mast cells in tumor growth and survival may be dependent on the intrinsic characteristics of the particular tumor, differences in tumor microenvironment according to tumor type, and the interactions and heterogeneity of mediators released by mast cells in the tumor microenvironment. In many studies, Mast cells and their mediators have been shown to affect tumor survival and growth, prognosis, inflammation, tumor vascularization and angiogenesis. Modulating mast cell accumulation, viability, activity and mediator release patterns may thus be important in controlling these malignancies. In this review, we emphasize on the role of mast cells in lymphoid malignancies and discuss strategies for targeting and steering mast cells or their mediators as a potential therapeutic approach for the treatment of these malignancies.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
46
|
Tang H, Li H, Sun Z. Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0806. [PMID: 34403220 PMCID: PMC8610166 DOI: 10.20892/j.issn.2095-3941.2020.0806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to enhance the antitumor efficacy of ICB.
Collapse
Affiliation(s)
- Hongchao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
47
|
Nie X, Xia L, Gao F, Liu L, Yang Y, Chen Y, Duan H, Yao Y, Chen Z, Lu S, Wang Y, Yang C. Serum Metabolite Biomarkers Predictive of Response to PD-1 Blockade Therapy in Non-Small Cell Lung Cancer. Front Mol Biosci 2021; 8:678753. [PMID: 34095230 PMCID: PMC8176105 DOI: 10.3389/fmolb.2021.678753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Despite remarkable success of immunotherapies with checkpoint blockade antibodies targeting programmed cell death protein 1 (PD-1), the majority of patients with non-small-cell lung cancer (NSCLC) have yet to receive durable benefits. We used the metabolomic profiling of early on-treatment serum to explore predictors of clinical outcomes of anti-PD-1 treatment in patients with advanced NSCLC. Methods: We recruited 74 Chinese patients who had stage IIIB/IV NSCLC-proven tumor progression and were treated with PD-1 inhibitor. The study was comprised of a discovery cohort of patients treated with nivolumab and two validation cohorts of patients receiving tislelizumab or nivolumab. Serum samples were collected 2-3 weeks after the first infusion of PD-1 inhibitor. Metabolomic profiling of serum was performed using ultrahigh performance lipid chromatograph-mass spectrometry. The serum metabolite biomarkers were identified using an integral workflow of nontargeted metabolomic data analysis. Results: A serum metabolite panel consisting of hypoxanthine and histidine was identified and validated as a predictor of response to PD-1 blockade treatment in patients with advanced NSCLC. High levels of both hypoxanthine and histidine in early on-treatment serum were associated with improved progression-free survival [hazard ratio (HR) = 0.078, 95% confidence interval (CI), 0.027-0.221, p < 0.001] and overall survival (HR = 0.124, 95% CI, 0.039-0.397, p < 0.001) in the discovery cohort. The serum metabolite panel showed a high sensitivity and specificity in distinguishing responders and non-responders in the validation cohorts 1 and 2, with an area under the receiver-operating characteristic curve of 0.933 and 1.000, respectively. High levels of serum hypoxanthine and histidine were correlated with improved progression-free survival in the validation cohort 1 (HR = 0.137, 95% CI, 0.040-0.467, p = 0.001) and in the validation cohort 2 (HR = 0.084, 95% CI, 0.009-0.762, p = 0.028). Conclusion: Our results revealed that hypoxanthine and histidine in early on-treatment serum are predictive biomarkers of response to PD-1 blockade therapy in patients with advanced NSCLC. The serum biomarker panel would enable early identification of NSCLC patients who may benefit from PD-1 blockade therapy.
Collapse
Affiliation(s)
- Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liliang Xia
- Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Gao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixia Liu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huangqi Duan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaxian Yao
- Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Chen
- Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
49
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
50
|
Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-042120-105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immature myeloid cells at varied stages of differentiation, known as myeloid-derived suppressor cells (MDSC), are present in virtually all cancer patients. MDSC are profoundly immune-suppressive cells that impair adaptive and innate antitumor immunity and promote tumor progression through nonimmune mechanisms. Their widespread presence combined with their multitude of protumor activities makes MDSC a major obstacle to cancer immunotherapies. MDSC are derived from progenitor cells in the bone marrow and traffic through the blood to infiltrate solid tumors. Their accumulation and suppressive potency are driven by multiple tumor- and host-secreted proinflammatory factors and adrenergic signals that act via diverse but sometimes overlapping transcriptional pathways. MDSC also accumulate in response to the chronic inflammation and lipid deposition characteristic of obesity and contribute to the more rapid progression of cancers in obese individuals. This article summarizes the key aspects of tumor-induced MDSC with a focus on recent progress in the MDSC field.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute (HCI), University of Utah, Salt Lake City, Utah 84112, USA
- Emeritus at: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|