1
|
Cai X, Yu L, Liu X, Yan H, Xie Y, Pu Q, Shang Z, Wu Y, Jiang T, Yang Z. Based on Soluble Immune Checkpoints Constructing a Random Survival Forest Model to Predict the Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Onco Targets Ther 2025; 18:559-573. [PMID: 40276780 PMCID: PMC12020021 DOI: 10.2147/ott.s512838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Background Nowadays, immune checkpoint blockade (ICB) therapy has become a milestone in immunotherapy for hepatocellular carcinoma (HCC). However, its clinical effectiveness remains low. Soluble (s) immune checkpoints (ICs), functional components of membrane ICs, are novel physiological immunomodulators. We investigated the prognostic value of sICs in patients of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and provided clinical clues for potential new targets for future immunotherapy. Methods A total of 256 participants were included in this study. We compared the plasma levels of 14 sICs in healthy controls (HC), chronic hepatitis B (CHB), hepatitis B-related liver cirrhosis (HBV-LC), and HBV-HCC groups. COX and random survival forest (RSF) were used to select variables and construct a model to predict overall survival of patients with HBV-HCC. We evaluated the predictive efficacy and analyzed the correlations between sICs, clinical parameters, and membrane ICs. Results The levels of 14 sICs in HBV-HCC were elevated compared to that in HC. The areas under the receiver operating characteristic values of 1-, 2-, and 3-year survival predicted by the RSF model were 0.96, 0.85, and 0.81 in the training set, and 0.91, 0.80, and 0.71 in the validation set. The model could adapt to different event distributions and clinical staging systems. Soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR), soluble programmed cell death-ligand 1 (sPD-L1) and soluble T cell immunoglobulin and mucin domain-containing protein 3 (sTIM-3) were closely associated with the prognosis of patients. Soluble PD-L1 was negatively correlated with HGB and positively correlated with AST and NLR (P < 0.05). Soluble TIM-3 was negatively correlated with ALB and CD8+ T cells and positively correlated with HBV-DNA, AST, LDH and mTIM-3 expression in CD8+ T cells (P<0.05). Conclusion We constructed a predictive model based on sICs to predict different survival times in HBV-HCC patients. The risk stratification effectively identified potentially critical patients. Soluble GITR, sPD-L1 and sTIM-3 were important immunological indicators which could dynamically monitor patients' immune status.
Collapse
Affiliation(s)
- Xue Cai
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Beijing Shangdi Hospital, Beijing, 100085, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Qing Pu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuan Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Tingting Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| |
Collapse
|
2
|
Wenjing Y, Yu L, Tongtong T, Anli J, Te L, Wei C, Tong L, Lin D, Hao W, Baishen P, Beili W, Jian Z, Jia F, Xinrong Y, Wei G. Serum Galectin-9 mirrors immune-evasive microenvironment and predicts early recurrence in hepatocellular carcinoma. Gene 2025; 942:149184. [PMID: 39706231 DOI: 10.1016/j.gene.2024.149184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The precise role of Galectin-9, an immune checkpoint protein involved in immune responses, in hepatocellular carcinoma (HCC) remains elusive. Importantly, the prognostic value of serum Galectin-9 has not been clarified, and its association with infiltrating immune characteristics was unclear. METHODS The association between serum Galectin-9 concentration and HCC recurrence was analyzed in two cohorts of HCC patients (training 133; validation 97) who received curative resection during 2018 and 2019. Bioinformatic analyses, including WGCNA, GSEA, GO, KEGG, Hallmark, CIBERSORT, QUANTISEQ, ssGSEA and TISIDB, were performed to systematically demonstrate the expression pattern, immunomodulation role, and prognostic value of Galectin-9 in HCC. These findings were further validated by immunohistochemistry staining. RESULTS Patients with high serum Galectin-9 levels had significantly shorter time to tumor recurrence (TTR; P < 0.001) in both cohorts, and serum Galectin-9 was identified as an independent predictor of HCC recurrence, even in patients with low-AFP or early-stage. Bioinformatic analyzes revealed high Galectin-9 expression is involved in immune-evasive and inflammatory signaling pathways. It correlated with increased infiltration of exhausted CD8 + T cells, Tregs, TAMs and MDSCs. Interestingly, we found Galectin-9 was predominantly expressed on macrophages rather than malignant cells, and showed positively association with serum Galectin-9 concentration according to IHC results. Concordantly, high serum Galectin-9 levels also reflected an immune-evasive microenvironment composed by extensive CD163 + and FOXP3 + cell infiltrates. CONCLUSIONS Elevated serum Galectin-9 was a novel indicator for worse prognosis in HCC. The high expression of Galectin-9 may reflect the immunosuppressive environment by increasing CD163 + and FOXP3 + cell infiltrates.
Collapse
Affiliation(s)
- Yang Wenjing
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liu Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian Tongtong
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Anli
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liu Te
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Chen Wei
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tong
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ding Lin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Hao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pan Baishen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Beili
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhou Jian
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Jia
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Xinrong
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guo Wei
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Xie Y, Yan F, Liu X, Yu L, Yan H, Shang Z, Kong Y, Yang Z. FoxO1 as a Hub in Immunosenescence Induced by Hepatocellular Carcinoma and the Effect of Yangyin Fuzheng Jiedu Prescription. Drug Des Devel Ther 2025; 19:1543-1560. [PMID: 40061815 PMCID: PMC11890352 DOI: 10.2147/dddt.s492576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
Purpose Yangyin Fuzheng Jiedu Prescription (YFJP) is a traditional Chinese medicine (TCM) used for the treatment of hepatocellular carcinoma (HCC). However, the potential mechanisms remain unclear. The objective of this study is to clarify the mechanism of action of YFJP in treating HCC. Methods By constructing networks, the active components and molecular targets of YFJP in the treatment of HCC were explored. The TCGA database was utilized to analyze the correlation between the core target and the overall survival (OS) of patients with HCC. The regulatory effect of YFJP on T cell was evaluated by detecting samples from patients with HCC. The molecular mechanism of YFJP in treating HCC was validated through in vivo and in vitro experiments. Results Constructing networks and analyse indicated that the key targets of YFJP in the treatment of HCC is FoxO1. Analysis of the HCC patient cohort in the TCGA database demonstrated that FoxO1 is an independent protective factor for overall survival in patients with HCC. Pathway enrichment analysis enriched FoxO signaling pathway and Cellular senescence pathway. Prospectively collecting samples from patients with HCC suggested that YFJP treatment increased the proportion of CD8+ T cells. In vivo experiments showed that YFJP treatment ameliorated CD8+ T cell senescence in tumor-bearing mice. Western blot, flow cytometry and multi-color immunofluorescence co-staining showed that YFJP treatment increased the expression of FoxO1 in CD8+ T cells. The primary CD8+ T cells were sorted and co-cultured with an HCC cell line in vitro. Inhibiting the expression of FoxO1 in CD8+T cells confirmed that FoxO1 is a key target for YFJP to improve the senescence of CD8+ T cell. Conclusion FoxO1 is the key molecular target of YFJP in improving CD8+ T cell senescence in HCC. This study preliminarily clarified the mechanism of YFJP in regulating immunosenescence of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Humans
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Animals
- Mice
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Male
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/metabolism
- Drug Screening Assays, Antitumor
- Female
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Sun J, Tian Y, Yang C. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:231-241. [PMID: 39158733 DOI: 10.1007/s00210-024-03346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), a newly discovered checkpoint, is characterized by its elevated expression on CD4 + T cells, CD8 + T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). Research to date has been shown that TIGIT has been linked to exhaustion of NK cell both and T cells in numerous cancers. CD155, being the specific ligand of TIGIT in humans, emerges as a key target for immunotherapy owing to its crucial interaction with TIGIT. Furthermore, numerous studies have demonstrated that the combination of TIGIT with other immune checkpoint inhibitors (ICIs) and/or traditional treatments elicits a potent antitumor response in colorectal cancer (CRC). This review provides an overview of the structure, function, and signaling pathways associated with TIGIT across multiple immune system cell types. Additionally, focusing on the role of TIGIT in the progression of CRC, this study reviewed various studies exploring TIGIT-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yan Tian
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
5
|
Ji Z, Li J, Zhang S, Jia Y, Zhang J, Guo Z. The load of hepatitis B virus reduces the immune checkpoint inhibitors efficiency in hepatocellular carcinoma patients. Front Immunol 2024; 15:1480520. [PMID: 39664382 PMCID: PMC11632129 DOI: 10.3389/fimmu.2024.1480520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Chronic viral infection may lead to an immunosuppressive microenvironment, whereas the association between virus-related indicators and treatment response in hepatocellular carcinoma(HCC) patients undergoing immune checkpoint inhibitors(ICIs) therapy remains a topic of debate. We aim to investigate the influence of hepatitis virus on the ICI efficiency in HCC patients through a meta-analysis. Methods We searched PubMed, Cochrane Library, Embase, and Web of Science until 14 July 2024 to identify cohort studies involving ICIs treatments in HCC patients. We extracted data from the literature related to hepatitis B virus (HBV) infection, hepatitis C virus (HCV) infection, baseline HBV load, and antiviral therapy. Overall survival (OS) and progression-free survival (PFS) were considered as the primary endpoints, while objective response rate (ORR) was regarded as a secondary endpoint. Results We included 55 cohort studies published between 2019 and 2024, involving a patient population of 7180 individuals. Summarized hazard ratio (HR) comparing HBV infection with non-HBV infection in the context of ICIs therapy revealed no significant association between HBV infection and either mortality risk or progression risk with the pooled HR for OS of 1.04(95%CI: 0.93-1.16, P=0.483) and the pooled HR for PFS of 1.07(95%CI:0.96-1.20, P=0.342). HBV infected patients with HCC may have better tumor response than non-HBV infected patients receiving ICIs with the combined relative risk(RR) for ORR was 1.94 (95%CI: 1.12-3.38, P=0.002). High baseline HBV load is associated with poor survival outcomes in patients with HCC who receive ICIs with the pooled HR for OS was 1.74 (95%CI: 1.27-2.37, P=0.001), thereby antiviral therapy has the potential to significantly enhance prognostic outcomes with the pooled HR for OS was 0.24 (95% CI: 0.14-0.42 P<0.001) and the pooled HR for PFS was 0.54 (95% CI: 0.33-0.89 P=0.014). Conclusion In individuals with HCC who received ICIs, there was no notable link found between HBV or HCV infection and prognosis. However, HBV infection showed a connection with improved tumor response. A higher initial HBV load is linked to worse survival results in HCC patients undergoing ICIs treatment and antiviral therapy can significantly improve its prognosis.
Collapse
Affiliation(s)
- Zhengzheng Ji
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiasong Li
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shasha Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Jia
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhang
- Department of Gerontology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
7
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
8
|
Guo Y, Yang X, Xia WL, Zhu WB, Li FT, Hu HT, Li HL. Relationship between TIGIT expression on T cells and the prognosis of patients with hepatocellular carcinoma. BMC Cancer 2024; 24:1120. [PMID: 39251968 PMCID: PMC11382530 DOI: 10.1186/s12885-024-12876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Transcatheter arterial chemoembolization (TACE) combined with targeted therapy and immunotherapy can significantly improve the prognosis of patients with hepatocellular carcinoma (HCC). T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is a novel immunosuppressive molecule. This study aimed to analyze the clinical correlation between TIGIT expression on T cells and patients with HCC. METHODS Clinical data from 140 patients with HCC were retrospectively collected, and TIGIT expression on T cells was examined in each patient. Patients were subsequently divided into high- and low-expression groups, and their prognosis was analyzed. RESULTS Patients with a high TIGIT expression on their T cells at baseline had a larger tumor volume, later staging, higher proportion of regulatory T cells, higher blood concentrations of interleukin (IL)-6 and IL-10, and lower interferon-γ concentrations. Following TACE, CD155 concentration decreased; however, TACE did not affect TIGIT expression on T cells. Additionally, among patients receiving TACE combined with apatinib and camrelizumab treatment, patients with a high TIGIT expression on T cells had significantly shorter progression-free survival (PFS) and overall survival times than those of patients in the low-expression group. Patients receiving TACE combined with apatinib and camrelizumab treatment with higher TIGIT expression have shorter PFS time than those receiving TACE combined with apatinib treatment. CONCLUSIONS Patients with HCC that have a high TIGIT expression on their T cells exhibited poorer baseline characteristics, immunosuppressive status, and prognosis after receiving TACE combined with apatinib and camrelizumab and maybe more suited to receive TACE combined with apatinib treatment instead.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiong Yang
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Wei Li Xia
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Wen Bo Zhu
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fang Ting Li
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Hai Liang Li
- Department of Minimal Invasive Intervention, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
9
|
Shi J, Wen K, Mui S, Li H, Liao H, He C, Yan Y, Zhou Z, Xiao Z. Integrated analysis reveals an aspartate metabolism-related gene signature for predicting the overall survival in patients with hepatocellular carcinoma. Clin Transl Oncol 2024; 26:2181-2197. [PMID: 38472558 DOI: 10.1007/s12094-024-03431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516621, Guangdong, China.
| |
Collapse
|
10
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Yan F, Zhu B, Shi K, Zhang Y, Zeng X, Zhang Q, Yang Z, Wang X. Prognostic and therapeutic potential of imbalance between PD-1+CD8 and ICOS+Treg cells in advanced HBV-HCC. Cancer Sci 2024; 115:2553-2564. [PMID: 38877825 PMCID: PMC11309941 DOI: 10.1111/cas.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
Over 50% of patients with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) are diagnosed at an advanced stage, which is characterized by immune imbalance between CD8+ T cells and regulatory T (Treg) cells that accelerates disease progression. However, there is no imbalance indicator to predict clinical outcomes. Here, we show that the proportion of CD8+ T cells decreases and Treg cells increases in advanced HBV-HCC patients. During this stage, CD8+ T cells and Treg cells expressed the coinhibitory molecule PD-1 and the costimulatory molecule ICOS, respectively. Additionally, the ratio between PD-1+CD8 and ICOS+Tregs showed significant changes. Patients were further divided into high- and low-ratio groups: PD-1+CD8 and ICOS+Tregs high- (PD-1/ICOShi) and low-ratio (PD-1/ICOSlo) groups according to ratio median. Compared with PD-1/ICOSlo patients, the PD-1/ICOShi group had better clinical prognosis and weaker CD8+ T cells exhaustion, and the T cell-killing and proliferation functions were more conservative. Surprisingly, the small sample analysis found that PD-1/ICOShi patients exhibited a higher proportion of tissue-resident memory T (TRM) cells and had more stable killing capacity and lower apoptosis capacity than PD-1/ICOSlo advanced HBV-HCC patients treated with immune checkpoint inhibitors (ICIs). In conclusion, the ratio between PD-1+CD8 and ICOS+Tregs was associated with extreme immune imbalance and poor prognosis in advanced HBV-HCC. These findings provide significant clinical implications for the prognosis of advanced HBV-HCC and may serve as a theoretical basis for identifying new targets in immunotherapy.
Collapse
Affiliation(s)
- Fengna Yan
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of Infectious DiseasesBeijingChina
| | - Bingbing Zhu
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Ke Shi
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Yi Zhang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Xuanwei Zeng
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Qun Zhang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyun Yang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Xianbo Wang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
13
|
Badhrinarayanan S, Cotter C, Zhu H, Lin YC, Kudo M, Li D. IMbrave152/SKYSCRAPER-14: a Phase III study of atezolizumab, bevacizumab and tiragolumab in advanced hepatocellular carcinoma. Future Oncol 2024; 20:2049-2057. [PMID: 38861301 PMCID: PMC11497967 DOI: 10.1080/14796694.2024.2355863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Atezolizumab plus bevacizumab is a standard of care, first-line therapy for advanced hepatocellular carcinoma (HCC). Myeloid and T regulatory cells are key immunosuppressive cell types within the hepatic tumor microenvironment associated with clinical resistance to atezolizumab and bevacizumab therapy for HCC and overall poor prognosis. Therapeutic targeting of TIGIT, which is highly expressed in these cells, with tiragolumab may overcome the immunosuppressive environment and improve clinical benefit, a hypothesis supported by positive efficacy signals in the Phase Ib/II MORPHEUS-Liver study. This paper describes the rationale and design of IMbrave152/SKYSCRAPER-14, a randomized, double-blind, placebo-controlled Phase III study comparing atezolizumab and bevacizumab with tiragolumab or placebo in patients with HCC and no prior systemic treatment.Clinical Trial Registration: NCT05904886 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Christopher Cotter
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Huaqi Zhu
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Ya-Chen Lin
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Masatoshi Kudo
- Department of Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daneng Li
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA USA
| |
Collapse
|
14
|
Wu K, Zhang G, Shen C, Zhu L, Yu C, Sartorius K, Ding W, Jiang Y, Lu Y. Role of T cells in liver metastasis. Cell Death Dis 2024; 15:341. [PMID: 38755133 PMCID: PMC11099083 DOI: 10.1038/s41419-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guozhu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changbing Shen
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Second People's Hospital Affiliated with Yangzhou University, Taizhou, China
| | - Li Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kurt Sartorius
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA.
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
15
|
Broholm M, Mathiasen AS, Apol ÁD, Weis N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses 2024; 16:707. [PMID: 38793588 PMCID: PMC11125979 DOI: 10.3390/v16050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
This systematic review investigates the immunosuppressive environment in HBV-associated hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease progression and recurrence, indicating its potential as both a prognostic indicator and a target for immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future perspective, understanding the intricate interplay between innate and adaptive immune responses holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for HBV-associated HCC.
Collapse
Affiliation(s)
- Malene Broholm
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Anne-Sofie Mathiasen
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Ása Didriksen Apol
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
16
|
Kong R, Wang N, Zhou CL, Lu J. Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma. J Microbiol Biotechnol 2024; 34:958-968. [PMID: 38494878 DOI: 10.4014/jmb.2308.08022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.
Collapse
Affiliation(s)
- Rui Kong
- Department of Gastroenterology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, P.R. China
| | - Nan Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chun Li Zhou
- Department of Gastroenterology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, P.R. China
| | - Jie Lu
- Department of Gastroenterology, Pu Dong Area Gongli Hospital, School of Medicine, Shanghai University, Shanghai 200135, P.R. China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
17
|
Akbulut Z, Aru B, Aydın F, Yanıkkaya Demirel G. Immune checkpoint inhibitors in the treatment of hepatocellular carcinoma. Front Immunol 2024; 15:1379622. [PMID: 38638433 PMCID: PMC11024234 DOI: 10.3389/fimmu.2024.1379622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite advances in cancer treatment, hepatocellular carcinoma (HCC), the most common form of liver cancer, remains a major public health problem worldwide. The immune microenvironment plays a critical role in regulating tumor progression and resistance to therapy, and in HCC, the tumor microenvironment (TME) is characterized by an abundance of immunosuppressive cells and signals that facilitate immune evasion and metastasis. Recently, anti-cancer immunotherapies, therapeutic interventions designed to modulate the immune system to recognize and eliminate cancer, have become an important cornerstone of cancer therapy. Immunotherapy has demonstrated the ability to improve survival and provide durable cancer control in certain groups of HCC patients, while reducing adverse side effects. These findings represent a significant step toward improving cancer treatment outcomes. As demonstrated in clinical trials, the administration of immune checkpoint inhibitors (ICIs), particularly in combination with anti-angiogenic agents and tyrosine kinase inhibitors, has prolonged survival in a subset of patients with HCC, providing an alternative for patients who progress on first-line therapy. In this review, we aimed to provide an overview of HCC and the role of the immune system in its development, and to summarize the findings of clinical trials involving ICIs, either as monotherapies or in combination with other agents in the treatment of the disease. Challenges and considerations regarding the administration of ICIs in the treatment of HCC are also outlined.
Collapse
Affiliation(s)
- Zeynep Akbulut
- Cancer and Stem Cell Research Center, Maltepe University, Istanbul, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, Istanbul, Türkiye
| | - Başak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Furkan Aydın
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | | |
Collapse
|
18
|
Wang P, Ma Y, Zhao Y, Li Y, Tang C, Wang S, Jin S, Wang J, Zhu M, Xie B, Wang P. Single-cell RNA sequencing unveils tumor heterogeneity and immune microenvironment between subungual and plantar melanoma. Sci Rep 2024; 14:7039. [PMID: 38528036 DOI: 10.1038/s41598-024-57640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Acral melanoma (AM) is a subtype of melanoma with high prevalence in East Asians. AM is characterized by greater aggressiveness and lower survival rates. However, there are still fewer studies on immune mechanisms of AM especially subungual melanoma (SM) versus non-subungual melanoma (NSM). In order to explore tumor heterogeneity and immune microenvironment in different subtypes of AM, we applied single-cell RNA sequencing to 24,789 single cells isolated from the SM and plantar melanoma (PM) patients. Aspects of tumor heterogeneity, melanocytes from PM and SM had significant differences in gene expression, CNV and pathways in which tumor-associated such as NF-kb and Wnt were involved. Regarding the immune microenvironment, PM contained more fibroblasts and T/NK cells. The EPHA3-EFNA1 axis was expressed only in cancer-associated fibroblast (CAF) and melanocytes of PM, and the TIGIT-NECTIN2 axis was expressed in both AM subtypes of T/NK cells and melanocytes. Altogether, our study helps to elucidate the tumor heterogeneity in AM subpopulations and provides potential therapeutic targets for clinical research.
Collapse
Affiliation(s)
- Panpan Wang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Ma
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yige Zhao
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Li
- Research Center, Shanghai Yeslab Biotechnology, Shanghai, China
| | - Chenyu Tang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwen Wang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sha Jin
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Mengyan Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China.
| |
Collapse
|
19
|
Zhou D, Liu L, Liu J, Li H, Zhang J, Cao Z. A Systematic Review of the Advances in the Study of T Lymphocyte Suppressor Receptors in HBV Infection: Potential Therapeutic Targets. J Clin Med 2024; 13:1210. [PMID: 38592036 PMCID: PMC10931645 DOI: 10.3390/jcm13051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background: HBV-specific T lymphocytes are pivotal in eliminating the hepatitis B virus (HBV) and regulating intrahepatic inflammatory reactions. Effective T cell responses curtail HBV infection; however, compromised immunity can result in persistent infection. Beyond the acute phase, the continued presence of antigens and inflammation leads to the increased expression of various inhibitory receptors, such as PD-1, CTLA-4, Tim-3, LAG3, 2B4, CD160, BTLA, and TIGIT. This escalates the dysfunction of and diminishes the immune and proliferative abilities of T cells. Methods: In this study, we reviewed English-language literature from PubMed, Web of Science, and Scopus up to 9 July 2023. This paper aims to elucidate the inhibitory effects of these receptors on HBV-specific T lymphocytes and how immune function can be rejuvenated by obstructing the inhibitory receptor signaling pathway in chronic HBV patients. We also summarize the latest insights into related anti-HBV immunotherapy. Result: From 66 reviewed reports, we deduced that immunotherapy targeting inhibitory receptors on T cells is a reliable method to rejuvenate T cell immune responses in chronic HBV patients. However, comprehensive combination therapy strategies are essential for a functional cure. Conclusions: Targeting T cell suppressor receptors and combining immunotherapy with antiviral treatments may offer a promising approach towards achieving a functional cure, urging future research to prioritize effective combination therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| | - Zhenhuan Cao
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| |
Collapse
|
20
|
Wang H, Huang H, Liu T, Chen Y, Li J, He M, Peng J, Liang E, Li J, Liu W. Peripheral blood lymphocyte subsets predict the efficacy of TACE with or without PD-1 inhibitors in patients with hepatocellular carcinoma: a prospective clinical study. Front Immunol 2024; 15:1325330. [PMID: 38404585 PMCID: PMC10884244 DOI: 10.3389/fimmu.2024.1325330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background Although peripheral blood lymphocyte subsets, particularly PD-1+ T cells, are promising prognostic indicators for patients with cancer. However, their clinical significance remains unclear. Methods We prospectively enrolled 157 patients with hepatocellular carcinoma (HCC) treated with transcatheter arterial chemoembolization combined with or without PD-1 inhibitors. Twenty peripheral lymphocyte subsets and cytokines were analyzed. We analyzed the differences in PD-1+ T cells between patients treated with and without PD-1 inhibitors and their associations with tumor response, survival prognosis, and clinical features. Results We found that the baseline CD8+PD-1+ and CD4+PD-1+ T-cell frequencies in patients who had received PD-1 inhibitors were lower than those in patients who had not received PD-1 inhibitors (p < 0.001). In the former patients, there were no differences in PD-1+ T-cell frequencies between the responder and non-responder subgroups (p > 0.05), whereas in the latter patients, the levels of CD8+PD-1+ T cells, CD4+PD-1+ T cells, and CD8+PD-1+/CD4+PD-1+ ratio did not predict tumor response, progression-free survival (PFS), or overall survival (OS) (p>0.05). Furthermore, in multivariate analysis of patients treated with or without PD-1 inhibitors revealed that the levels of CD8+CD38+ T cells (OR = 2.806, p = 0.006) were associated with tumor response, whereas those of CD8+CD28+ T cells (p = 0.038, p = 0.001) and natural killer (NK) cells (p = 0.001, p = 0.027) were associated with PFS and OS. Although, these independent prognostic factors were associated with progressive tumor characteristics (p<0.05), with the exception of CD8+CD28+ T cells, changes in these factors before and after treatment were unassociated with tumor response (p > 0.05). Conclusion Circulating CD8+CD38+ T cells, CD8+CD28+ T cells, and NK cells were identified as potential prognostic factors for tumor response and survival in patients with HCC. Contrastingly, although PD-1 inhibitors can effectively block the T cell PD-1 receptor, the baseline PD-1+ T-cell frequencies and changes in the frequency of these cells have limited prognostic value.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoming Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinwei Li
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wendao Liu
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
22
|
Jiang F, Mao M, Jiang S, Jiao Y, Cao D, Xiang Y. PD-1 and TIGIT coexpressing CD8 + CD103 + tissue-resident memory cells in endometrial cancer as potential targets for immunotherapy. Int Immunopharmacol 2024; 127:111381. [PMID: 38150880 DOI: 10.1016/j.intimp.2023.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Immunotherapy has shown promise in treating various cancers; however, its efficacy in endometrial cancer (EC) remains suboptimal owing to the complex dynamics of the tumour immune microenvironment. This study focuses on exploring the potential of targeting the programmed cell death protein 1 gene (PD-1) and the T cell Immunoreceptor with Ig and ITIM domains gene (TIGIT) coexpressing tissue-resident memory cells in EC. METHODS A comprehensive approach, utilizing RNA sequencing, single-cell RNA sequencing, mass cytometry, and flow cytometry, was employed to analyse the expression patterns of PD-1 and TIGIT in the EC tumor environment and to characterize the phenotypic properties of tumor-infiltrating lymphocytes (TILs), particularly tissue-resident memory (TRM) cells. Additionally, in vitro cell experiments were conducted to assess the functional impact of PD-1 and TIGIT blockade on T-cell activity. RESULTS Our analysis identified a significant co-expression of PD-1 and TIGIT in TRM cells within the EC tumor microenvironment. These TRM cells displayed an exhausted phenotype with impaired cytotoxicity, enhanced proliferative capacity, and diminished cytotoxic activity. In vitro T-cell assays showed that a dual blockade of PD-1 and TIGIT more effectively restored T-cell functionality compared to single blockade, suggesting enhanced therapeutic potential. CONCLUSIONS TRM cells co-expressing PD-1 and TIGIT represent potential targets for EC immunotherapy. Dual immune checkpoint blockade targeting PD-1 and TIGIT may offer an effective therapeutic strategy for EC, providing valuable insights for the development of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Mingyi Mao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Shiyang Jiang
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Jiao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongyan Cao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China.
| |
Collapse
|
23
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
24
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Bicer F, Kure C, Ozluk AA, El-Rayes BF, Akce M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr Oncol 2023; 30:9789-9812. [PMID: 37999131 PMCID: PMC10670350 DOI: 10.3390/curroncol30110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths in the world. More than half of patients with HCC present with advanced stage, and highly active systemic therapies are crucial for improving outcomes. Immune checkpoint inhibitor (ICI)-based therapies have emerged as novel therapy options for advanced HCC. Only one third of patients achieve an objective response with ICI-based therapies due to primary resistance or acquired resistance. The liver tumor microenvironment is naturally immunosuppressive, and specific mutations in cell signaling pathways allow the tumor to evade the immune response. Next, gene sequencing of the tumor tissue or circulating tumor DNA may delineate resistance mechanisms to ICI-based therapy and provide a rationale for novel combination therapies. In this review, we discuss the results of key clinical trials that have led to approval of ICI-based therapy options in advanced HCC and summarize the ongoing clinical trials. We review resistance mechanisms to ICIs and discuss how immunotherapies may be optimized based on the emerging research of tumor biomarkers and genomic alterations.
Collapse
Affiliation(s)
- Fuat Bicer
- Division of Hematology Oncology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
| | - Catrina Kure
- Department of Medicine, Northside Hospital-Gwinnett, Lawrenceville, GA 30046, USA;
| | - Anil A. Ozluk
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Bassel F. El-Rayes
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Mehmet Akce
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| |
Collapse
|
26
|
Xiang QM, Jiang N, Liu YF, Wang YB, Mu DA, Liu R, Sun LY, Zhang W, Guo Q, Li K. Overexpression of SH2D1A promotes cancer progression and is associated with immune cell infiltration in hepatocellular carcinoma via bioinformatics and in vitro study. BMC Cancer 2023; 23:1005. [PMID: 37858067 PMCID: PMC10585762 DOI: 10.1186/s12885-023-11315-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/18/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND SH2 domain containing 1A (SH2D1A) expression has been linked to cancer progression. However, the functions of SH2D1A in hepatocellular carcinoma (HCC) have not been reported. METHODS The effects of SH2D1A on the proliferation, migration, and invasion of HCC cells and the related pathways were re-explored in cell models with SH2D1A overexpression using the CCK-8, migration and invasion assays and western blotting. The functions and mechanisms of genes co-expressed with SH2D1A were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The relationship between SH2D1A expression and immune microenvironment features in HCC was explored. RESULTS Elevated SH2D1A expression promoted cell proliferation, migration, and invasion, which was related to the overexpression of p-Nf-κB and BCL2A1 protein levels in HCC. SH2D1A expression was related to the immune, stromal, and ESTIMATE scores, and the abundance of immune cells, such as B cells, CD8+ T cells, and T cells. SH2D1A expression was significantly related to the expression of immune cell markers, such as PDCD1, CD8A, and CTLA4 in HCC. CONCLUSION SH2D1A overexpression was found to promote cell growth and metastasis via the Nf-κB signaling pathway and may be related to the immune microenvironment in HCC. The findings indicate that SH2D1A can function as a biomarker in HCC.
Collapse
Affiliation(s)
- Qian-Ming Xiang
- Department of Cardiothoracic surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Feng Liu
- Department of Ophthalmology surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuan-Biao Wang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - De-An Mu
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Jianyang city, Jianyang, China
| | - Rong Liu
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu-Yun Sun
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Jianyang city, Jianyang, China.
| | - Qiang Guo
- Department of Cardiothoracic surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Jianyang city, Jianyang, China.
| |
Collapse
|
27
|
Zhao J, Dong J, Deng C, Zhang Q, Sun S, Li H, Bai Y, Deng H. Enhancing T cell anti-tumor efficacy with a PD1-TIGIT chimeric immune-checkpoint switch receptor. Oncoimmunology 2023; 12:2265703. [PMID: 37808405 PMCID: PMC10557556 DOI: 10.1080/2162402x.2023.2265703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated success in the treatment of hematological malignancies; however, its efficacy and applications in solid tumors remain limited. Immunosuppressive factors, particularly inhibitory checkpoint molecules, restrict CAR T cell activity inside solid tumors. The modulation of checkpoint pathways has emerged as a promising approach to promote anti-tumor responses in CAR T cells. Programmed cell death protein 1 (PD1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two critical immune-checkpoint molecules that suppress anti-tumor activity in T cells. Simultaneous targeting of these two inhibitory molecules could be an efficient checkpoint modulation strategy. Here, we developed a PD1-TIGIT chimeric immune-checkpoint switch receptor (CISR) that enhances the efficacy of CAR T cell immunotherapy by reversing the inhibitory checkpoint signals of PD1/PDL1 and/or TIGIT/CD155. In addition to neutralizing PDL1 and CD155, this chimeric receptor is engineered with the transmembrane region and intracellular domain of CD28, thereby effectively enhancing T cell survival and tumor-targeting functions. Notably, under simultaneous stimulation of PDL1 and CD155, CISR-CAR T cells demonstrate superior performance in terms of cell survival, proliferation, cytokine release, and cytotoxicity in vitro, compared with conventional CAR T cells. Experiments utilizing both cell line- and patient-derived xenotransplantation tumor models showed that CISR-CAR T cells exhibit robust infiltration and anti-tumor efficiency in vivo. Our results highlight the potential for the CISR strategy to enhance T cell anti-tumor efficacy and provide an alternative approach for T cell-based immunotherapies.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Jiebin Dong
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, China
| | - Qianjing Zhang
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Shicheng Sun
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Honggang Li
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Yun Bai
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Hongkui Deng
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
- College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Hao L, Li S, Hu X. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. J Cancer Res Clin Oncol 2023; 149:12543-12560. [PMID: 37423958 DOI: 10.1007/s00432-023-05083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Liver cancer is one of the most common malignancies. T-cell exhaustion is associated with immunosuppression of tumor and chronic infection. Although immunotherapies that enhance the immune response by targeting programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) have been applied to malignancies, these treatments have shown limited response rates. This suggested that additional inhibitory receptors (IRs) also contributed to T-cell exhaustion and tumor prognosis. Exhausted T-cells (Tex) in the tumor immune microenvironment (TME) are usually in a dysfunctional state of exhaustion, such as impaired activity and proliferative ability, increased apoptosis rate, and reduced production of effector cytokines. Tex cells participate in the negative regulation of tumor immunity mainly through IRs on the cell surface, changes in cytokines and immunomodulatory cell types, causing tumor immune escape. However, T-cell exhaustion is not irreversible and targeted immune checkpoint inhibitors (ICIs) can effectively reverse the exhaustion of T-cells and restore the anti-tumor immune response. Therefore, the research on the mechanism of T-cell exhaustion in liver cancer, aimed at maintaining or restoring the effector function of Tex cells, might provide a new method for the treatment of liver cancer. In this review, we summarized the basic characteristics of Tex cells (such as IRs and cytokines), discussed the mechanisms associated with T-cell exhaustion, and specifically discussed how these exhaustion characteristics were acquired and shaped by key factors within TME. Then new insights into the molecular mechanism of T-cell exhaustion suggested a potential way to improve the efficacy of cancer immunotherapy, namely to restore the effector function of Tex cells. In addition, we also reviewed the research progress of T-cell exhaustion in recent years and provided suggestions for further research.
Collapse
Affiliation(s)
- Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
29
|
Li Q, Wu K, Zhang Y, Liu Y, Wang Y, Chen Y, Sun S, Duan C. Construction of HBV-HCC prognostic model and immune characteristics based on potential genes mining through protein interaction networks. J Cancer Res Clin Oncol 2023; 149:11263-11278. [PMID: 37358667 DOI: 10.1007/s00432-023-04989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To search for human protein-coding genes related to hepatocellular carcinoma (HCC) in the context of hepatitis B virus (HBV) infection, and perform prognosis risk assessment. METHODS Genes related to HBV-HCC were selected through literature screening and protein-protein interaction (PPI) network database analysis. Prognosis potential genes (PPGs) were identified using Cox regression analysis. Patients were divided into high-risk and low-risk groups based on PPGs, and risk scores were calculated. Kaplan-Meier plots were used to analyze overall survival rates, and the results were predicted based on clinicopathological variables. Association analysis was also conducted with immune infiltration, immune therapy, and drug sensitivity. Experimental verification of the expression of PPGs was done in patient liver cancer tissue and normal liver tissue adjacent to tumors. RESULTS The use of a prognosis potential genes risk assessment model can reliably predict the prognosis risk of patients, demonstrating strong predictive ability. Kaplan-Meier analysis showed that the overall survival rate of the low-risk group was significantly higher than that of the high-risk group. There were significant differences between the two subgroups in terms of immune infiltration and IC50 association analysis. Experimental verification revealed that CYP2C19, FLNC, and HNRNPC were highly expressed in liver cancer tissue, while UBE3A was expressed at a lower level. CONCLUSION PPGs can be used to predict the prognosis risk of HBV-HCC patients and play an important role in the diagnosis and treatment of liver cancer. They also reveal their potential role in the tumor immune microenvironment, clinical-pathological characteristics, and prognosis.
Collapse
Affiliation(s)
- Qingxiu Li
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Kejia Wu
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yiqi Zhang
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxin Liu
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yalan Wang
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Chen
- Department of Hepatobillary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Shuangling Sun
- Chongqing Medical and Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, Chongqing, 400016, China
| | - Changzhu Duan
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Tang W, Chen J, Ji T, Cong X. TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis 2023; 14:466. [PMID: 37495610 PMCID: PMC10372028 DOI: 10.1038/s41419-023-05961-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Melanoma is the most aggressive and deadliest type of skin cancer. In the last 10 years, immune checkpoint blockades (ICBs) including PD-1/PD-L1 and CTLA-4 inhibitor has been shown to be effective against melanoma. PD-1/PD-L1 and CTLA-4 inhibitors have shown varying degrees of drug resistance in the treatment of melanoma patients. Furthermore, the clinical benefits of ICBs are also accompanied by severe immune toxicity. Therefore, there is an urgent need to develop new immune checkpoint inhibitors to optimize melanoma therapy and reduce cytotoxicity. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) is thought to activate inhibitory receptors in T cells, natural killer (NK) cells, and regulatory T cells (Tregs), and has become a promising target for immunotherapy. Studies have found that TIGIT can be detected in different stages of melanoma, which is closely related to the occurrence, development, and prognosis of melanoma. This review mainly describes the immunosuppressive mechanism of TIGIT and its role in antitumor immunity of melanoma, so as to provide new ideas and schemes for the clinical treatment of melanoma with targeted TIGIT.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, 110000, China.
| | - Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
31
|
Zhao J, Li L, Yin H, Feng X, Lu Q. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Int Immunopharmacol 2023; 120:110358. [PMID: 37262959 DOI: 10.1016/j.intimp.2023.110358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs). Therefore, IR blockade has shown great potential in cancer therapy and has even been approved for clinical use. However, other IRs, including cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), may also represent promising targets for anti-tumor therapy. The increasing importance of IRs in autoimmune diseases has become apparent. In mouse models, TIGIT pathway blockade or TIGIT deficiency has been linked to T cell overactivation and proliferation, exacerbation of inflammation, and increased susceptibility to autoimmune disorders. On the other hand, TIGIT activation has been shown to alleviate autoimmune disorders in murine models. Given these findings, we examine the effects of TIGIT and its potential as a therapeutic target for both autoimmune diseases and cancers. It is clear that TIGIT represents an emerging and exciting target for immunotherapy in these contexts.
Collapse
Affiliation(s)
- Junpeng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huiqi Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiwei Feng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
32
|
Pearce H, Croft W, Nicol SM, Margielewska-Davies S, Powell R, Cornall R, Davis SJ, Marcon F, Pugh MR, Fennell É, Powell-Brett S, Mahon BS, Brown RM, Middleton G, Roberts K, Moss P. Tissue-Resident Memory T Cells in Pancreatic Ductal Adenocarcinoma Coexpress PD-1 and TIGIT and Functional Inhibition Is Reversible by Dual Antibody Blockade. Cancer Immunol Res 2023; 11:435-449. [PMID: 36689623 PMCID: PMC10068448 DOI: 10.1158/2326-6066.cir-22-0121] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor clinical outlook. Responses to immune checkpoint blockade are suboptimal and a much more detailed understanding of the tumor immune microenvironment is needed if this situation is to be improved. Here, we characterized tumor-infiltrating T-cell populations in patients with PDAC using cytometry by time of flight (CyTOF) and single-cell RNA sequencing. T cells were the predominant immune cell subset observed within tumors. Over 30% of CD4+ T cells expressed a CCR6+CD161+ Th17 phenotype and 17% displayed an activated regulatory T-cell profile. Large populations of CD8+ tissue-resident memory (TRM) T cells were also present and expressed high levels of programmed cell death protein 1 (PD-1) and TIGIT. A population of putative tumor-reactive CD103+CD39+ T cells was also observed within the CD8+ tumor-infiltrating lymphocytes population. The expression of PD-1 ligands was limited largely to hemopoietic cells whilst TIGIT ligands were expressed widely within the tumor microenvironment. Programmed death-ligand 1 and CD155 were expressed within the T-cell area of ectopic lymphoid structures and colocalized with PD-1+TIGIT+ CD8+ T cells. Combinatorial anti-PD-1 and TIGIT blockade enhanced IFNγ secretion and proliferation of T cells in the presence of PD-1 and TIGIT ligands. As such, we showed that the PDAC microenvironment is characterized by the presence of substantial populations of TRM cells with an exhausted PD-1+TIGIT+ phenotype where dual checkpoint receptor blockade represents a promising avenue for future immunotherapy.
Collapse
Affiliation(s)
- Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Samantha M. Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard Powell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard Cornall
- Nuffield Department of Medicine and Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Francesca Marcon
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew R. Pugh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Éanna Fennell
- Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, Limerick, Ireland
| | - Sarah Powell-Brett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Brinder S. Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Keith Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Sun R, Li J, Lin X, Yang Y, Liu B, Lan T, Xiao S, Deng A, Yin Z, Xu Y, Xiang Z, Wu B. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front Immunol 2023; 14:1079495. [PMID: 37077908 PMCID: PMC10106696 DOI: 10.3389/fimmu.2023.1079495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundLiver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. As a chronic liver disease, many studies have shown that the immune response plays a key role in the progression of liver cancer. Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for HCC, accounting for 50%–80% of HCC cases worldwide, and little is known about the immune status of HBV associated hepatocellular carcinoma (HBV-HCC), therefore, we aimed to explore the changes in peripheral immunity in patients with HBV-HCC.MethodsIn this study, patients with HBV-HCC (n=26), patients with hepatitis B-related cirrhosis (HBV-LC) (n=31) and healthy volunteers (n=49) were included. The lymphocytes and their subpopulation phenotypes in peripheral blood were characterized. In addition, we explored the effect of viral replication on peripheral immunity in patients with HCC and analyzed the circulating immunophenotypic characteristics at different stages of HCC with flow cytometry.ResultsFirstly, our results showed that the percentages of total αβ T cells in the peripheral blood of HBV-HCC patients was significantly decreased compared to healthy subjects. Secondly, we found that naïve CD4+ T cells in HBV-HCC patients were significantly reduced, terminally differentiated CD8+ T cells, homing memory CD8+ T cells and Th2 cells were increased in peripheral circulation in HBV-HCC patients. Moreover, in the peripheral blood of HBV-HCC patients, expression of TIGIT on CD4+ T cells and PD-1 on the surface of Vδ 1 T cells was increased. In addition, we found that sustained viral replication resulted in up-regulation of TIM3 expression on CD4+ T cells, and TIM3+ γδ T cells increased in peripheral circulation in patients with advanced HBV-HCC.ConclusionOur study showed that circulating lymphocytes in HBV-HCC patients exhibited features of immune exhaustion, especially in HCC patients with persistent viral replication and in patients with intermediate and advanced HBV-HCC, including decreased frequency of T cells and elevated expression of inhibitory receptors including TIGIT and TIM3 on CD4+ T cells and γδ T cells. Meanwhile, our research suggests that the combination of CD3+ T cell and CD8+HLADR+CD38+ T cell may be a potential diagnostic indicator for HBV-HCC. These findings could help us to better understand the immune characteristics of HBV-HCC and explore the immune mechanisms and immunotherapy strategies for HBV-HCC.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Xianyi Lin
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yidong Yang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Liu
- Department of Interventional Medicine, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Tianbi Lan
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Shuang Xiao
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Anyi Deng
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Zheng Xiang
- Department of Microbiology and Immunology, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| |
Collapse
|
34
|
Ailia MJ, Heo J, Yoo SY. Navigating through the PD-1/PDL-1 Landscape: A Systematic Review and Meta-Analysis of Clinical Outcomes in Hepatocellular Carcinoma and Their Influence on Immunotherapy and Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24076495. [PMID: 37047482 PMCID: PMC10095164 DOI: 10.3390/ijms24076495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This systematic review aimed to assess the prognostic significance of programmed cell death-ligand 1 (PDL-1) and programmed cell death protein 1 (PD-1) in hepatocellular carcinoma (HCC). Medline, EMBASE, and Cochrane Library database searches were conducted, revealing nine relevant cohort studies (seven PDL-1 and three PD-1). Our meta-analysis showed that PD-1/PDL-1 was a marker of poor survival, regardless of the assessment method (PD-1 overall survival (OS): hazard ratio (HR) 2.40; 95% confidence interval (CI), 1.30–4.42; disease-free survival (DFS): HR 2.12; 95% CI, 1.45–3.10; PDL-1: OS: HR 3.61; 95% CI, 2.75–4.75; and DFS: HR 2.74; 95% CI, 2.09–3.59). Additionally, high level of PD-1/PDL-1 expression was associated with aging, multiple tumors, high alpha-fetoprotein levels, and advanced Barcelona Clinic Liver Cancer stage. This high level significantly predicted a poor prognosis for HCC, suggesting that anti-PD-1 therapy is plausible for patients with HCC. Furthermore, HIF-1 induces PD-1 expression, and PD1lowSOCS3high is associated with a better prognosis. Taken together, combination therapy may be the key to effective immunotherapy. Thus, exploring other markers, such as HIF-1 and SOCS3, along with PD-1/PDL-1 immunotherapy, may lead to improved outcomes.
Collapse
Affiliation(s)
- Muhammad Joan Ailia
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|
35
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
36
|
Wu Y, Hao X, Wei H, Sun R, Chen Y, Tian Z. Blockade of T-cell receptor with Ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBV-related HCC in mice. Hepatology 2023; 77:965-981. [PMID: 35938354 DOI: 10.1002/hep.32715] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Chronic HBV infection is the leading cause of HCC and a serious health problem in China, East Asia, and North African countries. Effective treatment of HBV-related HCC is currently unavailable. This study evaluated the therapeutic potential of T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade in HBV-related HCC. APPROACH AND RESULTS A mouse model of spontaneous HBV-related HCC was generated by replacing wild-type hepatocytes with HBsAg + hepatocytes (namely HBs-HepR mice). The tumors in HBs-HepR mice were inflammation-associated HCC, similar to HBV-related HCC in patients, which was distinguished from other HCC mouse models, such as diethylnitrosamine-induced HCC, TGF-β-activated kinase 1 knockout-induced HCC, HCC in a stelic animal model, or NASH-induced HCC. HCC in HBs-HepR mice was characterized by an increased number of CD8 + T cells, whereas the production of IL-2, TNF-α, and interferon-gamma (IFN-γ) by intrahepatic CD8 + T cells was decreased. Increased expression of TIGIT on CD8 + T cells was responsible for functional exhaustion. The therapeutic effect of TIGIT blockade was investigated at the early and middle stages of HCC progression in HBs-HepR mice. TIGIT blockade reinvigorated intrahepatic CD8 + T cells with increased TNF-α and IFN-γ production and an increased number of CD8 + T cells in tumors, thereby slowing the development of HCC in HBs-HepR mice. Blocking PD-L1 did not show direct therapeutic effects or synergize with TIGIT blockade. CONCLUSIONS Blockade of TIGIT alone enhanced the antitumor activity of CD8 + T cells during the progression of HBV-related HCC in a spontaneous HCC mouse model.
Collapse
Affiliation(s)
- Yuwei Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| | - Xiaolei Hao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| | - Yongyan Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| | - Zhigang Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , China.,Institute of Immunology, University of Science and Technology of China , Hefei , China
| |
Collapse
|
37
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
38
|
Yan F, Zhang Q, Shi K, Zhang Y, Zhu B, Bi Y, Wang X. Gut microbiota dysbiosis with hepatitis B virus liver disease and association with immune response. Front Cell Infect Microbiol 2023; 13:1152987. [PMID: 37201112 PMCID: PMC10185817 DOI: 10.3389/fcimb.2023.1152987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background and aims Given hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) exhibits unique gut microbiota characteristics and a significant immunosuppressive tumor microenvironment. Thus, a better understanding of the correlation between gut microbiota and the immunosuppressive response may help predict occurrence and prognosis of HBV-HCC. Methods Here, in a cohort of ninety adults (healthy control n=30, HBV-cirrhosis n=30, HBV-HCC n=30) with clinical data, fecal 16S rRNA gene sequencing, matched peripheral blood immune response with flow cytometry analysis. Correlation between the gut microbiome of significantly different in HBV-HCC patients and clinical parameters as well as the peripheral immune response was assessed. Results We found that community structures and diversity of the gut microbiota in HBV-CLD patients become more unbalanced. Differential microbiota analysis that p:Acidobacteriota, p:Proteobacteria, p:Campilobacterota, f:Streptococcaceae, g:Klebsiella associated with inflammation were enriched. The beneficial bacteria of f:Clostridia UCG-014, f:Oscillospiraceae, f:_Rikenellaceae, g:_Barnesiella, g:Prevotella, g:Agathobacter were decreased. Functional analysis of gut microbiota revealed that lipopolysaccharide biosynthesis, lipid metabolism, butanoate metabolism were significantly elevated in HBV-CLD patients. Spearman's correlation analysis showed that Muribaculaceae, Akkermaniacaeae, [Eubacterium]_coprostanoligenes_group, RF39, Tannerellaceae have positive correlation with CD3+T, CD4+T and CD8+T cell counts while negatively correlated with liver dysfunction. Furthermore, paired peripheral blood showed a decreased proportion of CD3+T, CD4+T and CD8+T cells, while an increased T (Treg) cells. The immunosuppressive response of programmed cell death 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), immune receptor tyrosine based inhibitor motor (ITIM) domain (TIGIT), T-cell immune domain, and multiple domain 3 (TIM-3) of CD8+T cells were higher in HBV-HCC patients. They were positively correlated with harmful bacteria, such as Actinobaciota, Myxococota, Streptococcaceae and Eubacterium coprostanoligenes. Conclusions Our study indicated that gut beneficial bacteria, mainly Firmicutes and Bacteroides appeared dysbiosis in HBV-CLD patients. They have negative regulation of liver dysfunction and T cell immune response. It provides potential avenues for microbiome-based prevention and intervention for anti-tumor immune effects of HBV-CLD.
Collapse
|
39
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
40
|
Wang X, Liu Y, Lu Y, Chen S, Xing Y, Yang H, Wang X, Zhang Y, Pan T, Li J, Wang M, Zhang N, Liang M, Zhou F. Clinical impact of Fn-induced high expression of KIR2DL1 in CD8 T lymphocytes in oesophageal squamous cell carcinoma. Ann Med 2022; 54:51-62. [PMID: 34935568 PMCID: PMC8725851 DOI: 10.1080/07853890.2021.2016942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To analyze the correlation between the inducing effect of Fusobacterium nucleatum (Fn) on the surface expression of the inhibitory receptor KIR2DL1 on CD8+ T cells in oesophageal squamous cell carcinoma (ESCC) and the clinicopathological features and survival prognosis and to explore its clinical significance. METHODS The inducing effect of Fn on CD8+ T cell surface inhibitory receptor KIR2DL1 expression was analyzed in a coculture system of human CD8+ T cells and ESCC cells infected with Fn. Fn infection and the expression of KIR2DL1 on CD8+ T cells were detected by RNAscope and immunohistochemistry in ESCC tissues, and the correlations between the inducing effect of Fn on KIR2DL1 expression on CD8+ T cells and clinicopathological features were analyzed. COX regression was used to analyze the influence of each factor on the prognosis of ESCC. Survival curves were plotted by the Kaplan-Meier method, and the effect of KIR2DL1 induction on survival time was analyzed by the log-rank test. RESULTS In the coculture system, KIR2DL1 expression on the surface of CD8+ T cells increased with increasing Fn infection time. In ESCC tissues, Fn infection was significantly correlated with high KIR2DL1 expression on CD8+ T cells. The Fn + CD8+KIR2DL1 positive patients were predominantly males who were smokers and alcohol drinkers. Moreover, patients with Fn infection were characterized by poor tumour differentiation, advanced clinical stage, and a short survival time. Meanwhile, Fn + CD8+KIR2DL1 positive group was independent risk factor affecting the prognosis of ESCC patients. CONCLUSIONS Long-term drinking and smoking lead to an extremely unhealthy oral environment in which Fn infection and colonization are more likely to occur, thus inducing high expression of KIR2DL1 on the surface of CD8+ T cells, which can weaken the antitumour immune response and promote the malignant progression of ESCC.HIGHLIGHTSFn induced high expression of KIR2DL1 CD8+ T cells in a time-dependent manner.Fn can reduce the response of tumour cells to CDDP.The inducing effect of Fn on CD8+ T cell surface KIR2DL1 expression was significantly associated with the poor prognosis of ESCC patients.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yiwen Liu
- College of Clinical Medicine, Laboratory of Molecular Biology of the First Affiliated Hospital, Cancer Institute of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China
| | - Yannan Lu
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Simo Chen
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yaoping Xing
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Haijun Yang
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China
| | - Xiaojun Wang
- Basic Medical School of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yaowen Zhang
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China
| | - Tao Pan
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junkuo Li
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China
| | - Min Wang
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ning Zhang
- College of Clinical Medicine, Laboratory of Molecular Biology of the First Affiliated Hospital, Cancer Institute of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China
| | - Mengxia Liang
- College of Clinical Medicine, Laboratory of Molecular Biology of the First Affiliated Hospital, Cancer Institute of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China
| | - Fuyou Zhou
- Anyang Tumor Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,College of Clinical Medicine, Laboratory of Molecular Biology of the First Affiliated Hospital, Cancer Institute of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China
| |
Collapse
|
41
|
Salani F, Genovesi V, Vivaldi C, Massa V, Cesario S, Bernardini L, Caccese M, Graziani J, Berra D, Fornaro L, Masi G. Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle. Cancers (Basel) 2022; 14:4896. [PMID: 36230819 PMCID: PMC9563015 DOI: 10.3390/cancers14194896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a key component of different stages of hepatocellular carcinoma (HCC) treatment, particularly in the first line of treatment. A lesson on the primary resistance which hampers their efficacy and activity was learned from the failure of the trials which tested them as first-line mono-therapies. Despite the combination of anti-PD(L)1 agents with anti-VEGF, anti CTLA4, or TKIs demonstrating relevant improvements in efficacy, the "doublets strategy" still shows room for improvement, due to a limited overall survival benefit and a high rate of progressive disease as best response. In this review, we discuss the results from the currently tested doublet strategies (i.e., atezolizumab+bevacizumab, durvalumab+tremelimumab with a mention to the newly presented ICIs/TKIs combinations), which highlight the need for therapeutic improvement. Furthermore, we examine the rationale and provide an overview of the ongoing trials testing the treatment intensification strategy with triplet drugs: anti-PD1+anti-CTLA4+anti-VEGF/TKIs and anti-PD1+anti-VEGF+alternative immunity targets. Lastly, we report on the alternative strategy to integrate ICIs into the new paradigm of immune therapeutics constituted by CAR-T and anti-cancer vaccines. This review provides up-to-date knowledge of ongoing clinical trials of the aforementioned strategies and critical insight into their mechanistic premises.
Collapse
Affiliation(s)
- Francesca Salani
- Institute of Interdisciplinary Research “Health Science”, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56124 Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Virginia Genovesi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Valentina Massa
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Silvia Cesario
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Laura Bernardini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Miriam Caccese
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Jessica Graziani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Dario Berra
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
42
|
Cong T, Luo Y, Liu Y, Yang C, Yang H, Li Y, Li J, Li X. Cuproptosis-related immune checkpoint gene signature: Prediction of prognosis and immune response for hepatocellular carcinoma. Front Genet 2022; 13:1000997. [PMID: 36276933 PMCID: PMC9579294 DOI: 10.3389/fgene.2022.1000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint genes (ICGs), the foundation of immunotherapy, are involved in the incidence and progression of hepatocellular carcinoma (HCC). Cuproptosis is characterized by copper-induced cell death, and this novel cell death pathway has piqued the interest of researchers in recent years. It is worth noting that there is little information available in the literature to determine the relationship between cuproptosis and anti-tumor immunity. We identified 39 cuproptosis-related ICGs using ICGs co-expressed with cuproptosis-related genes. A prognostic risk signature was constructed using the Cox regression and the least absolute shrinkage and selection operator analysis methods. The signature was built using the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma database. The TCGA and International Cancer Genome Consortium cohorts were classified into two groups; the low- and high-risk groups were determined using a prognostic signature comprised of five genes. The multivariate Cox regression analysis revealed that the signature could independently predict overall survival. Furthermore, the level of immune infiltration analysis revealed the robustness of the prognostic signature-immune cell infiltration relationship observed for Tregs, macrophages, helper T cells, and naive B cells. Both groups showed significant differences in immune checkpoint expression levels. The gene enrichment analysis was used for characterization, and the results revealed that enriching various pathways such as PI3K-AKT-mTOR signaling, glycolysis, Wnt/beta-catenin signaling, and unfolded protein response could potentially influence the prognosis of patients with HCC and the level of immune infiltration. The sensitivity of the two groups of patients to various drug-targeted therapy methods and immunotherapy was analyzed. In conclusion, the findings presented here lay the foundation for developing individualized treatment methods for HCC patients. The findings also revealed that studying the cuproptosis-based pathway can aid in the prognosis of HCC patients. It is also possible that cuproptosis contributes to developing anti-tumor immunity in patients.
Collapse
|
43
|
Zhang W, Sun H, Sun R, Lian Z, Wei H, Tian Z, Chen Y. HBV immune tolerance of HBs-transgenic mice observed through parabiosis with WT mice. Front Immunol 2022; 13:993246. [PMID: 36203595 PMCID: PMC9530942 DOI: 10.3389/fimmu.2022.993246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
It was extensively recognized that central tolerance to HBV exists in HBs-transgenic (Tg) mice, however, the immune response to HBV vaccine may be inspired in adult HBs-Tg mice after boosting with potent adjuvants, leaving a mystery to explore its immune tolerance. Here, WT-HBs-Tg parabiotic mice model was generated by conjoining WT (donor) and HBs-Tg (host) mouse via parabiotic surgery, in order to see how immunocompetent WT mice naturally respond to HBV, and how tolerant HBs-Tg mice influence the anti-HBV immunity from WT mice. It was found that WT CD8+ T cells markedly accumulated into the liver of HBs-Tg parabionts, and importantly, almost all HBsAg-specific CD8+ T cells derived from WT but not HBs-Tg mice, making a clear separation of a normal immune response from WT donor and a tolerant response by recipient host. Further, in the absence of host but not donor spleen, HBsAg-specific CD8+ T cells disappeared, indicating that host spleen was the indispensable site for donor HBsAg-specific CD8+ T cell priming though its mechanisms need further study. We found that donor CD4+ T helper cells were necessary for donor HBsAg-specific CD8+ T cell response by CD4-deficiency in WT or in HBs-Tg mice, indicating that an immune response was elicited between CD4+ T helper cells and CD8+ cytotoxic T cells of donor in the host but not donor spleen. It was noted that compared to donor CD4+ T cells, host CD4+ T cells were characterized with more tolerant features by harboring more CD25+Foxp3+ Tregs with higher expression of PD-1 and TIGIT in the spleen of HBs-Tg parabionts, which exhibited suppressive function on CD8+ T cells directly. Moreover, the Th1/Treg ratio was enhanced after parabiosis, suggesting that donor T helper cells may overcome the negative regulation of host Tregs in host spleen. In conclusion, both incompetent anti-HBV CD8+ T cells and insufficient help from CD4+ T cells are the major mechanisms underlying immune tolerance in HBs-Tg mice which helps explain HBV persistence.
Collapse
Affiliation(s)
- Wendi Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| |
Collapse
|
44
|
Pu Q, Yu L, Wang X, Yan H, Xie Y, Jiang Y, Yang Z. Immunomodulatory Effect of Traditional Chinese Medicine Combined with Systemic Therapy on Patients with Liver Cancer: A Systemic Review and Network Meta-analysis. J Cancer 2022; 13:3280-3296. [PMID: 36118529 PMCID: PMC9475362 DOI: 10.7150/jca.74829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: As immune combination therapy in the treatment of liver cancer made significant achievements, and the modulating effect of traditional Chinese medicine (TCM) on immunity gradually appeared. The main purpose of this study was to study the effect of different TCM combined with systemic therapy (ST) on immune regulation in patients with liver cancer, as well as the efficacy and safety of combined therapy, and to find the best combined application scheme by ranking. Methods: Nine electronic databases were searched from January 1, 2010, to November 12, 2021, to search for RCTs of TCM combined ST in the field of liver cancer for literature screening, quality evaluation and data extraction. STATA 15.0 and RevMan 5.3 software were used to conduct network meta-analysis to analyze and explore the significance of TCM combined ST in immune regulation, efficacy and safety in clinical application. The probability value of the surface under the cumulative ranking curve was used to rank the processing studied. Results: A total of 25 studies involving 2,152 participants were included in the network meta-analysis, including six traditional Chinese medicine injections and seven proprietary Chinese medicines. The results showed that Dahuang Zhechong Wan and Kangai injection combined with ST were the best choices for immune regulation. Moreover, the Huaier granule was the best choice to reduce vascular endothelial growth factors. Conclusion: For patients with liver cancer, TCM combined with ST was better than that of ST alone and can significantly improve the immune function of patients as well as the efficacy and safety of treatment. However, given the limited sample size and methodological quality of the trials that we included in our study, more centralized and randomized controlled trials with a large sample size are required to verify our findings.
Collapse
Affiliation(s)
- Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
The CD226/TIGIT axis is involved in T cell hypo-responsiveness appearance in long-term kidney transplant recipients. Sci Rep 2022; 12:11821. [PMID: 35821240 PMCID: PMC9276733 DOI: 10.1038/s41598-022-15705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
T cell exhaustion refers to a dysfunctional state in which effector T cells present a decreased ability to proliferate and to produce cytokines, while the co-expression of inhibitory receptors increases. We investigated global and donor-specific T cell responses in a cohort of stable, living-donor kidney transplant patients that received similar immunosuppression. After transplantation, an increase in the ratio of TIGIT + /CD226 + in mCD4 + T cells (r = 0.47, p = 0.01), and a decrease of CD226 + TIGIT-mCD4 + T cells was observed (r = − 0.55, p = 0.001). This leads to an increase of dysfunctional T cells in patients far from transplantation. In mCD8 + T cells, a decrease of IL-2 production after mitogenic stimulation was observed far from transplantation. Phenotypic analyses revealed an increase of mCD8 + T cells co-expressing PD-1 and TIGIT over time (r = 0.51, p = 0.02). After donor-specific stimulation, the ability of CD4 + T cells to proliferate was decreased compared with third parties. CD4 + T cells expressing CD226 and TIGIT were correlated with allospecific CD4 + proliferation (r = 0.68, p = 0.04). Our study suggests that after kidney transplantation a T cell hyporesponsiveness appears over time, driven by a dysregulation of CD226/TIGIT axis in mCD4 + T cells, associated with an increase of PD1 + TIGIT + in mCD8 + T cells.
Collapse
|
46
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
47
|
Liu X, Wang X, Yu L, Hou Y, Jiang Y, Wang X, Han J, Yang Z. A Novel Prognostic Score Based on Artificial Intelligence in Hepatocellular Carcinoma: A Long-Term Follow-Up Analysis. Front Oncol 2022; 12:817853. [PMID: 35712507 PMCID: PMC9195097 DOI: 10.3389/fonc.2022.817853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective T cell immunity plays an important role in anti-tumor effects and immunosuppression often leads to the development and relapse of cancer. This study aimed to investigate the effect of T cell numbers on the long-term prognosis of patients with hepatocellular carcinoma (HCC) and construct an artificial neural network (ANN) model to evaluate its prognostic value. Methods We enrolled 3,427 patients with HCC at Beijing Ditan Hospital, Capital Medical University, and randomly divided them into two groups of 1,861 and 809 patients as the training and validation sets, respectively. Cox regression analysis was used to screen for independent risk factors of survival in patients with HCC. These factors were used to build an ANN model using Python. Concordance index, calibration curve, and decision curve analysis were used to evaluate the model performance. Results The 1-year, 3-year, 5-year, and 10-year cumulative overall survival (OS) rates were 66.9%, 45.7%, 34.9%, and 22.6%, respectively. Cox multivariate regression analysis showed that age, white blood cell count, creatinine, total bilirubin, γ-GGT, LDH, tumor size ≥ 5 cm, tumor number ≥ 2, portal vein tumor thrombus, and AFP ≥ 400 ng/ml were independent risk factors for long-term survival in HCC. Antiviral therapy, albumin, T cell, and CD8 T cell counts were independent protective factors. An ANN model was developed for long-term survival. The areas under the receiver operating characteristic (ROC) curve of 1-year, 3-year, and 5-year OS rates by ANNs were 0.838, 0.833, and 0.843, respectively, which were higher than those of the Barcelona Clinic Liver Cancer (BCLC), tumor node metastasis (TNM), Okuda, Chinese University Prognostic Index (CUPI), Cancer of the Liver Italian Program (CLIP), Japan Integrated Staging (JIS), and albumin–bilirubin (ALBI) models (P < 0.0001). According to the ANN model scores, all patients were divided into high-, middle-, and low-risk groups. Compared with low-risk patients, the hazard ratios of 5-year OS of the high-risk group were 8.11 (95% CI: 7.0-9.4) and 6.13 (95% CI: 4.28-8.79) (P<0.0001) in the training and validation sets, respectively. Conclusion High levels of circulating T cells and CD8 + T cells in peripheral blood may benefit the long-term survival of patients with HCC. The ANN model has a good individual prediction performance, which can be used to assess the prognosis of HCC and lay the foundation for the implementation of precision treatment in the future.
Collapse
Affiliation(s)
- Xiaoli Liu
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lihua Yu
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixin Hou
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junyan Han, ; Zhiyun Yang,
| | - Zhiyun Yang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junyan Han, ; Zhiyun Yang,
| |
Collapse
|
48
|
Lee BH, Kim JH, Kang KW, Lee SR, Park Y, Sung HJ, Kim BS. PVR (CD155) Expression as a Potential Prognostic Marker in Multiple Myeloma. Biomedicines 2022; 10:1099. [PMID: 35625835 PMCID: PMC9139015 DOI: 10.3390/biomedicines10051099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Poliovirus receptor (PVR, CD155) is upregulated during tumor progression, and PVR expression is associated with poor prognosis in cancer patients; however, prognostic implications for PVR in multiple myeloma (MM) have not been investigated. PVR plays an immunomodulatory role by interacting with CD226, CD96, and TIGIT. TIGIT is a checkpoint inhibitory receptor that can limit adaptive and innate immunity, and it binds to PVR with the highest affinity. We used immunohistochemistry, ELISA, qPCR, and flow cytometry to investigate the role of PVR in MM. PVR was highly expressed in patients with MM, and membrane PVR expression showed a significant correlation with soluble PVR levels. PVR expression was significantly associated with the Revised-International Staging System stage, presence of extramedullary plasmacytoma and bone lesion, percentage of bone marrow plasma cells (BMPCs), and β2-microglobulin levels, suggesting a possible role in advanced stages and metastasis. Furthermore, TIGIT expression was significantly correlated with the percentage of BMPCs. Patients with high PVR expression had significantly shorter overall and progression-free survival, and PVR expression was identified as an independent prognostic factor for poor MM survival. These findings indicate that PVR expression is associated with MM stage and poor prognosis, and is a potential prognostic marker for MM.
Collapse
Affiliation(s)
- Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Ji-Hea Kim
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| | - Ka-Won Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Se-Ryeon Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Hwa-Jung Sung
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Byung-Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| |
Collapse
|
49
|
PI3K/AKT/mTOR Pathway-Associated Genes Reveal a Putative Prognostic Signature Correlated with Immune Infiltration in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:7545666. [PMID: 35592706 PMCID: PMC9112180 DOI: 10.1155/2022/7545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Background The dysregulated PI3K/AKT/mTOR pathway acts as the main regulator of tumorigenesis in hepatocellular carcinoma (HCC). Aim Here, we identify the prognostic significance of PI3K/AKT/mTOR pathway-associated genes (PAGs) as well as their putative signature based on PAGs in an HCC patient's cohort. Methods The transcriptomic data and clinical feature sets were queried to extract the putative prognostic signature. Results We identified nine PAGs with different expressions. GO and KEGG indicated that these differentially expressed genes were associated with various carcinogenic pathways. Based on the signature-computed median risk score, we categorized the patients into groups of low risk and high risk. The survival time for the low-risk group is longer than that of the high-risk group in Kaplan-Meier (KM) curves. The prognostic value of risk score (ROC = 0.736) of receiver operating characteristic (ROC) curves performed better in comparison to that of other clinicopathological features. In both the GEO database and ICGC database, these outcomes were verified. The predictions of the overall survival rates in HCC patients of 1 year, 3 years, and 5 years can be obtained separately from the nomogram. The risk score was associated with the immune infiltrations of CD8 T cells, activated CD4 memory T cells, and follicular helper T cells, and the expression of immune checkpoints (PD-1, TIGIT, TIM-3, BTLA, LAG-3, and CTLA4) was positively relevant to the risk score. The sensitivity to several chemotherapeutic drugs can also be revealed by the signature. CDK1, PITX2, PRKAA2, and SFN were all upregulated in the tumor tissue of clinical samples. Conclusion A putative and differential dataset-validated prognostic signature on the basis of integrated bioinformatic analysis was established in our study, providing the immunotherapeutic targets as well as the personalized treatment in HCC with neoteric insight.
Collapse
|
50
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|