1
|
QIAO CHENXIAO, XU YIPENG, HE YEDIE, CAI ZHIJIAN, WANG HUA. Oncolytic adenovirus H101 enhances the anti-tumor effects of PD-1 blockade via CD47 downregulation in tumor cells. Oncol Res 2025; 33:1161-1172. [PMID: 40296909 PMCID: PMC12034015 DOI: 10.32604/or.2024.055746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 04/30/2025] Open
Abstract
Objective To investigate the anti-tumor effects of an E1B55KD-deleted oncolytic adenovirus, H101, in combination with a humanized anti-PD-1 (Programmed cell death protein 1) monoclonal antibody, Camrelizumab. Methods Anti-tumor efficacy of intratumoral injection of H101 or/and intraperitoneal injection of Camrelizumab were evaluated in an immune system humanized NOD Prkdc scid Il2rg -/- mice subcutaneous (S.C.) tumor model, established with human glioblastoma of unknown origin cell line U87-MG, and human bladder cancer cell line T24 and YTS-1. The mechanism by which H101 induced anti-tumor immunity were also investigated. Results Combining H101 with Camrelizumab demonstrated more potent anti-tumor effects than monotherapy in mouse S.C. tumor model. Increased tumor-infiltrating T cells were observed in the combined treatment group. H101 infection decreased the expression of CD47 in cancer cells, thereby promoting macrophages to phagocytose cancer cells. Following the H101-mediated activation of macrophages, increased levels of cytokines, including TNF, IL-12 and IFN-γ were observed. Moreover, when induced THP-1 cells were co-cultured with H101-treated cancer cells, expression of IFN-γ was increased in T cells. Elimination of IL-12 using an anti-IL-12 antibody abolished IFN-γ production from T cells. In addition, infection with H101 increased PD-L1 expression in YTS-1 cells. These results suggested that H101 may act synergistically to enhance the therapeutic efficacy of PD-1 blockade in cancer via suppressing CD47 signaling, which may promote macrophages to phagocytose tumor cells and activate CD8+ T cells. Conclusion The combination of H101 with PD-1 blockade exhibits potential as a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- CHENXIAO QIAO
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - YIPENG XU
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - YEDIE HE
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - ZHIJIAN CAI
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - HUA WANG
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| |
Collapse
|
2
|
Ngantcha Tatchou E, Milcamps R, Oldenhove G, Lambrecht B, Ingrao F. Generation and characterization of chicken monocyte-derived dendritic cells. Front Immunol 2025; 16:1517697. [PMID: 39967657 PMCID: PMC11832469 DOI: 10.3389/fimmu.2025.1517697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Dendritic cells (DCs) play a crucial role in orchestrating immune responses by bridging innate and adaptive immunity. In vitro generation of DCs from mouse and human tissues such as bone marrow and peripheral blood monocytes, has been widely used to study their immunological functions. In chicken, DCs have mainly been derived from bone marrow cell cultures, with limited characterization from blood monocytes. Methods The present study takes advantage of newly available chicken immunological tools to further characterize chicken monocyte-derived dendritic cells (MoDCs), focusing on their phenotype, and functions, including antigen capture and T-cell stimulation, and response to live Newcastle disease virus (NDV) stimulation. Results Adherent chicken PBMCs were cultured with recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), for 5 days, leading to the upregulation of putative CD11c and MHCII, markers of DC differentiation. Subsequent stimulation with lipopolysaccharide (LPS) or 24 h triggered phenotypic maturation of MoDCs, characterized by the increased surface expression of MHCII and co-stimulatory molecules CD80 and CD40, and elevated IL-12p40 secretion. This maturation reduced endocytic capacity but enhanced the allogenic stimulatory activity of the chicken MoDCs. Upon NDV stimulation for 6 h, MoDCs upregulated antiviral pathways, including retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2), alongside increased production of type I interferons (IFNs), and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6. However, these responses were downregulated after 24 hours. Conclusion These findings provide a comprehensive characterization of chicken MoDCs and suggest their potential as a model for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Elie Ngantcha Tatchou
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Romane Milcamps
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Davar D, Carneiro BA, Dy GK, Sheth S, Borad MJ, Harrington KJ, Patel SP, Galanis E, Samson A, Agrawal S, Chen Z, Fan C, Gong M, Burton J, Tu E, Durham N, Laubscher K, Arnaldez F, Zamarin D. Phase I study of a recombinant attenuated oncolytic virus, MEDI5395 (NDV-GM-CSF), administered systemically in combination with durvalumab in patients with advanced solid tumors. J Immunother Cancer 2024; 12:e009336. [PMID: 39551600 PMCID: PMC11574399 DOI: 10.1136/jitc-2024-009336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND MEDI5395 is a recombinant attenuated Newcastle disease virus engineered to express a human granulocyte-macrophage colony-stimulating factor transgene. Preclinically, MEDI5395 demonstrated broad oncolytic activity, augmented by concomitant programmed cell death-1/programmed cell death ligand-1 (PD-L1) axis blockade. Durvalumab is an anti-PD-L1 immune checkpoint inhibitor approved for the treatment of various solid tumors. We describe the results of the first-in-human study combining intravenous MEDI5395 with durvalumab in patients with advanced solid tumors. METHODS This phase I, open-label, multicenter, dose-escalation, dose-expansion study recruited adult patients with advanced solid tumors, who had relapsed or were refractory or intolerant to ≥1 prior line of standard treatment. MEDI5395 was administered intravenously as six doses over 15-18 days. The dose-escalation phase assessed four-dose levels (108, 109, 1010, 1011 focus forming units (FFU)) of MEDI5395, with sequential or delayed durvalumab. Durvalumab 1500 mg was administered intravenously every 4 weeks up to 2 years. The dose-expansion phase was not initiated. The primary objectives were to evaluate safety and tolerability, dose-limiting toxicities (DLTs) and the dose and schedule of MEDI5395 plus durvalumab administration. Secondary objectives included the assessment of the efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of MEDI5395. RESULTS 39 patients were treated with MEDI5395; 36 patients also received durvalumab. All 39 patients experienced ≥1 treatment-emergent adverse event (TEAE), most commonly fatigue (61.5%), nausea (53.8%) and chills (51.3%). Grade 3-4 TEAEs occurred in 27 (69.2%) patients; these were deemed MEDI5395-related in 12 (30.8%) patients. Two patients experienced a DLT, and the maximum tolerated dose of MEDI5395 with sequential and delayed durvalumab at study termination was 1011 and 1010 FFU, respectively. Four patients (10.3%) achieved a partial response (PR). Patients with PR or stable disease tended to have higher baseline PD-L1 and CD8+ levels in their tumor tissue. A tendency to dose-dependent pharmacokinetics of the viral genome was observed in whole blood and a tendency to dose-dependent viral shedding was observed in saliva and urine. Neutralizing antibodies were observed in all patients but did not appear to impact efficacy negatively. CONCLUSION This study demonstrates the feasibility, safety and preliminary efficacy of MEDI5395 with durvalumab in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT03889275.
Collapse
Affiliation(s)
- Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Benedito A Carneiro
- Lifespan Cancer Institute, Legorreta Cancer Institute at Brown University, Providence, Rhode Island, USA
| | - Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Siddharth Sheth
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research / The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | - Sandip P Patel
- University of California San Diego, La Jolla, California, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Sonia Agrawal
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Zhongying Chen
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Chunling Fan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Maozhen Gong
- AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Jenny Burton
- Oncology R&D, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Eric Tu
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Nicholas Durham
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Kevin Laubscher
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Fernanda Arnaldez
- Clinical Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Dmitriy Zamarin
- Early Drug Development, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
6
|
DePeaux K, Gunn WG, Rivadeneira DB, Delgoffe GM. Treatment with oncolytic vaccinia virus infects tumor-infiltrating regulatory and exhausted T cells. J Immunother Cancer 2024; 12:e009062. [PMID: 39153823 PMCID: PMC11331848 DOI: 10.1136/jitc-2024-009062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are an attractive way to increase immune infiltration into an otherwise cold tumor. While OVs are engineered to selectively infect tumor cells, there is evidence that they can infect other non-malignant cells in the tumor. We sought to determine if oncolytic vaccinia virus (VV) can infect lymphocytes in the tumor and, if so, how this was linked to therapeutic efficacy. METHODS To investigate infection of lymphocytes by VV, we used a GFP reporting VV in a murine head and neck squamous cell carcinoma tumor model. We also performed in vitro infection studies to determine the mechanism and consequences of VV lymphocyte infection by VV. RESULTS Our findings show that VV carries the capacity to infect proportions of immune cells, most notably T cells, after intratumoral treatment. Notably, this infection is preferential to terminally differentiated T cells that tend to reside in hypoxia. Infection of T cells leads to both virus production by the T cells as well as the eventual death of these cells. Using a mouse model which overexpressed the antiapoptotic protein Bcl2 in all T cells, we found that reducing T cell death following VV infection in MEER tumors reduced the number of complete regressions and reduced survival time compared with littermate control mice. CONCLUSIONS These findings suggest that OVs are capable of infecting more than just malignant cells after treatment, and that this infection may be an important part of the OV mechanism. We found that exhausted CD8+ T cells and regulatory CD4+ T cells were preferentially infected at early timepoints after treatment and subsequently died. When cell death in T cells was mitigated, mice responded poorly to VV treatment, suggesting that the deletion of these populations is critical to the therapeutic response to VV.
Collapse
Affiliation(s)
- Kristin DePeaux
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William G Gunn
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dayana B Rivadeneira
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Yang H, Tian J, Zhao J, Zhao Y, Zhang G. The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy. Viruses 2024; 16:886. [PMID: 38932177 PMCID: PMC11209082 DOI: 10.3390/v16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.
Collapse
Affiliation(s)
- Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Sha Y, Liu X, Yan W, Wang M, Li H, Jiang S, Wang S, Ren Y, Zhang K, Yin R. Long Non-Coding RNA Analysis: Severe Pathogenicity in Chicken Embryonic Visceral Tissues Infected with Highly Virulent Newcastle Disease Virus-A Comparison to the Avirulent Vaccine Virus. Microorganisms 2024; 12:971. [PMID: 38792800 PMCID: PMC11123907 DOI: 10.3390/microorganisms12050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the specific mechanisms underlying the differences in host pathological responses and symptoms caused by various virulent NDV strains remains limited. Long non-coding RNA (lncRNA) can participate in a range of biological processes and plays a crucial role in viral infection and replication. Therefore, this study employed RNA-Seq to investigate the transcriptional profiles of chicken embryos' visceral tissues (CEVTs) infected with either the virulent NA-1 strain or avirulent LaSota strain at 24 hpi and 36 hpi. Using bioinformatic methods, we obtained a total of 2532 lncRNAs, of which there were 52 and 85 differentially expressed lncRNAs at 24 hpi and 36 hpi, respectively. LncRNA analysis revealed that the severe pathological changes and symptoms induced by virulent NDV infection may be partially attributed to related target genes, regulated by differentially expressed lncRNAs such as MSTRG.1545.5, MSTRG.14601.6, MSTRG.7150.1, and MSTRG.4481.1. Taken together, these findings suggest that virulent NDV infection exploits the host's metabolic resources and exerts an influence on the host's metabolic processes, accompanied by excessive activation of the immune response. This impacts the growth and development of each system of CEVTs, breaches the blood-brain barrier, inflicts severe damage on the nervous system, and induces significant lesions. These observations may be attributed to variations in pathology. Consequently, novel insights were obtained into the intricate regulatory mechanisms governing NDV and host interactions. This will aid in unraveling the molecular mechanisms underlying both virulent and avirulent forms of NDV infection.
Collapse
Affiliation(s)
- Yuxin Sha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Xinxin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Weiwen Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Mengjun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Hongjin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Shanshan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Sijie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Yongning Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Kexin Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Renfu Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| |
Collapse
|
10
|
Sharifi N, Bouzari M, Keyvani H, Mehdi Ranjbar M. The effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia Patients-Clinical cohort study. Int Immunopharmacol 2024; 126:111296. [PMID: 38041958 DOI: 10.1016/j.intimp.2023.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies in women, and its treatment has many side effects. Therefore, in this research, the effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia (CIN) patients were investigated. METHODS 15 patients who met the inclusion criteria and diagnosed as CIN II and CIN III were included in the study. The vaccine was injected inside the cervix (neoplasia site) at increasing doses during 21 days, and they were evaluated for adverse events. NDV antibody titer was measured in 90 days and the levels of ki-67 and p16 proteins were studied by immunohistochemistry. Also, the levels of some important inflammatory cytokines in the serum of CIN patients were measured and finally the patients were evaluated according to the final outcomes and the reduction of tumor lesions. RESULTS Only in the first dose of vaccine some patients showed flu-like symptoms. The accumulation of NDV antibodies started on the 7th day of the study and increased until the 90th day. Administration of LaSota vaccine had no significant effect on the expressions of Ki-67 and p16 proteins. Nevertheless, a decrease in the serum levels of Il-1β was observed in patients after the administration of the vaccine, but the serum levels of both Il-2 and INF-γ upregulated significantly. Also, vaccine administration had no significant effect in reducing CIN grades and lesions. CONCLUSIONS In general, we concluded that LaSota strain of NDV vaccine has no therapeutic effectiveness in CIN patients.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
11
|
Jung BK, An YH, Jang SH, Jang JJ, Kim S, Jeon JH, Kim J, Song JJ, Jang H. The artificial amino acid change in the sialic acid-binding domain of the hemagglutinin neuraminidase of newcastle disease virus increases its specificity to HCT 116 colorectal cancer cells and tumor suppression effect. Virol J 2024; 21:7. [PMID: 38178138 PMCID: PMC10768451 DOI: 10.1186/s12985-023-02276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.
Collapse
Affiliation(s)
| | - Yong Hee An
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Sung Hoon Jang
- Graduate School of Medical Science, College of medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin-Ju Jang
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Seonhee Kim
- Libentech Co. LTD, Daejeon, Republic of Korea
| | | | - Jinju Kim
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Immunology and Immunological Disease, College of Medicine, Yonsei University, Seoul, Korea
| | - Hyun Jang
- Libentech Co. LTD, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Zhang L, Guo S, Chang S, Jiang G. Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells. Anticancer Agents Med Chem 2024; 24:1407-1418. [PMID: 39051583 DOI: 10.2174/0118715206308253240723055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuXian Guo
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuYing Chang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
13
|
Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, Zhang Z, Zhong L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J Transl Med 2023; 21:842. [PMID: 37993941 PMCID: PMC10666393 DOI: 10.1186/s12967-023-04709-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Oncolytic viruses (OVs) for cancer treatment are in a rapid stage of development, and the direct tumor lysis and activation of a comprehensive host immune response are irreplaceable advantages of cancer immunotherapy. However, excessive antiviral immune responses also restrict the spread of OVs in vivo and the infection of tumor cells. Macrophages are functionally diverse innate immune cells that phagocytose tumor cells and present antigens to activate the immune response, while also limiting the delivery of OVs to tumors. Studies have shown that the functional propensity of macrophages between OVs and tumor cells affects the overall therapeutic effect of oncolytic virotherapy. How to effectively avoid the restrictive effect of macrophages on OVs and reshape the function of tumor-associated macrophages in oncolytic virotherapy is an important challenge we are now facing. Here, we review and summarize the complex dual role of macrophages in oncolytic virotherapy, highlighting how the functional characteristics of macrophage plasticity can be utilized to cooperate with OVs to enhance anti-tumor effects, as well as highlighting the importance of designing and optimizing delivery modalities for OVs in the future.
Collapse
Affiliation(s)
- Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Pathak U, Pal RB, Malik N. The Viral Knock: Ameliorating Cancer Treatment with Oncolytic Newcastle Disease Virus. Life (Basel) 2023; 13:1626. [PMID: 37629483 PMCID: PMC10455894 DOI: 10.3390/life13081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The prospect of cancer treatment has drastically transformed over the last four decades. The side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and radiotherapy through the years highlight the prospect for a novel, complementary, and alternative cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses (OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune response. Newcastle disease virus (NDV) provides a very high safety profile compared to other oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent and discusses current preclinical and clinical research scenarios involving various NDV strains.
Collapse
Affiliation(s)
- Upasana Pathak
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| | - Ramprasad B. Pal
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
| | - Nagesh Malik
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| |
Collapse
|
15
|
Liu J, Piranlioglu R, Ye F, Shu K, Lei T, Nakashima H. Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions. Front Cell Infect Microbiol 2023; 13:1141034. [PMID: 37234776 PMCID: PMC10206241 DOI: 10.3389/fcimb.2023.1141034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma is a highly aggressive form of brain cancer characterized by the abundance of myeloid lineage cells in the tumor microenvironment. Tumor-associated macrophages and microglia (TAM) and myeloid-derived suppressor cells (MDSCs), play a pivotal role in promoting immune suppression and tumor progression. Oncolytic viruses (OVs) are self-amplifying cytotoxic agents that can stimulate local anti-tumor immune responses and have the potential to suppress immunosuppressive myeloid cells and recruit tumor-infiltrating T lymphocytes (TILs) to the tumor site, leading to an adaptive immune response against tumors. However, the impact of OV therapy on the tumor-resident myeloid population and the subsequent immune responses are not yet fully understood. This review provides an overview of how TAM and MDSC respond to different types of OVs, and combination therapeutics that target the myeloid population to promote anti-tumor immune responses in the glioma microenvironment.
Collapse
Affiliation(s)
- Junfeng Liu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Bykov Y, Dawodu G, Javaheri A, Garcia-Sastre A, Cuadrado-Castano S. Immune responses elicited by ssRNA(-) oncolytic viruses in the host and in the tumor microenvironment. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:10. [PMID: 37974615 PMCID: PMC10653360 DOI: 10.20517/2394-4722.2022.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Oncolytic viruses (OVs) are at the forefront of biologicals for cancer treatment. They represent a diverse landscape of naturally occurring viral strains and genetically modified viruses that, either as single agents or as part of combination therapies, are being evaluated in preclinical and clinical settings. As the field gains momentum, the research on OVs has been shifting efforts to expand our understanding of the complex interplay between the virus, the tumor and the immune system, with the aim of rationally designing more efficient therapeutic interventions. Nowadays, the potential of an OV platform is no longer defined exclusively by the targeted replication and cancer cell killing capacities of the virus, but by its contribution as an immunostimulator, triggering the transformation of the immunosuppressive tumor microenvironment (TME) into a place where innate and adaptive immunity players can efficiently engage and lead the development of tumor-specific long-term memory responses. Here we review the immune mechanisms and host responses induced by ssRNA(-) (negative-sense single-stranded RNA) viruses as OV platforms. We focus on two ssRNA(-) OV candidates: Newcastle disease virus (NDV), an avian paramyxovirus with one of the longest histories of utilization as an OV, and influenza A (IAV) virus, a well-characterized human pathogen with extraordinary immunostimulatory capacities that is steadily advancing as an OV candidate through the development of recombinant IAV attenuated platforms.
Collapse
Affiliation(s)
- Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gloria Dawodu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aryana Javaheri
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Liu J, Hu YY, Zhang QY, Zhang YN, Li N, Zhang ZR, Zhan SL, Gao L, Deng CL, Li XD, Yuan SP, He YQ, Ye HQ, Zhang B. Attenuated WNV-poly(A) exerts a broad-spectrum oncolytic effect by selective virus replication and CD8+ T cell-dependent immune response. Biomed Pharmacother 2023; 158:114094. [PMID: 36502755 DOI: 10.1016/j.biopha.2022.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
As an emerging tumor therapy, ideal oncolytic viruses preferentially replicate in malignant cells, reverse the immunosuppressive tumor microenvironment, and eventually can be eliminated by the patient. It is of great significance for cancer treatment to discover new excellent oncolytic viruses. Here, we found that WNV live attenuated vaccine WNV-poly(A) could be developed as a novel ideal oncolytic agent against several types of cancers. Mechanistically, due to its high sensitivity to type Ι interferon (IFN-Ι), WNV-poly(A) could specifically kill tumor cells rather than normal cells. At the same time, WNV-poly(A) could activate Dendritic cells (DCs) and trigger tumor antigen specific response mediated by CD8 + T cell, which contributed to inhibit the propagation of original and distal tumor cells. Like intratumoral injection, intravenous injection with WNV-poly(A) also markedly delays Huh7 hepatic carcinoma (HCC) transplanted tumor progression. Most importantly, in addition to an array of mouse xenograft tumor models, WNV-poly(A) also has a significant inhibitory effect on many different types of patient-derived tumor tissues and HCC patient-derived xenograft (PDX) tumor models. Our studies reveal that WNV-poly(A) is a potent and excellent oncolytic agent against many types of tumors and may have a role in metastatic and recurrent tumors.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yan Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shun-Li Zhan
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Lei Gao
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Yuan-Qiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Li SJ, Sun ZJ. Fueling immune checkpoint blockade with oncolytic viruses: Current paradigms and challenges ahead. Cancer Lett 2022; 550:215937. [DOI: 10.1016/j.canlet.2022.215937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
19
|
Delic M, Boeswald V, Goepfert K, Pabst P, Moehler M. In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells. Onco Targets Ther 2022; 15:1291-1307. [PMID: 36310770 PMCID: PMC9606445 DOI: 10.2147/ott.s350136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. MATERIALS AND METHODS We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. RESULTS We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. CONCLUSION We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens.
Collapse
Affiliation(s)
- Maike Delic
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany,Correspondence: Maike Delic, University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany, Tel +49 6131 179803, Fax +49 6131 179657, Email
| | - Veronika Boeswald
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Katrin Goepfert
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Petra Pabst
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| |
Collapse
|
20
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
21
|
Sitta J, Claudio PP, Howard CM. Virus-Based Immuno-Oncology Models. Biomedicines 2022; 10:biomedicines10061441. [PMID: 35740462 PMCID: PMC9220907 DOI: 10.3390/biomedicines10061441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been extensively explored in recent years with encouraging results in selected types of cancer. Such success aroused interest in the expansion of such indications, requiring a deep understanding of the complex role of the immune system in carcinogenesis. The definition of hot vs. cold tumors and the role of the tumor microenvironment enlightened the once obscure understanding of low response rates of solid tumors to immune check point inhibitors. Although the major scope found in the literature focuses on the T cell modulation, the innate immune system is also a promising oncolytic tool. The unveiling of the tumor immunosuppressive pathways, lead to the development of combined targeted therapies in an attempt to increase immune infiltration capability. Oncolytic viruses have been explored in different scenarios, in combination with various chemotherapeutic drugs and, more recently, with immune check point inhibitors. Moreover, oncolytic viruses may be engineered to express tumor specific pro-inflammatory cytokines, antibodies, and antigens to enhance immunologic response or block immunosuppressive mechanisms. Development of preclinical models capable to replicate the human immunologic response is one of the major challenges faced by these studies. A thorough understanding of immunotherapy and oncolytic viruses’ mechanics is paramount to develop reliable preclinical models with higher chances of successful clinical therapy application. Thus, in this article, we review current concepts in cancer immunotherapy including the inherent and synthetic mechanisms of immunologic enhancement utilizing oncolytic viruses, immune targeting, and available preclinical animal models, their advantages, and limitations.
Collapse
Affiliation(s)
- Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, Department of Radiation Oncology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Correspondence:
| |
Collapse
|
22
|
Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes. PLoS One 2022; 17:e0263707. [PMID: 35139115 PMCID: PMC8827430 DOI: 10.1371/journal.pone.0263707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
Collapse
|
23
|
Lu R, Wu G, Chen M, Ji D, Liu Y, Zhou GG, Fu W. USP18 and USP20 restrict oHSV-1 replication in resistant human oral squamous carcinoma cell line SCC9 and affect the viability of SCC9 cells. Mol Ther Oncolytics 2021; 23:477-487. [PMID: 34901390 PMCID: PMC8637187 DOI: 10.1016/j.omto.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, we discovered that two human oral squamous carcinoma cell (OSCC) lines, SCC9 and SCC25, exhibited varied levels of permissivity to oncolytic HSV-1 T1012G replication and the differential virus yields may associate with the constitutive accumulation of two deubiquitinating enzymes USP18 and USP20 in tumor cells. USP18 and USP20 belong to the ubiquitin-specific protease family, mediating the deubiquitination of targets and promoting antiviral responses. Depletion of USP18 or USP20 in SCC9 cells increased T1012G virus yields; overexpression of USP18 or USP20 in SCC25 cells down-regulated T1012G virus replication. In addition, STING as a verified substrate of USP18 and USP20, was found to affect the virus multiplication of T1012G in SCC9 cells. STING knockdown led to an increase in T1012G virus yields in SCC9 cells. Besides, we introduced a deubiquitinating enzyme inhibitor GSK2643943A targeting USP20 and evaluated its effects on viral replication and tumor killing in vitro and in vivo. The results showed that the combination of GSK2643934A and T1012G treatment brought a profound anti-tumor efficacy in mice bearing SCC9 tumors. This report explored factors that play roles in mediating oHSV-1 replication in OSCC tumor cells, facilitating to offer potential targets to improve oHSV-1 oncolytic efficacy and develop candidates of biomarkers to predict the efficiency of oHSV-1 multiplication in tumors.
Collapse
Affiliation(s)
- Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen 518116, Guangdong, China
| | - Guangxian Wu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Meiling Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Dongmei Ji
- Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yonghong Liu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen 518116, Guangdong, China
- Corresponding author Grace Guoying Zhou, Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen 518116, Guangdong, China.
| | - Wenmin Fu
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen 518116, Guangdong, China
- Corresponding author Wenmin Fu, Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen 518116, Guangdong, China.
| |
Collapse
|
24
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
25
|
Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity. Mol Ther Oncolytics 2021; 22:98-113. [PMID: 34514092 PMCID: PMC8411207 DOI: 10.1016/j.omto.2021.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic virotherapy has produced promising yet limited results in preclinical and clinical studies. Besides direct oncolytic activity, a significant therapeutic mechanism of oncolytic virotherapy is the induction of tumor-specific immunity. Consequently, the efficacy of oncolytic viruses can be improved by the insertion of immune stimulator genes and rational combinatorial therapy with other immunotherapies. This article reviews recent efforts on arming oncolytic viruses with a variety of immune stimulator molecules, immune cell engagers, and other immune potentiating molecules. We outline what is known about the mechanisms of action and the corresponding results. The review also discusses recent preclinical and clinical studies of combining oncolytic virotherapy with immune-checkpoint inhibitors and the role of oncolytic virotherapy in changing the tumor microenvironment.
Collapse
Affiliation(s)
- Drew Ashton Boagni
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Divya Ravirala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shaun Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
26
|
Harper J, Burke S, Travers J, Rath N, Leinster A, Navarro C, Franks R, Leyland R, Mulgrew K, McGlinchey K, Brown L, Dovedi SJ, Koopmann JO, Durham NM, Cheng X, Jin H, Eyles J, Wilkinson RW, Carroll D. Recombinant Newcastle Disease Virus Immunotherapy Drives Oncolytic Effects and Durable Systemic Antitumor Immunity. Mol Cancer Ther 2021; 20:1723-1734. [PMID: 34224361 PMCID: PMC9398146 DOI: 10.1158/1535-7163.mct-20-0902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
A recombinant Newcastle Disease Virus (NDV), encoding either a human (NDVhuGM-CSF, MEDI5395) or murine (NDVmuGM-CSF) GM-CSF transgene, combined broad oncolytic activity with the ability to significantly modulate genes related to immune functionality in human tumor cells. Replication in murine tumor lines was significantly diminished relative to human tumor cells. Nonetheless, intratumoral injection of NDVmuGM-CSF conferred antitumor effects in three syngeneic models in vivo; with efficacy further augmented by concomitant treatment with anti-PD-1/PD-L1 or T-cell agonists. Ex vivo immune profiling, including T-cell receptor sequencing, revealed profound immune-contexture changes consistent with priming and potentiation of adaptive immunity and tumor microenvironment (TME) reprogramming toward an immune-permissive state. CRISPR modifications rendered CT26 tumors significantly more permissive to NDV replication, and in this setting, NDVmuGM-CSF confers immune-mediated effects in the noninjected tumor in vivo Taken together, the data support the thesis that MEDI5395 primes and augments cell-mediated antitumor immunity and has significant utility as a combination partner with other immunomodulatory cancer treatments.
Collapse
Affiliation(s)
- James Harper
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: James Harper, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom. Phone: 203-749-6269; E-mail:
| | - Shannon Burke
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jon Travers
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nicola Rath
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Ruth Franks
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Lee Brown
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Xing Cheng
- BioPharmaceutical R&D, AstraZeneca, South San Francisco, California
| | - Hong Jin
- BioPharmaceutical R&D, AstraZeneca, South San Francisco, California
| | - Jim Eyles
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | |
Collapse
|
27
|
Immunomodulatory Arming Factors-The Current Paradigm for Oncolytic Vectors Relies on Immune Stimulating Molecules. Int J Mol Sci 2021; 22:ijms22169051. [PMID: 34445759 DOI: 10.3390/ijms22169051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector's use in clearing its targeted tumor.
Collapse
|
28
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
29
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
30
|
Nan FL, Zheng W, Nan WL, Yu T, Xie CZ, Zhang H, Xu XH, Li CH, Ha Z, Zhang JY, Zhuang XY, Han JC, Wang W, Qian J, Zhao GY, Li ZX, Ge JY, Bu ZG, Zhang Y, Lu HJ, Jin NY. Newcastle Disease Virus Inhibits the Proliferation of T Cells Induced by Dendritic Cells In Vitro and In Vivo. Front Immunol 2021; 11:619829. [PMID: 33708193 PMCID: PMC7942023 DOI: 10.3389/fimmu.2020.619829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Newcastle disease virus (NDV) infects poultry and antagonizes host immunity via several mechanisms. Dendritic cells (DCs) are characterized as specialized antigen presenting cells, bridging innate and adaptive immunity and regulating host resistance to viral invasion. However, there is little specific knowledge of the role of DCs in NDV infection. In this study, the representative NDV lentogenic strain LaSota was used to explore whether murine bone marrow derived DCs mature following infection. We examined surface molecule expression and cytokine release from DCs as well as proliferation and activation of T cells in vivo and in vitro in the context of NDV. The results demonstrated that infection with lentogenic strain LaSota induced a phenotypic maturation of immature DCs (imDCs), which actually led to curtailed T cell responses. Upon infection, the phenotypic maturation of DCs was reflected by markedly enhanced MHC and costimulatory molecule expression and secretion of proinflammatory cytokines. Nevertheless, NDV-infected DCs produced the anti-inflammatory cytokine IL-10 and attenuated T cell proliferation, inducing Th2-biased responses. Therefore, our study reveals a novel understanding that DCs are phenotypically mature but dysfunctional in priming T cell responses during NDV infection.
Collapse
Affiliation(s)
- Fu Long Nan
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Wei Zheng
- The 964Hospital of the PLA Joint Logistics, Changchun, China
| | - Wen Long Nan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Tong Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Agricultural College, Yanbian University, Yanji, China
| | - Chang Zhan Xie
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xiao Hong Xu
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Cheng Hui Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Yong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xin Yu Zhuang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ji Cheng Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guan Yu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Xin Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Ying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Hui Jun Lu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ning Yi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
31
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
32
|
Allavena P, Anfray C, Ummarino A, Andón FT. Therapeutic Manipulation of Tumor-associated Macrophages: Facts and Hopes from a Clinical and Translational Perspective. Clin Cancer Res 2021; 27:3291-3297. [PMID: 33531428 DOI: 10.1158/1078-0432.ccr-20-1679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
The stroma of most solid tumors is populated by myeloid cells, which mostly represent macrophages. Tumor-associated macrophages (TAMs), strongly influenced by cancer cell-derived factors, are key drivers of immunosuppression and support tumor growth and spread to distant sites. Their accurate quantification and characterization in the tumor microenvironment are gaining prognostic value: increasing evidence demonstrates their ability to hamper cancer patients' response to chemotherapy, as well as to immunotherapies based on checkpoint inhibition. Therefore, strategies to counteract their negative effects are nowadays gaining momentum at preclinical, translational, and clinical levels. Our knowledge of the biology of TAMs has greatly advanced in the last years; several strategies to target and reprogram their functions to become antitumor effectors have proven successful in experimental preclinical tumor models; on the other hand, few approaches have so far been effectively translated into clinic practice. A growing interest in the therapeutic manipulation of TAMs is evidenced by numerous early-phase clinical trials, which are continuously fueled by new discoveries from basic research. This gives us hope that the targeting and sustained reprogramming of TAMs will be more specific to synergize with current therapies and maximize antitumor responses in patients.
Collapse
Affiliation(s)
- Paola Allavena
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy.
| | - Clément Anfray
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy
| | - Aldo Ummarino
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy
| | - Fernando Torres Andón
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy.,Center for Research in Molecular Medicine & Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Meng Q, He J, Zhong L, Zhao Y. Advances in the Study of Antitumour Immunotherapy for Newcastle Disease Virus. Int J Med Sci 2021; 18:2294-2302. [PMID: 33967605 PMCID: PMC8100649 DOI: 10.7150/ijms.59185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023] Open
Abstract
This article reviews the preclinical research, clinical application and development of Newcastle disease virus (NDV) in the field of cancer therapy. Based on the distinctive antitumour properties of NDV and its positive interaction with the patient's immune system, this biologic could be considered a major breakthrough in cancer treatment. On one hand, NDV infection creates an inflammatory environment in the tumour microenvironment, which can directly activate NK cells, monocytes, macrophages and dendritic cells and promote the recruitment of immune cells. On the other hand, NDV can induce the upregulation of immune checkpoint molecules, which may break immune tolerance and immune checkpoint blockade resistance. In fact, clinical data have shown that NDV combined with immune checkpoint blockade can effectively enhance the antitumour response, leading to the regression of local tumours and distant tumours when injected, and this effect is further enhanced by targeted manipulation and modification of the NDV genome. At present, recombinant NDV and recombinant NDV combined with immune checkpoint blockers have entered different stages of clinical trials. Based on these studies, further research on NDV is warranted.
Collapse
Affiliation(s)
- Qiuxing Meng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Burman B, Pesci G, Zamarin D. Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12123552. [PMID: 33260685 PMCID: PMC7761210 DOI: 10.3390/cancers12123552] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giulio Pesci
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
35
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20:651-668. [PMID: 32433532 PMCID: PMC7238960 DOI: 10.1038/s41577-020-0306-5] [Citation(s) in RCA: 2560] [Impact Index Per Article: 512.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The T lymphocyte, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in the fight against cancer. Basic science discoveries elucidating the molecular and cellular biology of the T cell have led to new strategies in this fight, including checkpoint blockade, adoptive cellular therapy and cancer vaccinology. This area of immunological research has been highly active for the past 50 years and is now enjoying unprecedented bench-to-bedside clinical success. Here, we provide a comprehensive historical and biological perspective regarding the advent and clinical implementation of cancer immunotherapeutics, with an emphasis on the fundamental importance of T lymphocyte regulation. We highlight clinical trials that demonstrate therapeutic efficacy and toxicities associated with each class of drug. Finally, we summarize emerging therapies and emphasize the yet to be elucidated questions and future promise within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. J Clin Med 2020; 9:jcm9103226. [PMID: 33050070 PMCID: PMC7600332 DOI: 10.3390/jcm9103226] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the most abundant leucocyte subset in many cancers and play a major role in the creation of a protective niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to escape the immune system and to allow the tumor to proliferate and metastasize to distant sites. Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to reprogram TAMs with single as well as combination therapies.
Collapse
|
38
|
Park R, Eshrat F, Al-Jumayli M, Saeed A, Saeed A. Immuno-Oncotherapeutic Approaches in Advanced Hepatocellular Carcinoma. Vaccines (Basel) 2020; 8:E447. [PMID: 32784389 PMCID: PMC7563532 DOI: 10.3390/vaccines8030447] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced hepatocellular carcinoma has limited treatment options, but there has been extensive growth recently with cabozantinib, regorafenib, lenvatinib, nivolumab, atezolizumab, and bevacizumab, which are some of the treatments that have received FDA approval just over the last three years. Because HCC tumor microenvironment is potentially immunogenic and typically characterized by inflammation, immunotherapy has been proposed as a potential novel therapeutic approach, which has prompted studies in advanced HCC patients investigating various immune-therapeutic strategies such as CAR-T cell therapy, checkpoint inhibitors, and onco-vaccines. The anti-PD-1 checkpoint inhibitors nivolumab and pembrolizumab have been FDA approved as a second line treatment in patients who progressed or are intolerant to Sorafenib. To build up on the success of PD-1 monotherapy, combinatorial regimens with PD-1/PD-L1 inhibitors plus VEGF targeted agents have shown positive results in various malignancies including HCC. The combination of atezolizumab plus bevacizumab is the new addition to the HCC treatment armamentarium following a pivotal study that demonstrated an improvement in OS over frontline sorafenib. Other novel immune-based approaches and oncolytic viruses are in the early phases of clinical evaluation. These innovative approaches enhance the intensity of cancer-directed immune responses and will potentially impact the outlook of this aggressive disease.
Collapse
Affiliation(s)
- Robin Park
- MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA 01702, USA;
| | - Fariha Eshrat
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS 66160, USA; (F.E.); (M.A.-J.)
| | - Mohammed Al-Jumayli
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS 66160, USA; (F.E.); (M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS 66160, USA; (F.E.); (M.A.-J.)
| |
Collapse
|