1
|
Rahal Z, Liu Y, Peng F, Yang S, Jamal MA, Sharma M, Moreno H, Damania AV, Wong MC, Ross MC, Sinjab A, Zhou T, Chen M, Reischle IT, Feng J, Chukwuocha C, Tang E, Abaya C, Lim JK, Leung CH, Lin HY, Deboever N, Lee JJ, Sepesi B, Gibbons DL, Wargo JA, Fujimoto J, Wang L, Petrosino JF, Ajami NJ, Jenq RR, Moghaddam SJ, Cascone T, Hoffman K, Kadara H. Inflammation Mediated by Gut Microbiome Alterations Promotes Lung Cancer Development and an Immunosuppressed Tumor Microenvironment. Cancer Immunol Res 2024; 12:1736-1752. [PMID: 39269772 PMCID: PMC11614694 DOI: 10.1158/2326-6066.cir-24-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Accumulating evidence indicates that the gut microbiome influences cancer progression and therapy. We recently showed that progressive changes in gut microbial diversity and composition are closely coupled with tobacco-associated lung adenocarcinoma in a human-relevant mouse model. Furthermore, we demonstrated that the loss of the antimicrobial protein Lcn2 in these mice exacerbates protumor inflammatory phenotypes while further reducing microbial diversity. Yet, how gut microbiome alterations impinge on lung adenocarcinoma development remains poorly understood. In this study, we investigated the role of gut microbiome changes in lung adenocarcinoma development using fecal microbiota transfer and delineated a pathway by which gut microbiome alterations incurred by loss of Lcn2 fostered the proliferation of proinflammatory bacteria of the genus Alistipes, triggering gut inflammation. This inflammation propagated systemically, exerting immunosuppression within the tumor microenvironment, augmenting tumor growth through an IL6-dependent mechanism and dampening response to immunotherapy. Corroborating our preclinical findings, we found that patients with lung adenocarcinoma with a higher relative abundance of Alistipes species in the gut showed diminished response to neoadjuvant immunotherapy. These insights reveal the role of microbiome-induced inflammation in lung adenocarcinoma and present new potential targets for interception and therapy.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sujuan Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A. Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manvi Sharma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah Moreno
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ashish V. Damania
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew C. Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew C. Ross
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minyue Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Inti Tarifa Reischle
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiping Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chidera Chukwuocha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Tang
- Department of Physics, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Camille Abaya
- Department of Biology, Trinity University, San Antonio, TX, USA
| | - Jamie K Lim
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, John Hopkins University, Baltimore, MD, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Y. Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathaniel Deboever
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Jack J. Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L. Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A. Wargo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Clinical Research Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Linghua Wang
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R. Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| |
Collapse
|
2
|
Mukhopadhyay SS, Swan KF, Pridjian G, Kolls JK, Zhuang Y, Yin Q, Lasky JA, Flemington E, Morris CA, Lin Z, Morris GF. Gammaherpesvirus Infection Stimulates Lung Tumor-Promoting Inflammation. Pathogens 2024; 13:747. [PMID: 39338937 PMCID: PMC11434807 DOI: 10.3390/pathogens13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Lung tumor-promoting environmental exposures and γherpesvirus infections are associated with Type 17 inflammation. To test the effect of γherpesvirus infection in promoting lung tumorigenesis, we infected mutant K-Ras-expressing (K-RasLA1) mice with the murine γherpesvirus MHV68 via oropharyngeal aspiration. After 7 weeks, the infected mice displayed a more than 2-fold increase in lung tumors relative to their K-RasLA1 uninfected littermates. Assessment of cytokines in the lung revealed that expression of Type 17 cytokines (Il-6, Cxcl1, Csf3) peaked at day 7 post-infection. These observations correlated with the post-infection appearance of known immune mediators of tumor promotion via IL-17A in the lungs of tumor-bearing mice. Surprisingly, Cd84, an immune cell marker mRNA, did not increase in MHV68-infected wild-type mice lacking lung tumors. Csf3 and Cxcl1 protein levels increased more in the lungs of infected K-RasLA1 mice relative to infected wild-type littermates. Flow cytometric and transcriptomic analyses indicated that the infected K-RasLA1 mice had increased Ly6Gdim/Ly6Chi immune cells in the lung relative to levels seen in uninfected control K-RasLA1 mice. Selective methylation of adenosines (m6A modification) in immune-cell-enriched mRNAs appeared to correlate with inflammatory infiltrates in the lung. These observations implicate γherpesvirus infection in lung tumor promotion and selective accumulation of immune cells in the lung that appears to be associated with m6A modification of mRNAs in those cells.
Collapse
Affiliation(s)
- Sudurika S. Mukhopadhyay
- Departments of Microbiology & Immunology and Pathology & Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Jay K. Kolls
- Departments of Medicine & Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Yan Zhuang
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Qinyan Yin
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Joseph A. Lasky
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Erik Flemington
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Cindy A. Morris
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Zhen Lin
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Gilbert F. Morris
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| |
Collapse
|
3
|
Wu Z, Zhu Z, Fu L. Integrating GEO, network pharmacology, and in vitro assays to explore the pharmacological mechanism of Bruceae Fructus against laryngeal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4165-4181. [PMID: 38032489 PMCID: PMC11111496 DOI: 10.1007/s00210-023-02869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The goal of this study is to look into the pharmacological mechanism of Bruceae Fructus in conjunction with GEO, network pharmacology, and in vitro assays for the treatment of laryngeal cancer to provide theoretical support for its therapeutic use. The active components and matching targets of Bruceae Fructus were retrieved from the TCMSP database, while genes linked with laryngeal cancer were obtained from the GEO, GeneCards, DisGeNET, and DrugBank databases. Besides, the components and targets were supplemented by literatures in PubMed database. Cytoscape software was used to create the active ingredients-target network diagram. The String database was used to build the PPI network. Following that, the core targets were subjected to GO enrichment and KEGG pathway analysis using the DAVID database. Finally, AutoDock was used to perform molecular docking between the core components and the core targets. To investigate the biological effects of beta-sitosterol, the viability of laryngeal cancer cells was assessed after beta-sitosterol therapy using the MTS technique. Following that, how beta-sitosterol affected colony formation after 14 days of culture of treated cells was researched. Flow cytometry was utilized to detect apoptosis to examine the influence of beta-sitosterol on laryngeal cancer cell apoptosis, and then detected mRNA and protein expression levels of 10 key genes by RT-qPCR and Western Blot assay. There were 1258 laryngeal cancer-related genes and 15 Bruceae Fructus components, with beta-sitosterol and luteolin serving as key components. Bruceae Fructus' primary targets against laryngeal cancer were IL6, JUN, TNF, IL2, IL4, IFNG, RELA, TP53, CDKN1A, and AKT1. GO enrichment yielded 41 CC, 78 MF, and 383 BP. Platinum drug resistance, the PI3K-Akt signaling pathway, the p53 signaling pathway, apoptosis, the HIF-1 signaling pathway, and 147 additional pathways have been added to KEGG. The results of molecular docking revealed that the core components had a high affinity for the core target. The results of the cell experiment indicate that beta-sitosterol suppressed Hep-2 cell activity in a concentration-dependent manner. Besides, beta-sitosterol has powerful antiproliferative properties in Hep-2 cells. Flow cytometry results showed that beta-sitosterol promoted laryngeal cancer cell apoptosis in a concentration-dependent manner. The results of RT-qPCR and Western Blot assay showed that the mRNA and protein expression levels of TP53, JUN, TNF-α, CDKN1A, and IL-2 were significantly up-regulated after beta-sitosterol treatment, while the mRNA and protein expression levels of RELA, AKT1, IL-6, IFNG, and IL-4 were significantly down-regulated. This study integrating GEO, network pharmacology, and in vitro assays investigated the probable mechanism of Bruceae Fructus' anti-laryngeal cancer activity, which can give a theoretical foundation for additional future animal experiments.
Collapse
Affiliation(s)
- Zhongbiao Wu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China
| | - Zhongyan Zhu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China
| | - Liyuan Fu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China.
| |
Collapse
|
4
|
Situmorang PC, Ilyas S, Syahputra RA, Nugraha AP, Putri MSS, Rumahorbo CGP. Rhodomyrtus tomentosa (Aiton) Hassk. (haramonting) protects against allethrin-exposed pulmo damage in rats: mechanistic interleukins. Front Pharmacol 2024; 15:1343936. [PMID: 38379903 PMCID: PMC10877004 DOI: 10.3389/fphar.2024.1343936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Inhaling Allethrin (C19H26O3) may induce oxidative stress in lung cells by causing the formation of free radi-cals. Interleukins (IL) are a group of secreted cytokines or proteins and signaling molecules initially produced as an immune response by leukocytes. Rhodomyrtus tomentosa (Aiton) Hassk. (haramonting) contains antioxidants that may prevent lung damage induced by allethrin-containing electric mosquito repellents. In this study, six groups of rats were exposed to allethrin via an electric mosquito repellent, including positive, negative, and comparison control groups and three groups were administered Rhodomyrtus tomentosa (Aiton) Hassk at 100 mg/kg BW, 200 mg/kg BW, and 300 mg/kg BW. After 30 days, the pulmonary tissue and the blood were taken for immunohisto-chemical and ELISA analysis. The accumulation of inflammatory cells causes the thickening of the alveolar wall structures. Injuries were more prevalent in the A+ group than in the other groups. The connection between the alveoli and blood capillaries, which can interfere with alveolar gas exchange, is not regulated, and the lu-minal morphology is aberrant, causing damage to the alveolar epithelial cells. Exposure to electric mosquito coils containing allethrin can increase the expression of interleukin-1, interleukin-8, interleukin-9, and interleu-kin-18 in blood serum and tissues while decreasing the expression of interleukin-6 and interleukin-10. Like the Vitamin C group, Rhodomyrtus tomentosa can increase alveolar histological alterations by decreasing the ex-pression of IL-1β, IL-8, IL-9, and IL-18 while increasing IL-6 and IL-10. So that this plant can be developed in the future as a drug to prevent lung harm from exposure.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mimmy Sari Syah Putri
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
5
|
Lou Y, Peng P, Wang S, Wang J, Du P, Zhang Z, Zheng J, Liu P, Xu LX. Combining all-trans retinoid acid treatment targeting myeloid-derived suppressive cells with cryo-thermal therapy enhances antitumor immunity in breast cancer. Front Immunol 2022; 13:1016776. [PMID: 36389684 PMCID: PMC9664198 DOI: 10.3389/fimmu.2022.1016776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
Targeting myeloid-derived suppressive cells (MDSCs) has been considered a potential strategy in tumor therapy. However, a single drug targeting MDSCs remains a challenge in the clinic. An increasing number of studies have shown that combination agents targeting MDSCs and immunotherapy may provide exciting new insights and avenues to explore in tumor therapy. In our previous study, a novel cryo-thermal therapy was developed for metastatic tumors that systematically activate innate and adaptive immunity. Moreover, cryo-thermal therapy was shown to dramatically decrease the levels of MDSCs and induce their differentiation toward potent antigen-presenting cells. However, the therapeutic effects of cryo-thermal therapy on the 4T1 mouse breast cancer model were still not satisfactory because of the high level of MDSCs before and after treatment. Therefore, in this study, we combined cryo-thermal therapy with all-trans retinoid acid (ATRA), a small molecule drug that can induce the inflammatory differentiation of MDSCs. We found that combination therapy notably upregulated the long-term survival rate of mice. Mechanically, combination therapy promoted the phenotype and functional maturation of MDSCs, efficiently decreasing suppressive molecule expression and inhibiting glutamine and fatty acid metabolism. Moreover, MDSCs at an early stage after combination therapy significantly decreased the proportions of Th2 and Treg subsets, which eventually resulted in Th1-dominant CD4+ T-cell differentiation, as well as enhanced cytotoxicity of CD8+ T cells and natural killer cells at the late stage. This study suggests a potential therapeutic strategy for combination ATRA treatment targeting MDSCs with cryo-thermal therapy to overcome the resistance of MDSC-induced immunosuppression in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ping Liu
- *Correspondence: Lisa X. Xu, ; Ping Liu,
| | - Lisa X. Xu
- *Correspondence: Lisa X. Xu, ; Ping Liu,
| |
Collapse
|
6
|
Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, Wan X, Xu B, Ben-David Y, Luo H. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci 2022; 23:ijms231810916. [PMID: 36142828 PMCID: PMC9504056 DOI: 10.3390/ijms231810916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingfei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Mashaal Ahmad
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Caihong Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xinwei Wan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Bixue Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| |
Collapse
|
7
|
Hromakova I, Sorochan P, Prokhach N, Hromakova I. Interleukin-6 and colorectal cancer development. УКРАЇНСЬКИЙ РАДІОЛОГІЧНИЙ ТА ОНКОЛОГІЧНИЙ ЖУРНАЛ 2021; 29:89-107. [DOI: 10.46879/ukroj.4.2021.89-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background. Colorectal cancer (CRC) is one of the most common malignancies in the world. It ranks third in the structure of cancer morbidity and second in the structure of mortality. One of the important factors leading to CRC is chronic inflammation of the intestine, in which pro-inflammatory cytokines play a crucial role. Among proinflammatory cytokines, interleukin-6 occupies one of the leading places in the pathogenesis of CRC. Therefore, it is important to elucidate the role of interleukin-6 (IL-6) in the development and progression of CRC, determine the diagnostic and prognostic value of the cytokine and analyze the application of therapeutic strategies aimed at the IL-6 signaling pathway in CRC. Purpose – to analyze the role of proinflammatory cytokine IL-6 in the development of colorectal cancer, consider the mechanisms of oncogenic action of cytokine, evaluate the results of therapeutic strategies aimed at the IL-6 signaling pathway in colorectal cancer and characterize prognostic and diagnostic value of IL-6. Data sources. Data search for review was performed in databases Pubmed, Cochrane Library, ScienceDirect. The results of research performed before May 2021 are analyzed. Relevant unpublished studies have been found in clinical trial registry of U.S. National Institutes of Health www.clinicaltrials.gov. Results. The assessment of diagnostic and prognostic value of IL-6 in patients with CRC is given. The mechanisms of IL-6 regulation of tumor growth, angiogenesis, apoptosis, metastasis in CRC are elucidated. The results of preclinical and clinical testing of monoclonal antibodies to IL-6, IL-6R, low molecular weight compounds that affect cytokine receptor signaling through gp130 and JAK-STAT, as well as drugs and compounds of natural origin, that are able to inhibit IL-6/STAT3 signal pathway, are presented. Conclusions. Strategies to block IL-6 signaling may be potentially useful in malignancies, most likely as a component of combination therapy, or in preventing adverse symptoms associated with cancer immunotherapy. Further research is needed to elucidate the exact role of classical IL-6 signaling and trans-signaling in the pathogenesis of colorectal cancer, as this may provide a basis for more targeted inhibition of the functions of this pleiotropic cytokine.
Collapse
|
8
|
Shi H, Qin Y, Tian Y, Wang J, Wang Y, Wang Z, Lv J. Interleukin-1beta triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation. Immunobiology 2021; 227:152165. [PMID: 34936966 DOI: 10.1016/j.imbio.2021.152165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation contributes to cancer development and progression. Although interleukin-1beta (IL-1β) has been observed to be associated with an general immune suppression of T cell response and the immunosuppression strongly correlates with accumulation of myeloid-derived suppressor cells (MDSCs), the relationship and mechanism between MDSCs expansion and IL-1β expression remain ambiguous. Here, we showed that the concentration of IL-1β was highly correlated with G-MDSC subset, rather than mo-MDSC subset. Recombinant IL-1β increased the percentage of G-MDSCs in the blood of tumor-bearing mice, and IL-1Ra attenuated the accumulation of G-MDSCs in the tumor-bearing mice. In addition, the IL-1β-overexpressing B16F10 cells induced higher level of G-MDSCs compared with wild-type B16F10 cells. Moreover, we found that the accumulation of G-MDSCs induced by IL-1β was dependent on the activation of extracellular signal-regulated kinases 1 and 2 (Erk1/2). Collectively, these findings show a novel role of IL-1β in G-MDSCs accumulation by activating Erk1/2, which suggests that IL-1β elimination or Erk1/2 signaling blockade could decrease G-MDSCs generation and thereby improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yufeng Tian
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jiaan Wang
- Department of Blood Transfusion, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- Department of Medical Image, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Ziyi Wang
- Department of Anesthesiology, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
9
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|
10
|
Zheng Z, Zheng X, Zhu Y, Yao Z, Zhao W, Zhu Y, Sun F, Mu X, Wang Y, He W, Liu Z, Wu K, Zheng J. IL-6 Promotes the Proliferation and Immunosuppressive Function of Myeloid-Derived Suppressor Cells via the MAPK Signaling Pathway in Bladder Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5535578. [PMID: 33981768 PMCID: PMC8088376 DOI: 10.1155/2021/5535578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Muscle-invasive bladder cancer (MIBC) is characterized by a highly complex immune environment, which is not well understood. Interleukin-6 (IL-6) is generated and secreted by multifarious types of cells, including tumor cells. This study was aimed at demonstrating that the levels of IL-6 and the number of myeloid-derived suppressor cells (MDSCs), with a positive correlation between them, increased in MIBC tissues, promoting MIBC cell proliferation, especially in patients with recurrence. In coculture analysis, MDSCs, with the stimulation of IL-6, could significantly lower the proliferation ability of CD4+ or CD8+ T lymphocytes. Further, this study demonstrated that IL-6 could upregulate the mitogen-activated protein kinase (MAPK) signaling pathway in MDSCs. The MAPK signaling inhibitor, aloesin, partially reversed the effects of IL-6 on MDSCs. These data suggested that IL-6 promoted MIBC progression by not only accelerating proliferation but also improving the immune suppression ability of MDSCs through activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youjia Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Wang
- Department of Urology, Shanghai Jiangqiao Hospital, Jiading Branch, Shanghai General Hospital, Shanghai, China
| | - Wanqing He
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Zhang Z, Huang X, Wang E, Huang Y, Yang R. Identification and characterization of B220 +/B220 - subpopulations in murine Gr1 +CD11b + cells during tumorigenesis. Oncoimmunology 2021; 10:1912472. [PMID: 33948392 PMCID: PMC8057082 DOI: 10.1080/2162402x.2021.1912472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Although all murine MDSCs are defined as Gr1+CD11b+, their true immunophenotype remains elusive. In this study, we found murine Gr1+CD11b+ cells can be divided into two subsets: Gr1+CD11b+B220- and Gr1+CD11b+B220+, especially in the spleen tissues. Unlike the dominant B220- subset, the B220+ subpopulation was not induced by tumor in vivo. Moreover, Gr1+CD11b+B220+ cells from tumor-bearing mice spleens were unable to induce arginase 1 and inducible nitric oxide synthase expression, inhibit T cell proliferation, or promote tumor growth in primary tumor site. Nevertheless, these cells suppressed tumor metastasis in vivo and reduced cancer cell motility in vitro, while Gr1+CD11b+B220- cells from tumor-bearing mice spleens promoted tumor metastasis and enhanced cancer cell motility. Furthermore, both the polymorphonuclear (PMN-MDSCs) and monocytic MDSCs (Mo-MDSCs) could be further divided into B220- and B220+ subsets; interestingly, tumor only induced the expansion of B220- PMN-MDSCs and B220- Mo-MDSCs, but not the B220+ counterparts. Compared with B220- PMN-MDSCs and B220- Mo-MDSCs, the Ly6G+Ly6C-CD11b+B220+ and Ly6G-Ly6C+CD11b+B220+ cells from tumor-bearing mice spleens exhibited a more mature phenotype without immunosuppressive activity. Additionally, IL-6 deficiency attenuated the tumor-induced accumulation of MDSCs, B220- MDSCs and B220- PMN-MDSCs but increased the percentages of Gr1+CD11b+B220+, Ly6G+Ly6C-CD11b+B220+, and Ly6G-Ly6C+CD11b+B220+ cells, indicating the opposing roles of the IL-6 signaling pathway in the expansion of B220- MDSCs and their B220+ counterparts. Taken together, our findings indicate that the B220+ subset is a distinct subset of Gr1+CD11b+ cells functionally different from the B220- subpopulation during tumorigenesis and induction of MDSCs to B220+ cells may be helpful for cancer therapy.
Collapse
Affiliation(s)
- Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Enlin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yugang Huang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Clin Cancer Res 2021; 27:4669-4679. [PMID: 33827891 DOI: 10.1158/1078-0432.ccr-20-4459] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been shown to play a critical role in tumor development from initiation to metastasis. EMT could be regarded as a continuum, with intermediate hybrid epithelial and mesenchymal phenotypes having high plasticity. Classical EMT is characterized by the phenotype change of epithelial cells to cells with mesenchymal properties, but EMT is also associated with multiple other molecular processes, including tumor immune evasion. Some previous studies have shown that EMT is associated with the cell number of immunosuppressive cells, such as myeloid-derived suppressor cells, and the expression of immune checkpoints, such as programmed cell death-ligand 1, in several cancer types. At the molecular level, EMT transcriptional factors, including Snail, Zeb1, and Twist1, produce or attract immunosuppressive cells or promote the expression of immunosuppressive checkpoint molecules via chemokine production, leading to a tumor immunosuppressive microenvironment. In turn, immunosuppressive factors induce EMT in tumor cells. This feedback loop between EMT and immunosuppression promotes tumor progression. For therapy directly targeting EMT has been challenging, the elucidation of the interactive regulation of EMT and immunosuppression is desirable for developing new therapeutic approaches in cancer. The combination of immune checkpoint inhibitors and immunotherapy targeting immunosuppressive cells could be a promising therapy for EMT.
Collapse
Affiliation(s)
- Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto, Japan
| | - Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Siemińska I, Poljańska E, Baran J. Granulocytes and Cells of Granulocyte Origin-The Relevant Players in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073801. [PMID: 33917620 PMCID: PMC8038777 DOI: 10.3390/ijms22073801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancy and cause of cancer death worldwide, and it still remains a therapeutic challenge for western medicine. There is strong evidence that, in addition to genetic predispositions, environmental factors have also a substantial impact in CRC development. The risk of CRC is attributed, among others to dietary habits, alcohol consumption, whereas physical activity, food containing dietary fiber, dairy products, and calcium supplements have a protective effect. Despite progress in the available therapies, surgery remains a basic treatment option for CRC. Implementation of additional methods of treatment such as chemo- and/or targeted immunotherapy, improved survival rates, however, the results are still far from satisfactory. One of the reasons may be the lack of deeper understanding of the interactions between the tumor and different types of cells, including tumor infiltrating granulocytes. While the role of neutrophils is quite well explored in many cancers, role of eosinophils and basophils is often underestimated. As part of this review, we focused on the function of different granulocyte subsets in CRC, emphasizing the beneficial role of eosinophils and basophils, as well as dichotomic mode of neutrophils action. In addition, we addressed the current knowledge on cells of granulocyte origin, specifically granulocytic myeloid derived suppressor cells (Gr-MDSCs) and their role in development and progression of CRC.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewa Poljańska
- Laboratory Medicine, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|