1
|
Liu L, Song L, Liu T, Hui K, Hu C, Yang J, Pi X, Yan Y, Liu S, Zhang Y, Chen H, Cao Y, Zhou L, Qiao Y, Yu D, Yin C, Li X, Zhang C, Li D, Wang Z, Liu Z, Jiang X. Recombinant oncolytic virus NDV-anti-VEGFR2 enhances radiotherapy sensitivity in NSCLC by targeting VEGF signaling and impairing DNA repair. Gene Ther 2025:10.1038/s41434-025-00540-x. [PMID: 40382521 DOI: 10.1038/s41434-025-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Resistance to radiotherapy is a significant challenge in the clinical management of non-small cell lung cancer (NSCLC). This study investigates a novel multimodal therapeutic strategy that combines oncolytic Newcastle disease virus (NDV) with an anti-VEGFR2 single-chain variable fragment (NDV-anti-VEGFR2) to enhance radiosensitivity in NSCLC. We engineered NDV-anti-VEGFR2 and assessed its efficacy in sensitizing Calu-1 cells to radiation. In vitro results demonstrated that NDV-anti-VEGFR2 significantly inhibited tumor cell proliferation when combined with radiotherapy. In vivo experiments revealed that NDV-anti-VEGFR2, combined with radiation, achieved a tumor growth inhibition rate of 86.48%, surpassing the effects of NDV or radiation alone. Mechanistic investigations indicated that NDV-anti-VEGFR2 mitigated hypoxia by downregulating HIF-1α and impaired DNA repair pathways, as evidenced by reduced levels of RAD51 and γ-H2AX. These findings suggest that NDV-anti-VEGFR2 not only normalizes tumor vasculature but also enhances the cytotoxic effects of radiation by compromising DNA repair mechanisms. Collectively, our results support the clinical potential of NDV-anti-VEGFR2 combined with radiotherapy as a promising strategy to overcome radiotherapy resistance in NSCLC. Future studies in immunocompetent models are warranted to elucidate the immune-mediated effects of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Liang Liu
- Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Liying Song
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Tianyan Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Kaiyuan Hui
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Chenxi Hu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Jiarui Yang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Xuelei Pi
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Yuanyuan Yan
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Shishi Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Yating Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Hongna Chen
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Yukai Cao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lihua Zhou
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Yun Qiao
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Dan Yu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Chengkai Yin
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Chenfeng Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Deshan Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China
| | - Zhihang Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City, Jiangsu province, China.
| | - Xiaodong Jiang
- Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China.
| |
Collapse
|
2
|
Moussa MR, Fan N, Birk J, Provatas AA, Mehta P, Hatano Y, Chun OK, Darooghegi Mofrad M, Lotfi A, Aksenov A, Motta VN, Zenali M, Vaziri H, Grady JJ, Nakanishi M, Rosenberg DW. Systemic Inflammation and the Inflammatory Context of the Colonic Microenvironment Are Improved by Urolithin A. Cancer Prev Res (Phila) 2025; 18:235-250. [PMID: 39995164 PMCID: PMC11979956 DOI: 10.1158/1940-6207.capr-24-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Diet affects cancer risk, and plant-derived polyphenols exhibit cancer-preventive properties. Walnuts are an exceptional source of polyphenolic ellagitannins, converted into urolithins by gut microflora. This clinical study examines the impact of urolithin metabolism on inflammatory markers in blood and colon polyp tissue. We evaluate the effects of walnut consumption on urinary urolithins, serum inflammatory markers, and immune cell markers in polyp tissues obtained from 39 subjects. Together with detailed food frequency data, we perform integrated computational analysis of metabolomic data combined with serum inflammatory markers and spatial imaging of polyp tissues using imaging mass cytometry. LC/MS-MS analyses of urine and fecal samples identify a widely divergent capacity to form nine urolithin metabolites in this patient population. Subjects with higher urolithin A formation exhibit lower levels of several key serologic inflammatory markers, including C-peptide, soluble form of intracellular adhesion molecule 1, sIL-6R, ghrelin, TRAIL, sVEGFR2, platelet-derived growth factor (PDGF), and MCP-2, alterations that are more pronounced in obese individuals for soluble form of intracellular adhesion molecule 1, epithelial neutrophil-activating peptide 78, leptin, glucagon-like peptide 1, and macrophage inflammatory protein 1δ. There is a significant increase in levels of peptide YY associated with urolithin A formation, whereas TNFα levels show an opposite trend, recapitulated in an in vitro system with ionomycin/phorbol 12-myristate 13-acetate-stimulated peripheral blood mononuclear cells (PBMC). Spatial imaging of colon polyp tissues shows altered cell cluster patterns, including a significant reduction of vimentin and CD163 expression associated with urolithin A. The ability to form urolithin A is linked to inflammation, warranting further studies to understand the role of urolithins in cancer prevention. Prevention Relevance: We evaluate cancer-protective effects of walnuts via formation of microbe-derived urolithin A, substantiating their functional benefits on serum inflammatory markers and immunologic composition of polyps in normal/obese subjects. Our approach incorporates personalized nutrition within the context of colonic health, providing the rationale for dietary inclusion of walnut ellagitannins for cancer prevention.
Collapse
Affiliation(s)
- Marmar R. Moussa
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
- School of Computer Science, University of Oklahoma, Norman, Oklahoma
| | - Nuoxi Fan
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - John Birk
- Division of Gastroenterology, University of Connecticut, Farmington, Connecticut
| | - Anthony A. Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut
| | - Pratik Mehta
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Yuichiro Hatano
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| | - Alexander Aksenov
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| | | | - Maryam Zenali
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
- School of Public Health, University of Vermont, Burlington, Vermont
| | - Haleh Vaziri
- Division of Gastroenterology, University of Connecticut, Farmington, Connecticut
| | - James J. Grady
- Department of Public Health Sciences, University of Connecticut, Storrs, Connecticut
| | - Masako Nakanishi
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Daniel W. Rosenberg
- Center for Molecular Oncology, School of Medicine, University of Connecticut, Farmington, Connecticut
| |
Collapse
|
3
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People’s Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Meyiah A, Khan FI, Alfaki DA, Murshed K, Raza A, Elkord E. The colorectal cancer microenvironment: Preclinical progress in identifying targets for cancer therapy. Transl Oncol 2025; 53:102307. [PMID: 39904281 PMCID: PMC11846588 DOI: 10.1016/j.tranon.2025.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Colorectal cancer (CRC) is a common cancer with high mortality rates. Despite progress in treatment, it remains an incurable disease for many patients. In CRC, the tumor microenvironment (TME) plays critical roles in tumor growth, progression, patients' prognosis, and response to treatments. Understanding TME complexities is important for developing effective therapies. In vitro and in vivo preclinical models are critical in understanding the disease, discovering potential targets, and developing effective therapeutics. In this review, we focus on preclinical research studies associated with modulation of the TME in CRC. These models give insights into understanding the role of stroma and immune cell components of the TME in CRC and improve clinical responses, providing insights in novel treatment options. Various studies have focused on targeting the TME in CRC to improve responses to different therapeutic approaches. These include identifying targets for cancer therapies, targeting molecular signaling, and enhancing the efficacy of immunotherapeutic modalities. Furthermore, targeting stromal and angiogenic factors in the TME may provide new therapeutic options. Overall, understanding and targeting the TME in CRC is a promising approach for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Faez Iqbal Khan
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Dia Aldeen Alfaki
- Department of Haematology, Al-Zaeim Al-Azhari University, Khartoum, Sudan
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
5
|
Jiao J, Wu Y, Wu S, Jiang J. Enhancing Colorectal Cancer Treatment Through VEGF/VEGFR Inhibitors and Immunotherapy. Curr Treat Options Oncol 2025; 26:213-225. [PMID: 40045029 DOI: 10.1007/s11864-025-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
OPINION STATEMENT Colorectal cancer, ranking as the third most prevalent malignancy globally, substantially benefits from both immunotherapy and VEGF/VEGFR inhibitors. Nevertheless, the use of monotherapy proves inadequate in effectively tackling the heterogeneity of tumors and the intricacies of their microenvironment, frequently leading to drug resistance and immune evasion. This situation underscores the pressing need for innovative strategies aimed at augmenting the effectiveness and durability of treatments. Clinical research demonstrates that the combination of VEGF/VEGFR inhibitors (primarily including VEGF/VEGFR-targeted drugs and multi-kinase inhibitors) with immune checkpoint inhibitors creates a synergistic effect in the treatment of colorectal cancer. Our analysis explores how VEGF/VEGFR inhibitors recalibrate the tumor microenvironment, modulate immune cell functions, and influence the expression of immune checkpoints and cytokines. Furthermore, we critically evaluate the preclinical and clinical feasibility of these combined therapeutic approaches. Despite the potential for toxicity, the significant benefits and prospective applications of these strategies warrant thorough exploration. Exploring the synergistic mechanisms of these combined treatments has the potential to inaugurate a new paradigm in oncology, enabling more personalized and efficacious treatment modalities. Additionally, the synergy between VEGF/VEGFR inhibitors and nascent immunotherapies emerges as a promising field of inquiry.
Collapse
Affiliation(s)
- Jing Jiao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - You Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jingting Jiang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
6
|
Fang Y, Gonzales-Nieves S, Cifarelli V, Imoukhuede PI. Sex Differences in VEGF and PDGF Ligand and Receptor Protein Expression during Adipose Tissue Expansion and Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638177. [PMID: 40027606 PMCID: PMC11870404 DOI: 10.1101/2025.02.14.638177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Inadequate angiogenesis in obesogenic adipose tissue (AT) has been implicated in disrupted adipogenesis and metabolic disorders. Yet, key cellular and molecular regulators of AT angiogenesis remain largely unidentified. This study sought to identify the dysregulated elements within the Vascular Endothelial Growth Factor (VEGF) and Platelet-Derived Growth Factor (PDGF) systems during obesity progression. We employ a mouse model, comprising both male and female mice, to investigate the changes in the VEGF/PDGF concentration and their receptor distribution in AT during short- and long-term weight gain and weight loss. Our results reveal pronounced sex-specific differences in obesity progression, with male and female mice exhibiting distinct angiogenic ligand and receptor profiles under identical dietary interventions. This data also lays the groundwork for developing computational models of VEGF/PDGF signaling networks in AT, allowing for the simulation of complex biological interactions and the prediction of therapeutic outcomes.
Collapse
|
7
|
Shi S, Ou X, Liu C, Wen H, Ke J. Research progress of HIF-1a on immunotherapy outcomes in immune vascular microenvironment. Front Immunol 2025; 16:1549276. [PMID: 39981236 PMCID: PMC11839635 DOI: 10.3389/fimmu.2025.1549276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α) plays a key role in facilitating the adaptation of cells to hypoxia, profoundly influencing the immune vascular microenvironment (IVM) and immunotherapy outcomes. HIF-1α-mediated tumor hypoxia drives angiogenesis, immune suppression, and extracellular matrix remodeling, creating an environment that promotes tumor progression and resistance to immunotherapies. HIF-1α regulates critical pathways, including the expression of vascular endothelial growth factor and immune checkpoint upregulation, leading to tumor-infiltrating lymphocyte dysfunction and recruitment of immunosuppressive cells like regulatory T cells and myeloid-derived suppressor cells. These alterations reduce the efficacy of checkpoint inhibitors and other immunotherapies. Recent studies highlight therapeutic strategies that target HIF-1α, such as the use of pharmacological inhibitors, gene editing techniques, and hypoxia-modulating treatments, which show promise in enhancing responses to immunotherapy. This review explores the molecular mechanisms of action of HIF-1α in IVM, its impact on immunotherapy resistance, as well as potential interventions, emphasizing the need for innovative approaches to circumvent hypoxia-driven immunosuppression in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Ke
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
9
|
Yuan W, Zhang J, Chen H, Zhuang Y, Zhou H, Li W, Qiu W, Zhou H. Natural compounds modulate the mechanism of action of tumour-associated macrophages against colorectal cancer: a review. J Cancer Res Clin Oncol 2024; 150:502. [PMID: 39546016 PMCID: PMC11568041 DOI: 10.1007/s00432-024-06022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Colorectal cancer (CRC) exhibits a substantial morbidity and mortality rate, with its aetiology and pathogenesis remain elusive. It holds significant importance within the tumour microenvironment (TME) and exerts a crucial regulatory influence on tumorigenesis, progression, and metastasis. TAMs possess the capability to foster CRC pathogenesis, proliferation, invasion, and metastasis, as well as angiogenesis, immune evasion, and tumour resistance. Furthermore, TAMs can mediate the prognosis of CRC. In this paper, we review the mechanisms by which natural compounds target TAMs to exert anti-CRC effects from the perspective of the promotional effects of TAMs on CRC, mainly regulating the polarization of TAMs, reducing the infiltration and recruitment of TAMs, enhancing the phagocytosis of macrophages, and regulating the signalling pathways and cytokines, and discuss the potential value and therapeutic strategies of natural compounds-targeting the TAMs pathway in CRC clinical treatment.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiexiang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
11
|
Zhang MQ, Jin HY, Wang J, Shu L. Mechanism of immune checkpoint inhibitor resistance in colorectal cancer patients and its interventional strategies. Shijie Huaren Xiaohua Zazhi 2024; 32:645-651. [DOI: 10.11569/wcjd.v32.i9.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024] Open
Abstract
The remarkable efficacy demonstrated by immune checkpoint inhibitors (ICIs) in melanoma treatment has driven their widespread use in the treatment of a variety of solid tumours, and they have now become one of the mainstays of oncology treatment, especially in the field of colorectal cancer, where they have demonstrated great potential. However, in long-term large-sample studies, it was found that the response to ICIs is low, and there are problems of primary and acquired resistance, which seriously affect their therapeutic effect. In this paper, we will review the mechanism of resistance to ICIs in patients with colorectal cancer and the progress in research of interventional strategies for ICI resistance, aiming to provide new ideas for the solution of the problem of clinical drug resistance to ICIs.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Hei-Ying Jin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Jun Wang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Lei Shu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| |
Collapse
|
12
|
Sun F, Lian Y, Zhou M, Luo J, Hu L, Wang J, Sun Z, Yu J. The role of tumor-associated macrophages in the radioresistance of esophageal cancer cells via regulation of the VEGF-mediated angiogenic pathway. Immunol Res 2024; 72:727-740. [PMID: 38772984 DOI: 10.1007/s12026-024-09479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024]
Abstract
Tumor-associated macrophages (TAMs) are known to promote tumor growth, invasion, metastasis, and protumor angiogenesis, but the role of TAMs in evading radiotherapy in esophagus cancer remains unclear. In this study, we first induced TAMs from human monocytes (THP-1) and identified using immunofluorescence and Western blotting assays. We then co-cultured them with human esophageal cancer cell lines. CCK-8, colony formation, Transwell, scratch test, and TUNEL assays showed that TAMs could promote proliferation, survival rate, invasion, migration, and radioresistance and could inhibit apoptosis of the esophageal squamous carcinoma cell lines KYSE-150 and TE-1 before and after radiotherapy both in vivo and in vitro. Using LV-VEGFA-RNAi lentiviral vectors, we also found that TAMs could increase the expression of VEGFA and that inhibition of VEGFA could inhibit the biological function caused by TAMs. Finally, a Western blotting assay was used to evaluate the expression of various factors underlying the mechanism of TAMs. VEGFA, MAPK, P-MAPK, BCL-2, and Snail proteins were found to be overexpressed in co-cultured groups, whereas after VEGFA inhibition, MAPK, P-MAPK, BCL-2, and Snail proteins were found to be significantly downregulated in the radiotherapy group. These study results offer important information regarding the mechanism of radioresistance in esophageal cancer.
Collapse
Affiliation(s)
- Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Yingying Lian
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical College of Tianjin Medical University, No.167, Dagang Xueyuan Road, Tianjin, 300270, China
| | - Mengyun Zhou
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Lijun Hu
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, No. 29, Xinglong Lane, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Jingping Yu
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
13
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
14
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
15
|
Shao L, Wu Y, Cao J, Zhong F, Yang X, Xing C. Activation of M2 macrophage autophagy by rapamycin increases the radiosensitivity of colorectal cancer xenografts. J Cancer Res Ther 2024; 20:695-705. [PMID: 38687942 DOI: 10.4103/jcrt.jcrt_215_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.
Collapse
Affiliation(s)
- Lening Shao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongyou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Fengyun Zhong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Kannan S, Rutkowski JM. VEGFR-3 signaling in macrophages: friend or foe in disease? Front Immunol 2024; 15:1349500. [PMID: 38464522 PMCID: PMC10921555 DOI: 10.3389/fimmu.2024.1349500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Lymphatic vessels have been increasingly appreciated in the context of immunology not only as passive conduits for immune and cancer cell transport but also as key in local tissue immunomodulation. Targeting lymphatic vessel growth and potential immune regulation often takes advantage of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling to manipulate lymphatic biology. A receptor tyrosine kinase, VEGFR-3, is highly expressed on lymphatic endothelial cells, and its signaling is key in lymphatic growth, development, and survival and, as a result, often considered to be "lymphatic-specific" in adults. A subset of immune cells, notably of the monocyte-derived lineage, have been identified to express VEGFR-3 in tissues from the lung to the gut and in conditions as varied as cancer and chronic kidney disease. These VEGFR-3+ macrophages are highly chemotactic toward the VEGFR-3 ligands VEGF-C and VEGF-D. VEGFR-3 signaling has also been implicated in dictating the plasticity of these cells from pro-inflammatory to anti-inflammatory phenotypes. Conversely, expression may potentially be transient during monocyte differentiation with unknown effects. Macrophages play critically important and varied roles in the onset and resolution of inflammation, tissue remodeling, and vasculogenesis: targeting lymphatic vessel growth and immunomodulation by manipulating VEGFR-3 signaling may thus impact macrophage biology and their impact on disease pathogenesis. This mini review highlights the studies and pathologies in which VEGFR-3+ macrophages have been specifically identified, as well as the activity and polarization changes that macrophage VEGFR-3 signaling may elicit, and affords some conclusions as to the importance of macrophage VEGFR-3 signaling in disease.
Collapse
Affiliation(s)
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
17
|
Li C, Wang L, Li Z, Li Z, Zhang K, Cao L, Wang Z, Shen C, Chen L. Repolarizing Tumor-Associated Macrophages and inducing immunogenic cell Death: A targeted liposomal strategy to boost cancer immunotherapy. Int J Pharm 2024; 651:123729. [PMID: 38142016 DOI: 10.1016/j.ijpharm.2023.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Cancer immunotherapy has shown promise in treating various malignancies. However, the presence of an immunosuppressive tumor microenvironment (TME) triggered by M2 tumor-associated macrophages (TAMs) and the limited tumor cell antigenicity have hindered its broader application. To address these challenges, we developed DOX/R837@ManL, a liposome loaded with imiquimod (R837) and doxorubicin (DOX), modified with mannose-polyethylene glycol (Man-PEG). DOX/R837@ManL employed a mannose receptor (MRC1)-mediated targeting strategy, allowing it to accumulate selectively at M2 Tumor associated macrophages (TAMs) and tumor sites. R837, an immune adjuvant, promoted the conversion of immunosuppressive M2 TAMs into immunostimulatory M1 TAMs, and reshaped the immunosuppressive TME. Simultaneously, DOX release induced immunogenic cell death (ICD) in tumor cells and enhanced tumor cell antigenicity by promoting dendritic cells (DCs) maturation. Through targeted delivery, the synergistic action of R837 and DOX activated innate immunity and coordinated adaptive immunity, enhancing immunotherapy efficacy. In vivo experiments have demonstrated that DOX/R837@ManL effectively eliminated primary tumors and lung metastases, while also preventing tumor recurrence post-surgery. These findings highlighted the potential of DOX/R837@ManL as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lianrui Cao
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Chao Shen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
18
|
Liu Y, Chen X, Xu Y, Yang T, Wang H, Wang Z, Hu Z, Chen L, Zhang Z, Wu Y. CTHRC1 promotes colorectal cancer progression by recruiting tumor-associated macrophages via up-regulation of CCL15. J Mol Med (Berl) 2024; 102:81-94. [PMID: 37987774 DOI: 10.1007/s00109-023-02399-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Tumor-associated macrophages (TAMs) represent a key factor in the tumor immune microenvironment (TME), exerting significant influence over tumor migration, invasion, immunosuppressive features, and drug resistance. Collagen triple helix repeat containing 1 (CTHRC1), a 30 KDa protein which was secreted during the tissue-repair process, is highly expressed in several malignant tumors, including colorectal cancer (CRC). Previous studies demonstrated that CTHRC1 expression in TAMs was positively correlated to M2 macrophage polarization and liver metastasis, while our discovery suggesting a novel mechanism that CTHRC1 secreted from cancer cell could indirectly interplay with TAMs. In this study, the high expression level of CTHRC1 was evaluated in CRC based on GEO and TCGA databases. Further, CTHRC1 was detected high in all stages of CRC patients by ELISA and was correlated to poor prognosis. Multispectral imaging of IHC demonstrated that M2 macrophage infiltration was increased accompanied with CTHRC1 enrichment, suggesting that CTHRC1 may have chemotactic effect on macrophages. In vitro, CTHRC1 could have chemotactic ability of macrophage in the presence of HT-29 cell line. Cytokine microarray revealed that CTHRC1 could up-regulate the CCL15 level of HT-29, pathway analysis demonstrated that CTHRC1 could regulate CCL15 by controlling the TGFβ activation and Smad phosphorylation level. In vivo, knocking down of CTHRC1 from CT-26 also inhibits tumor formation. In conclusion, CTHRC1 could promote the chemotactic ability of macrophages by up-regulating CCL15 via TGFβ/Smad pathway; additionally, a high level of CTHRC1 could promote macrophage's M2 polarization. This discovery may be related to tumor immune tolerance and tumor immunotherapy resistance in CRC. KEY MESSAGES: CTHRC1 promotes CRC progression by up-regulating CCL15 via TGF-β/Smad pathways to further recruit tumor-associated macrophages. By the means of autocrine or paracrine, CTHRC1 can indeed promote macrophage chemotaxis and enhance the infiltration of macrophages in tumor tissues but in the presence of tumor cells. CAFs were another source of CTHRC1, indicating CTHRC1 can infiltrate tumor islet as well as the stomal and be secreted from both tumor cells and CAFs. This study validated CTHRC1 as a potential immune therapy target CRC.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ying Xu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhangyong Hu
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Zhang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yangping Wu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Li J, Li XL, Li CQ. Immunoregulation mechanism of VEGF signaling pathway inhibitors and its efficacy on the kidney. Am J Med Sci 2023; 366:404-412. [PMID: 37699444 DOI: 10.1016/j.amjms.2023.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Angiogenesis and immunosuppression are closely related pathophysiologic processes. Widely prescribed in malignant tumor and proliferative retinal lesions, VEGF signaling pathway inhibitors may cause hypertension and renal injury in some patients, presenting with proteinuria, nephrotic syndrome, renal failure and thrombotic microangiopathy. VEGF signaling pathway inhibitors block the action of both VEGF-A and VEGF-C. However, VEGF-A and VEGF-C produced by podocytes are vital to maintain the physiological function of glomerular endothelial cells and podocytes. There is still no effective treatment for kidney disease associated with VEGF signaling pathway inhibitors and some patients have progressive renal failure even after withdrawal of the drug. Recent studies reveal that blocking of VEGF-A and VEGF-C can activate CD4 +and CD8+ T cells, augment antigen-presenting function of dendritic cells, enhance cytotoxicity of macrophages and initiate complement cascade activation. VEGF and VEGFR are expressed in immune cells, which are involved in the immunosuppression and cross-talk among immune cells. This review summarizes the expression and function of VEGF-A and VEGF-C in the kidney. The current immunoregulation mechanisms of VEGF signaling pathway inhibitors are reviewed. Finally, combinate strategies are summarized to highlight the proposal for VEGF signaling pathway inhibitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| | - Xiao-Lin Li
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Chun-Qing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China
| |
Collapse
|
20
|
Mardente S, Romeo MA, Asquino A, Po A, Gilardini Montani MS, Cirone M. HHV-6A Infection of Papillary Thyroid Cancer Cells Induces Several Effects Related to Cancer Progression. Viruses 2023; 15:2122. [PMID: 37896899 PMCID: PMC10612057 DOI: 10.3390/v15102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have shown that thyrocytes are permissive to HHV-6A infection and that the virus may contribute to the pathogenesis of autoimmune thyroiditis. Thyroid autoimmune diseases increase the risk of papillary cancer, which is not surprising considering that chronic inflammation activates pathways that are also pro-oncogenic. Moreover, in this condition, cell proliferation is stimulated as an attempt to repair tissue damage caused by the inflammatory process. Interestingly, it has been reported that the well-differentiated papillary thyroid carcinoma (PTC), the less aggressive form of thyroid tumor, may progress to the more aggressive follicular thyroid carcinoma (FTC) and eventually to the anaplastic thyroid carcinoma (ATC), and that to such progression contributes the presence of an inflammatory/immune suppressive tumor microenvironment. In this study, we investigated whether papillary tumor cells (BCPAP) could be infected by human herpes virus-6A (HHV-6A), and if viral infection could induce effects related to cancer progression. We found that the virus dysregulated the expression of several microRNAs, such as miR-155, miR-9, and the miR-221/222 cluster, which are involved in different steps of carcinogenesis, and increased the secretion of pro-inflammatory cytokines, particularly IL-6, which may also sustain thyroid tumor cell growth and promote cancer progression. Genomic instability and the expression of PTEN, reported to act as an oncogene in mutp53-carrying cells such as BCPAP, also increased following HHV-6A-infection. These findings suggest that a ubiquitous herpesvirus such as HHV-6A, which displays a marked tropism for thyrocytes, could be involved in the progression of PTC towards more aggressive forms of thyroid tumor.
Collapse
Affiliation(s)
- Stefania Mardente
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Angela Asquino
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy;
| | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| |
Collapse
|
21
|
Katagata M, Okayama H, Nakajima S, Saito K, Sato T, Sakuma M, Fukai S, Endo E, Sakamoto W, Saito M, Saze Z, Momma T, Mimura K, Kono K. TIM-3 Expression and M2 Polarization of Macrophages in the TGFβ-Activated Tumor Microenvironment in Colorectal Cancer. Cancers (Basel) 2023; 15:4943. [PMID: 37894310 PMCID: PMC10605063 DOI: 10.3390/cancers15204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TGFβ signaling in the tumor microenvironment (TME) drives immune evasion and is a negative predictor of immune checkpoint inhibitor (ICI) efficacy in colorectal cancer (CRC). TIM-3, an inhibitory receptor implicated in anti-tumor immune responses and ICI resistance, has emerged as an immunotherapeutic target. This study investigated TIM-3, M2 macrophages and the TGFβ-activated TME, in association with microsatellite instability (MSI) status and consensus molecular subtypes (CMSs). Transcriptomic cohorts of CRC tissues, organoids and xenografts were examined (n = 2240). TIM-3 and a TGFβ-inducible stromal protein, VCAN, were evaluated in CRC specimens using immunohistochemistry (n = 45). TIM-3 expression on monocytes and generated M2 macrophages was examined by flow cytometry. We found that the expression of HAVCR2 (TIM-3) significantly correlated with the transcriptional signatures of TGFβ, TGFβ-dependent stromal activation and M2 macrophage, each of which were co-upregulated in CMS4, CMS1 and MSI CRCs across all datasets. Tumor-infiltrating TIM-3+ immune cells accumulated in TGFβ-responsive cancer stroma. TIM-3 was increased on M2-polarized macrophages, and on monocytes in response to TGFβ treatment. In conclusion, we identified a close association between TIM-3 and M2-like polarization of macrophages in the TGFβ-rich TME. Our findings provide new insights into personalized immunotherapeutic strategies based on the TME for CRCs.
Collapse
Affiliation(s)
- Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| |
Collapse
|
22
|
Fan L, Xu G, Zeng X. M2 macrophage-derived extracellular vesicles augment immune evasion and development of colorectal cancer via a circRNA_CCDC66/microRNA-342-3p/metadherin axis. Cytotechnology 2023; 75:293-308. [PMID: 37389129 PMCID: PMC10299985 DOI: 10.1007/s10616-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 07/01/2023] Open
Abstract
The M2 macrophages are major components in the tumor microenvironment and are closely linked to immune suppression and tumor metastasis. This work focuses on how M2 macrophage-derived extracellular vesicles (EVs) affect colorectal cancer (CRC) progression. THP-1 monocytes were induced to differentiate to M0 or M2 macrophages, and the macrophage-derived EVs (M0-EVs and M2-EVs, respectively) were collected and identified. The M2-EVs stimulation augmented proliferation, mobility, and the in vivo tumorigenic activity of CRC cells. Circular RNA_CCDC66 (circ_CCDC66) was highly enriched in M2-EVs and could be delivered into CRC cells. The RNA pull-down and luciferase assays showed that circ_CCDC66 could competitively bind to microRNA (miR)-342-3p, therefore restoring the expression of metadherin (MTDH) mRNA, a target transcript of miR-342-3p. Suppression of circ_CCDC66 in the M2-EVs or specific knockdown of MTDH in CRC significantly blocked the growth and mobility of CRC cells. However, miR-342-3p inhibition restored the malignant phenotype of cancer cells. Moreover, the MTDH knockdown was found to increase the cytotoxicity of CD8+ T and reduce the protein level of the immune checkpoint PDL1 in CRC cells. In summary, this study reveals that the M2-EVs augment immune evasion and development of CRC by delivering circ_CCDC66 and restoring the MTDH level.
Collapse
Affiliation(s)
- Linfeng Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Economic Development Zone, Ganzhou, 341000 Jiangxi People’s Republic of China
| | - Guofeng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000 Jiangxi People’s Republic of China
| | - Xiangfu Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Economic Development Zone, Ganzhou, 341000 Jiangxi People’s Republic of China
| |
Collapse
|
23
|
Ito M, Mimura K, Nakajima S, Okayama H, Saito K, Nakajima T, Kikuchi T, Onozawa H, Fujita S, Sakamoto W, Saito M, Momma T, Saze Z, Kono K. M2 tumor-associated macrophages resist to oxidative stress through heme oxygenase-1 in the colorectal cancer tumor microenvironment. Cancer Immunol Immunother 2023; 72:2233-2244. [PMID: 36869896 PMCID: PMC10992489 DOI: 10.1007/s00262-023-03406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
M2 tumor-associated macrophages (M2-TAMs) promote cancer cell proliferation and metastasis in the TME. Our study aimed to elucidate the mechanism of increased frequency of M2-TAMs infiltration in the colorectal cancer (CRC)-TME, focusing on the resistance to oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we evaluated the correlation between M2-TAM signature and mRNA expression of antioxidant related genes using public datasets, and the expression level of antioxidants in M2-TAMs by flow cytometry and the prevalence of M2-TAMs expressing antioxidants by immunofluorescence staining using surgically resected specimens of CRC (n = 34). Moreover, we generated M0 and M2 macrophages from peripheral blood monocytes and evaluated their resistance to oxidative stress using the in vitro viability assay. Analysis of GSE33113, GSE39582, and The Cancer Genome Atlas (TCGA) datasets indicated that mRNA expression of HMOX1 (heme oxygenase-1 (HO-1)) was significantly positively correlated with M2-TAM signature (r = 0.5283, r = 0.5826, r = 0.5833, respectively). The expression level of both Nrf2 and HO-1 significantly increased in M2-TAMs compared to M1- and M1/M2-TAMs in the tumor margin, and the number of Nrf2+ or HO-1+M2-TAMs in the tumor stroma significantly increased more than those in the normal mucosa stroma. Finally, generated M2 macrophages expressing HO-1 significantly resisted to oxidative stress induced by H2O2 in comparison with generated M0 macrophages. Taken together, our results suggested that an increased frequency of M2-TAMs infiltration in the CRC-TME is related to Nrf2-HO-1 axis mediated resistance to oxidative stress.
Collapse
Affiliation(s)
- Misato Ito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takahiro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
24
|
Hamada Y, Tanoue K, Kita Y, Tanabe K, Hokonohara K, Wada M, Hozaka Y, Oi H, Nakayama C, Higashi M, Arigami T, Mori S, Ohtsuka T. Vascular endothelial growth factor inhibitors promote antitumor responses via tumor microenvironment immunosuppression in advanced colorectal cancer. Scand J Gastroenterol 2023; 58:1009-1020. [PMID: 36987919 DOI: 10.1080/00365521.2023.2194011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE This study aims to investigate changes in the tumor immune environment of patients who underwent therapy with a vascular endothelial growth factor (VEGF) inhibitor for advanced colorectal cancer. METHODS Patients (n = 135) with T3 or T4 colorectal cancer were included in this retrospective study. They were classified as follows: patients who had not received preoperative treatment (UPFRONT group, n = 54), who had received FOLFOX as preoperative chemotherapy (FOLFOX group, n = 55), and who had undergone resection after combination FOLFOX and bevacizumab as unresectable colorectal cancer (B-MAB group, n = 26). The number of cytotoxic T lymphocytes (CTLs), FOXP3+ lymphocytes (including regulatory T cells (Tregs)), CD163+ monocytes (including M2-type tumor-associated macrophages (TAM-M2 type)), and programmed cell death 1 (PD-1)+ lymphocytes was evaluated immunohistochemically in the cancer cell area (CC) and stromal cell area (ST) of surgical specimens, and compared among the three groups. RESULTS The CTL population did not differ among the three groups in both areas. In the B-MAB group, the numbers of PD-1+ cells in the ST, FOXP3+ lymphocytes in both areas, and CD163+monocytes in the ST was lower than that in the other two groups, and a correlation with the histological therapeutic effect was observed. CONCLUSIONS In advanced colorectal cancer, VEGF inhibitors may decrease the number of PD-1+ cells and inhibit the infiltration of FOXP3+ lymphocytes and CD163+monocytes into the tumor environment.
Collapse
Affiliation(s)
- Yuki Hamada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kentaro Hokonohara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki Oi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chieri Nakayama
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
25
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Montemurro N, Pahwa B, Tayal A, Shukla A, De Jesus Encarnacion M, Ramirez I, Nurmukhametov R, Chavda V, De Carlo A. Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment. Neurol Int 2023; 15:595-608. [PMID: 37218976 PMCID: PMC10204554 DOI: 10.3390/neurolint15020037] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-β). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Bhavya Pahwa
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anish Tayal
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anushruti Shukla
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | | | - Issael Ramirez
- Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Renat Nurmukhametov
- Department of Spinal Surgery, Central Clinical Hospital of the Russian Academy of Sciences, 121359 Moscow, Russia
| | - Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Antonella De Carlo
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
27
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
28
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
29
|
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, Chen X, Jing Li J, Wang M, Wu D, Cai Z, Claesson-Welsh L, Ju R, Wang J, Zhang F, Chen Y. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022; 146:1855-1881. [PMID: 36384284 DOI: 10.1161/circulationaha.122.061900] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jiaqi He
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Duoguang Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, China (Z.C.)
| | - Lena Claesson-Welsh
- Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (L.C.-W.)
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| |
Collapse
|
30
|
Zheng Z, Bian C, Wang H, Su J, Meng L, Xin Y, Jiang X. Prediction of immunotherapy efficacy and immunomodulatory role of hypoxia in colorectal cancer. Ther Adv Med Oncol 2022; 14:17588359221138383. [PMID: 36425871 PMCID: PMC9679351 DOI: 10.1177/17588359221138383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Immunotherapy has been used in the clinical treatment of colorectal cancer (CRC); however, most patients fail to achieve satisfactory survival benefits. Biomarkers with high specificity and sensitivity are being increasingly developed to predict the efficacy of CRC immunotherapy. In addition to DNA alteration markers, such as microsatellite instability/mismatch repair and tumor mutational burden, immune cell infiltration and immune checkpoints (ICs), epigenetic changes and no-coding RNA, and gut microbiomes all show potential predictive ability. Recently, the hypoxic tumor microenvironment (TME) has been identified as a key factor mediating CRC immune evasion and resistance to treatment. Hypoxia-inducible factor-1α is the central transcription factor in the hypoxia response that drives the expression of a vast number of survival genes by binding to the hypoxia response element in cancer and immune cells in the TME. Hypoxia regulates angiogenesis, immune cell infiltration and activation, expression of ICs, and secretion of various immune molecules in the TME and is closely associated with the immunotherapeutic efficacy of CRC. Currently, various agents targeting hypoxia have been found to improve the TME and enhance the efficacy of immunotherapy. We reviewed current markers commonly used in CRC to predict therapeutic efficacy and the mechanisms underlying hypoxia-induced angiogenesis and tumor immune evasion. Exploring the mechanisms by which hypoxia affects the TME will assist the discovery of new immunotherapeutic predictive biomarkers and development of more effective combinations of agents targeting hypoxia and immunotherapy.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
31
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
32
|
Chen M, Wang Z, Liu Z, Liu N, Fang W, Zhang H, Jin X, Li J, Zhao W, Qu H, Song F, Chang Z, Li Y, Tang Y, Xu C, Zhang X, Wang X, Peng Z, Cai J, Li J, Shen L. The Optimal Therapy after Progression on Immune Checkpoint Inhibitors in MSI Metastatic Gastrointestinal Cancer Patients: A Multicenter Retrospective Cohort Study. Cancers (Basel) 2022; 14:5158. [PMID: 36291942 PMCID: PMC9601260 DOI: 10.3390/cancers14205158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In microsatellite instability (MSI)/mismatch repair-deficient (dMMR) gastrointestinal cancers, the optimum therapy after the progression of immune checkpoint inhibitors (ICIs) is yet unknown. Here, we compared the efficacy of programmed death 1 (PD1)/programmed death ligand-1 (PD-L1) inhibitors plus other therapy and chemotherapy with or without targeted therapy in MSI/dMMR gastrointestinal cancer patients after progression on anti-PD1/PD-L1 monotherapy. METHODS We retrospectively recruited MSI/dMMR gastrointestinal cancer patients who had progressed on anti-PD1/PD-L1 monotherapy. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and PFS ratio (PFSr) were compared between patients who received anti-PD1/PD-L1 plus other therapy (ICI-plus group) and patients who received chemotherapy with or without targeted therapy (chemo-targeted group). RESULTS In total, 26 and 25 patients were recruited in the ICI-plus group and chemo-targeted group, respectively. Significantly better DCR (80.8% vs. 44.0%, p = 0.007), PFS (median PFS 6.9 months vs. 3.0 months, p = 0.001), OS (median OS NR vs. 14.1 months, p = 0.043), and PFSr (2.4 vs. 0.9, p = 0.021), along with a numerically higher ORR (23.1% vs. 12.0%, p = 0.503) were observed in the ICI-plus group compared with the chemo-targeted group. Multivariate analyses identified the therapy regimen as an important prognostic factor in gastrointestinal cancers. CONCLUSIONS Compared to conventional chemotherapy with or without targeted therapy, continuing anti-PD1/PD-L1 in combination with other treatments showed better clinical outcomes in MSI/dMMR gastrointestinal cancer patients who progressed on PD1/PD-L1 blockade, which should be validated prospectively in clinical trials.
Collapse
Affiliation(s)
- Mifen Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zimin Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ning Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hangyu Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing 100034, China
| | - Jiayi Li
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People’s Hospital/People’s Hospital of Zhengzhou University/People’s Hospital of Henan University, Zhengzhou 450001, China
| | - Huajun Qu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264099, China
| | - Fanghua Song
- Department of Oncology, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Tang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Chunlei Xu
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc., Shanghai 201321, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| |
Collapse
|
33
|
Fucosyltransferase 4 Predicts Patient Outcome in Rectal Cancer through an Immune Microenvironment-Mediated Multi-Mechanism. JOURNAL OF ONCOLOGY 2022; 2022:4637570. [PMID: 36164349 PMCID: PMC9509229 DOI: 10.1155/2022/4637570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer is the most common type of gastrointestinal malignant tumors worldwide. Standardization of the strategy for the precise treatment of this cancer has been a major challenge. Enrichment analysis of six gene groups (colon cancer-specific genes (upregulated and downregulated); rectal cancer-specific genes (upregulated and downregulated); and common genes (upregulated and downregulated)) revealed the common and specific features of colon and rectal cancer, particularly a hyperactive immune response in rectal cancer. Key common genes exhibited a similar expression pattern, but were associated with distinct patient prognosis in colon and rectal cancer. FUT4 was a core regulatory gene in rectal cancer; it can decrease the level of infiltration by M2 macrophages in the tumor immune microenvironment and participate in the positive regulation of the immune system and glycoprotein biosynthetic process, thereby affecting the outcome of patients with rectal cancer. FUT4 co-expression genes can influence patient’s survival time by regulating the cell cycle. Among the regulators of FUT4 co-expression genes, checkpoint kinase 2 (CHEK2) was linked to patient outcome.
Collapse
|
34
|
Wu M, Shi Y, Zhu L, Chen L, Zhao X, Xu C. Macrophages in Glioblastoma Development and Therapy: A Double-Edged Sword. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081225. [PMID: 36013403 PMCID: PMC9409650 DOI: 10.3390/life12081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain fatigued in GBM patients. Emerging evidence has shown that GBM-associated macrophages (GAMs), comprising brain-resident microglia and bone marrow-derived macrophages, act critically in boosting tumor progression, altering drug resistance, and establishing an immunosuppressive environment. Based on its crucial role, evaluations of the safety and efficacy of GAM-targeted therapy are ongoing, with promising (pre)clinical evidence updated. In this review, we summarized updated literature related to GAM nature, the interplay between GAMs and GBM cells, and GAM-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Luyi Zhu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoyi Chen
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xinchen Zhao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
35
|
Nakahama K, Kaneda H, Osawa M, Fukui M, Izumi M, Yoshimoto N, Sugimoto A, Nagamine H, Ogawa K, Matsumoto Y, Sawa K, Tani Y, Mitsuoka S, Watanabe T, Asai K, Kawaguchi T. Vascular endothelial growth factor receptor 2 expression and immunotherapy efficacy in non-small cell lung cancer. Cancer Sci 2022; 113:3148-3160. [PMID: 35722982 PMCID: PMC9459341 DOI: 10.1111/cas.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
It is unclear whether tumor vascular endothelial growth factor receptor 2 expression affects the therapeutic efficacy of immune‐checkpoint inhibitors and antiangiogenic agents. This retrospective, multicenter study included patients with advanced non–small cell lung cancer who were treated with immune‐checkpoint inhibitors. We constructed tissue microarrays and performed immunohistochemistry with an anti‐vascular endothelial growth factor receptor 2 antibody. We analyzed immune and tumor cell staining separately in order to determine their correlation with the objective response rate, progression‐free survival, and overall survival in patients receiving immune‐checkpoint inhibitors. Of 364 patients, 37 (10%) expressed vascular endothelial growth factor receptor 2 in immune cells and 165 (45%) in tumor cells. The objective response rate, progression‐free survival, and overall survival were significantly worse in patients treated with immune checkpoint inhibitor monotherapy who expressed vascular endothelial growth factor receptor 2 in immune cells than those who did not (10% vs 30%, p = 0.028; median = 2.2 vs 3.6 months, p = 0.012; median = 7.9 vs 17.0 months, p = 0.049, respectively), while there was no significant difference based on tumor cell expression (24% vs 30%, p = 0.33; median = 3.1 vs 3.5 months, p = 0.55; median = 13.6 vs 16.8 months, p = 0.31). There was no significant difference in overall survival between patients treated with and without antiangiogenic agents in any treatment period based on vascular endothelial growth factor receptor 2 expression. Immune checkpoint inhibitor efficacy was limited in patients expressing vascular endothelial growth factor receptor 2 in immune cells.
Collapse
Affiliation(s)
- Kenji Nakahama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Masahiko Osawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Mitsuru Fukui
- Department of Laboratory of Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Motohiro Izumi
- Department of Pulmonary Medicine, Bell land General Hospital, Sakai, Japan
| | - Naoki Yoshimoto
- Department of Pulmonary Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
36
|
Li M, Jiang H, Chen S, Ma Y. GATA binding protein 1 recruits histone deacetylase 2 to the promoter region of nuclear receptor binding protein 2 to affect the tumor microenvironment and malignancy of thyroid carcinoma. Bioengineered 2022; 13:11320-11341. [PMID: 35491849 PMCID: PMC9278442 DOI: 10.1080/21655979.2022.2068921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) and activated angiogenesis in thyroid carcinoma (TC) are critical for tumor growth and metastasis. Nuclear receptor binding protein 2 (NRBP2) has been suggested as a tumor suppressor. This study examines the function of NRBP2 in the progression of TC and the regulatory mechanism. By analyzing bioinformatic tools including GSE165724 dataset and the Cancer Genome Atlas system, we predicted NRBP2 as a poorly expressed gene in TC. Decreased NRBP2 expression was detected in TC tumor tissues and cells. Poor expression of NRBP2 was linked to unfavorable prognosis of patients. GATA binding protein 1 (GATA1) was found as a negative regulator of NRBP2. It recruited histone deacetylase2 (HDAC2) to the NRBP2 promoter to trigger histone deacetylation. NRBP2 overexpression suppressed growth of TC cells, and it reduced expression of TME markers, M2 polarization of macrophages, and angiogenesis in TC. Similar results were reproduced in vivo in nude mice. However, the anti-oncogenic roles of NRBP2 were blocked after further overexpression of GATA1 or HDAC2. In summary, this study demonstrates that GATA1 recruits HDAC2 to the NRBP2 promoter and enhances the TME and angiogenesis in TC cells.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Shengjiang Chen
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Yujin Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|
37
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
38
|
Okikawa S, Morine Y, Saito Y, Yamada S, Tokuda K, Teraoku H, Miyazaki K, Yamashita S, Ikemoto T, Imura S, Shimada M. Inhibition of the VEGF signaling pathway attenuates tumor‑associated macrophage activity in liver cancer. Oncol Rep 2022; 47:71. [PMID: 35169858 PMCID: PMC8867251 DOI: 10.3892/or.2022.8282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor-associated macrophage (TAMs) are paramount for tumor progression and immune tolerance in the tumor microenvironment of various types of cancer, including liver cancer. The aim of the present study was to investigate the effect of vascular endothelial growth factor (VEGF) inhibition on TAM polarization and function during their interactions with macrophages and liver cancer cells. TAMs were induced by culturing M0 macrophages with cancer cell-conditioned medium. TAMs cultured with cancer cell-conditioned medium and vascular endothelial growth factor (VEGF) inhibitor were defined as modified TAMs, and the expression levels of TAM-associated markers and VEGF receptor 2 were evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of TAMs and modified TAMs on cancer cell proliferation and migration were investigated using conditioned medium. Programmed death-ligand 1 (PD-L1) mRNA expression in modified TAMs and cancer cells cultured in modified TAM-conditioned medium (TAM-CM) for 48 h was examined using RT-qPCR. In order to investigate signaling pathways in macrophages, western blot analysis was performed. CD163 and CD206 and M2 macrophage marker expression was upregulated in TAMs and modified TAMs. Modified TAM-CM exhibited a decreased ability to promote cancer cell proliferation and migration in comparison with the use of TAM-CM. The VEGF concentration was significantly higher in the TAMs than in M0 macrophages; however, the modified TAMs displayed a significantly lower VEGF secretion than TAMs. PD-L1 expression was decreased in modified TAMs as compared with TAMs. Western blot analysis revealed that the Akt/mTOR signaling pathway was significantly suppressed in the modified TAMs compared with TAMs. It was observed that TAMs cultured in a VEGF-depleted environment displayed lower secretion levels of cytokines involved in tumor progression and a decreased immune tolerance-inducing ability. On the whole, the results of the present study suggested that VEGF inhibition in TAMs may be a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Shohei Okikawa
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Hiroki Teraoku
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Shoko Yamashita
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| |
Collapse
|
39
|
Xin L, Zhou LQ, Liu C, Zeng F, Yuan YW, Zhou Q, Li SH, Wu Y, Wang JL, Wu DZ, Lu H. Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer. EMBO Rep 2021; 22:e52124. [PMID: 34647680 DOI: 10.15252/embr.202052124] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
This study explores the role of the long noncoding RNA (LncRNA) CRNDE in cisplatin (CDDP) resistance of gastric cancer (GC) cells. Here, we show that LncRNA CRNDE is upregulated in carcinoma tissues and tumor-associated macrophages (TAMs) of GC patients. In vitro experiments show that CRNDE is enriched in M2-polarized macrophage-derived exosomes (M2-exo) and is transferred from M2 macrophages to GC cells via exosomes. Silencing CRNDE in M2-exo reverses the promotional effect of M2-exo on cell proliferation in CDDP-treated GC cells and homograft tumor growth in CDDP-treated nude mice. Mechanistically, CRNDE facilitates neural precursor cell expressed developmentally downregulated protein 4-1 (NEDD4-1)-mediated phosphatase and tensin homolog (PTEN) ubiquitination. Silencing CRNDE in M2-exo enhances the CDDP sensitivity of GC cells treated with M2-exo, which is reduced by PTEN knockdown. Collectively, these data reveal a vital role for CRNDE in CDDP resistance of GC cells and suggest that the upregulation of CRNDE in GC cells may be attributed to the transfer of TAM-derived exosomes.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Liang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deng-Zhong Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021; 12:685978. [PMID: 34326840 PMCID: PMC8313969 DOI: 10.3389/fimmu.2021.685978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor immune microenvironment plays a vital role in the metastasis of colorectal cancer. As one of the most important immune cells, macrophages act as phagocytes, patrol the surroundings of tissues, and remove invading pathogens and cell debris to maintain tissue homeostasis. Significantly, macrophages have a characteristic of high plasticity and can be classified into different subtypes according to the different functions, which can undergo reciprocal phenotypic switching induced by different types of molecules and signaling pathways. Macrophages regulate the development and metastatic potential of colorectal cancer by changing the tumor immune microenvironment. In tumor tissues, the tumor-associated macrophages usually play a tumor-promoting role in the tumor immune microenvironment, and they are also associated with poor prognosis. This paper reviews the mechanisms and stimulating factors of macrophages in the process of colorectal cancer metastasis and intends to indicate that targeting macrophages may be a promising strategy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Ishikawa E, Miyazaki T, Takano S, Akutsu H. Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathol 2021; 38:149-155. [PMID: 33977360 DOI: 10.1007/s10014-021-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
As a new concept of glioma therapy, immunotherapy combined with standard therapies is a promising modality to improve glioma patient survival. VEGF and its signaling pathway molecules not only inhibit angiogenesis but also may reinforce the immunosuppressive tumor microenvironment, including promotion of the accumulation of immunosuppressive tumor-associated macrophages (TAMs). In this review, we discuss VEGF-targeted therapy as a new treatment option of the TAM-targeted therapy for high-grade gliomas, as well as other TAM-targeted therapies. The authors also discuss the potential of these therapies combined with conventional immunotherapies.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Tsubasa Miyazaki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Cell-Medicine, Inc., Sengen 2-1-6, Tsukuba Science City, Ibaraki, 305-0047, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|