1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Guo X, Zhang Y, Liu Q, Xu M, Pang J, Yang B, Rong S, Yang X. Progress on liposome delivery systems in the treatment of bladder cancer. RSC Adv 2025; 15:14315-14336. [PMID: 40330044 PMCID: PMC12053965 DOI: 10.1039/d5ra00746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Bladder cancer (BC) in the urinary system remains one of the most prevalent malignancies with high recurrence rate globally. Current treatment schemes against BC such as surgery, chemotherapy, and radiotherapy have substantial limitations including side effects, drug resistance, and poor tumor targeting. Considering the above-mentioned challenges, nanotechnology has become a current research hotspot, particularly liposome-based drug delivery systems, which offer promising novel therapeutic strategies aimed at reducing systemic toxicity, overcoming drug resistance, and enhancing drug targeting. This review systematically elaborates the current research progress on liposomal drug delivery systems in BC treatment, focusing on their application in chemotherapy, immunotherapy, and gene therapy. Additionally, we provide a comprehensive assessment of the benefits and limitations of liposome nanocarriers used in BC treatment. The advanced targeting strategies and combination treatments via liposomal therapies are also discussed, demonstrating that liposomal formulations have great potential application value in the treatment of BC owing to their superior bioavailability, stability, and targeting and minimal adverse effects.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Yan Zhang
- School of Optoelectronic Engineering, Xi'an Technological University Xi'an 710021 China
| | - Quanyong Liu
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Mingquan Xu
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Jianzhi Pang
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| | - Bin Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital Taiyuan 030032 China
| | - Shuo Rong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital Taiyuan 030032 China
| | - Xiaofeng Yang
- Department of Urology Surgery, First Hospital of Shanxi Medical University Taiyuan Shanxi 030001 China
- The First Clinical Medical College of Shanxi Medical University Taiyuan Shanxi 030001 China
| |
Collapse
|
3
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
5
|
Mizuno S, Chuma Y, Shibuya Y, Horibata S, Baba T, Yokokawa E, Matsuo K. Culture filtrate proteins from BCG act as adjuvants for cytotoxic T lymphocyte induction. Front Immunol 2023; 14:1271228. [PMID: 37928526 PMCID: PMC10622798 DOI: 10.3389/fimmu.2023.1271228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium bovis bacilli Calmette-Guerin (BCG) is a licensed vaccine against tuberculosis. It requires attenuated live bacteria to be effective, possibly because actively secreted proteins play a critical role in inducing anti-tuberculosis immunity. BCG also functions as an effective adjuvant. Moreover, the effects of BCG components as adjuvants are not important as those of attenuated live BCG, which is used in cancer immunotherapy. However, the BCG secreted proteins have not been paid attention in anticancer immunity. To understand mycobacterial secreted proteins' function, we investigate immune responses to BCG culture filtrate proteins (CFP). Here, CFP strongly induce both antigen-specific CD4+ T cells and specific CD8+ T cells, which may be functional cytotoxic T lymphocytes (CTLs). In this study, we clearly demonstrate that CFP acts as an adjuvant for CTL induction against specific co-administered proteins and propose CFP as a new protein adjuvant. The CTL response shows potent anticancer effects in mice. These findings could provide insight into the contribution of mycobacterial secreted proteins in both anticancer and antimycobacterial immunity.
Collapse
Affiliation(s)
- Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Yasushi Chuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Yukihiro Shibuya
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Shigeo Horibata
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Tomoe Baba
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Emi Yokokawa
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Bonilha CS, Veras FP, de Queiroz Cunha F. NET-targeted therapy: effects, limitations, and potential strategies to enhance treatment efficacy. Trends Pharmacol Sci 2023; 44:622-634. [PMID: 37468402 DOI: 10.1016/j.tips.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils during inflammatory responses. Due to their unique potential for causing tissue damage and modulating immune responses, there is increasing interest in studying these structures as potential targets for the treatment of infectious diseases, autoimmune diseases, and cancer. However, therapeutic targeting of NETs might trigger deleterious effects that may limit treatment efficacy. NET disruption may increase the microbial load in infection; in autoimmunity, NET targeting might impair peripheral tolerance, but it might reduce adaptive immune responses in cancer. In this review, we explore the therapeutic and deleterious effects of NET-targeted therapy while shedding light on novel strategies to overcome treatment-related limitations and enhance treatment efficacy.
Collapse
Affiliation(s)
- Caio Santos Bonilha
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | - Flavio Protasio Veras
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | |
Collapse
|
7
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
8
|
Kodar K, Dangerfield EM, Foster AJ, Forsythe D, Ishizuka S, McConnell MJ, Yamasaki S, Timmer MSM, Stocker BL. Aryl-functionalised α,α'-Trehalose 6,6'-Glycolipid Induces Mincle-independent Pyroptotic Cell Death. Inflammation 2023:10.1007/s10753-023-01814-5. [PMID: 37140682 PMCID: PMC10359228 DOI: 10.1007/s10753-023-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
α,α'-Trehalose 6,6'-glycolipids have long been known for their immunostimulatory properties. The adjuvanticity of α,α'-trehalose 6,6'-glycolipids is mediated by signalling through the macrophage inducible C-type lectin (Mincle) and the induction of an inflammatory response. Herein, we present an aryl-functionalised trehalose glycolipid, AF-2, that leads to the release of cytokines and chemokines, including IL-6, MIP-2 and TNF-α, in a Mincle-dependent manner. Furthermore, plate-coated AF-2 also leads to the Mincle-independent production of IL-1β, which is unprecedented for this class of glycolipid. Upon investigation into the mode of action of plate-coated AF-2, it was observed that the treatment of WT and Mincle-/- bone marrow derived macrophages (BMDM), murine RAW264.7 cells, and human monocytes with AF-2 led to lytic cell death, as evidenced using Sytox Green and lactate dehydrogenase assays, and confocal and scanning electron microscopy. The requirement for functional Gasdermin D and Caspase-1 for IL-1β production and cell death by AF-2 confirmed pyroptosis as the mode of action of AF-2. The inhibition of NLRP3 and K+ efflux reduced AF-2 mediated IL-1β production and cell death, and allowed us to conclude that AF-2 leads to Capase-1 dependent NLRP3 inflammasome-mediated cell death. The unique mode of action of plate-coated AF-2 was surprising and highlights how the physical presentation of Mincle ligands can lead to dramatically different immunological outcomes.
Collapse
Affiliation(s)
- Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Amy J Foster
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Devlin Forsythe
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- School of Biological Sciences, PO Box 600, Wellington, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Melanie J McConnell
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- School of Biological Sciences, PO Box 600, Wellington, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
9
|
Xia J, Ding H, Liu S, An R, Shi X, Chen M, Ren H. C-Type Lectin Receptors-Triggered Antifungal Immunity May Synergize with and Optimize the Effects of Immunotherapy in Hepatocellular Carcinoma. J Inflamm Res 2023; 16:19-33. [PMID: 36636249 PMCID: PMC9831126 DOI: 10.2147/jir.s394503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system worldwide, and there is a lack of effective treatment for late-stage HCC. Recent experimental studies have demonstrated that dysfunction of the intestinal flora has a significant impact on hepatocarcinogenesis. The pathophysiological link between the intestine, its microbiota, and the liver has been described as the "gut-liver axis". Dysbiosis of the intestinal flora and increased permeability of the intestinal wall are closely associated with liver pathology through the immune response. The "gut-liver axis" theory has been applied to the clinical study of the pathogenesis and treatment of HCC. The intestinal fungal community, as part of the gut microbiome, has a significant impact on human health and disease, while relatively little research has been done in HCC. In this study, we performed a comprehensive analysis of the expression and potential biological functions of the fungal recognition receptors C-type lectin receptors (CLRs) (Dectin-1, Dectin-2, Dectin-3, and Mincle) in HCC. We found that CLRs were downregulated in HCC, and their expressions were correlated with the clinical prognosis of HCC patients. Further studies suggested that the expression of CLRs were significantly correlated with immune infiltration and immunotherapy efficacy in HCC. Based on previous studies and our findings, we hypothesize that intestinal fungal communities and CLRs-triggered antifungal immunity have a key role in the pathogenesis of HCC, and these findings may provide new perspectives and targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Jinkun Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Institute of Hepatobiliary Surgery, Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Haoran Ding
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Shujun Liu
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ran An
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Institute of Hepatobiliary Surgery, Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Institute of Hepatobiliary Surgery, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ming Chen
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Institute of Hepatobiliary Surgery, Medical School, Nanjing University, Nanjing, People’s Republic of China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Research progress on Mincle as a multifunctional receptor. Int Immunopharmacol 2023; 114:109467. [PMID: 36436471 DOI: 10.1016/j.intimp.2022.109467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Macrophage-induced C-type lectin (Mincle), a lipopolysaccharide-induced protein, is widely expressed on antigen-presenting cells. Mincle acts as a pattern recognition receptor that recognizes pathogen-associated molecular patterns of pathogens such as bacteria and fungi, mainly glycolipids, which induces an acquired immune response against microbial infection. Interestingly, Mincle can also identify patterns of lipid damage-associated molecule patterns released by injured cells, such as Sin3-associated protein 130 and β-glucosylceramides, which induces sterile inflammation and ultimately accelerates the progression of stroke, obesity, hepatitis, kidney injury, autoimmune diseases and tumors by promoting tissue inflammation. This article will review the various functions of Mincle, such as mediating sterile inflammation of tissues to accelerate disease progression, initiating immune responses to fight infection and promoting tumor progression.
Collapse
|
11
|
Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022; 13:911325. [PMID: 36131933 PMCID: PMC9483128 DOI: 10.3389/fimmu.2022.911325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell therapy, offer novel treatment options with good efficacy for patients with urothelial bladder cancer. However, heterogeneity and therapeutic resistance have limited the use of immunotherapy. Further research into immune-regulatory mechanisms in bladder cancer is urgently required. Emerging evidence demonstrates that the commensal microbiota and its interactions with host immunity play pivotal roles in a variety of physiological and pathological processes, including in cancer. The gut microbiota has been identified as a potentially effective target of treatment that can be synergized with immunotherapy. The urothelial tract is also a key site for multiple microbes, although the immune-regulatory role of the urinary microbiome in the process of carcinogenesis of bladder cancer remains to be elucidated. We performed a comprehensive analysis of the expression and biological functions of C-type lectin receptors (CLRs), which have been recognized as innate pathogen-associated receptors for fungal microbiota, in bladder cancer. In line with previous research on fungal colonization of the urothelial tract, we found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent lectin receptor (Mincle), had a significant association with immune infiltration in bladder cancer. Multiple innate and adaptive pathways are positively correlated with the upregulation of CLRs. In addition, we found a significant correlation between the expression of CLRs and a range of immune-checkpoint proteins in bladder cancer. Based on previous studies and our findings, we hypothesize that the urinary mycobiome plays a key role in the pathogenesis of bladder cancer and call for more research on CLR-mediated anti-fungal immunity against bladder cancer as a novel target for immunotherapy in urothelial bladder cancer.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| |
Collapse
|
12
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Jiang S, Redelman-Sidi G. BCG in Bladder Cancer Immunotherapy. Cancers (Basel) 2022; 14:3073. [PMID: 35804844 PMCID: PMC9264881 DOI: 10.3390/cancers14133073] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
BCG is a live attenuated strain of Mycobacterium bovis that is primarily used as a vaccine against tuberculosis. In the past four decades, BCG has also been used for the treatment of non-muscle invasive bladder cancer (NMIBC). In patients with NMIBC, BCG reduces the risk of tumor recurrence and decreases the likelihood of progression to more invasive disease. Despite the long-term clinical experience with BCG, its mechanism of action is still being elucidated. Data from animal models and from human studies suggests that BCG activates both the innate and adaptive arms of the immune system eventually leading to tumor destruction. Herein, we review the current data regarding the mechanism of BCG and summarize the evidence for its clinical efficacy and recommended indications and clinical practice.
Collapse
Affiliation(s)
- Song Jiang
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Gil Redelman-Sidi
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Inoue T, Miyake M, Nishimura N, Onozawa M, Kashima S, Numakura K, Narita S, Iida K, Uemura M, Matsushita Y, Inokuchi J, Matsui Y, Taoka R, Kojima T, Kobayashi T, Nishiyama N, Kitamura H, Nishiyama H, Fujimoto K, Habuchi T. Association of increased age with decreased response to intravesical instillation of Bacille Calmette-Guérin in patients with high-risk non-muscle invasive bladder cancer: Retrospective multi-institute results from the Japanese Urological Oncology Research Group JUOG-UC-1901-BCG. Urology 2022; 167:158-164. [PMID: 35700751 DOI: 10.1016/j.urology.2022.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To compare the therapeutic effect of Bacille Calmette-Guérin (BCG) intravesical instillation in older and younger patients with high-risk non-muscle-invasive bladder cancer (NMIBC). The comparison was performed with propensity score matching (PSM) without terminating the death of the older patients using relatively large-scale retrospective data from multiple institutes in Japan. MATERIALS AND METHODS Overall, 3,283 patients diagnosed with NMIBC treated with intravesical BCG instillation during 2000-2018 in 31 institutes were examined; 1,437 and 602 patients with high-grade T1 and Tis tumors were divided into those aged ≥ 75 and < 75 years. Multivariate analysis using the Fine-Gray competing risks regression model before PSM and survival analysis using the cumulative incidence method after PSM were performed. RESULTS In the pre-PSM series of high-grade T1 tumors, age ≥ 75 years was an independent prognostic factor for both recurrence and progression in multivariate analysis (p = 0.015 and p = 0.013). In the pre-PSM series with Tis tumor, no variables to predict recurrence and progression was found. In the post-PSM series of 870 high-grade T1 tumors, cumulative probability of recurrence after BCG intravesical instillation were significantly higher in patients aged ≥ 75 years than in those aged < 75 years (p = 0.008). The frequency of discontinuation of BCG instillation in patients aged ≥ 75 years with high-grade T1 and Tis was not significantly different from those in patients aged < 75 years (p = 0.564 and p = 0.869). CONCLUSIONS The cumulative probability of recurrence after intravesical BCG instillation was significantly higher in older than in younger patients with high-grade T1 bladder cancer.
Collapse
Affiliation(s)
- Takamitsu Inoue
- Department of Renal and Urological Surgery, International University of Health and Welfare, Narita, Chiba, 286-0124, Japan; Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan.
| | - Makito Miyake
- Department of Urology, Nara Medical University Graduate School of Medicine, Kashihara, Nara, 634-8521, Japan
| | - Nobutaka Nishimura
- Department of Urology, Nara Medical University Graduate School of Medicine, Kashihara, Nara, 634-8521, Japan
| | - Mizuki Onozawa
- Department of Renal and Urological Surgery, International University of Health and Welfare, Narita, Chiba, 286-0124, Japan
| | - Soki Kashima
- Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University Graduate School of Medicine, Kashihara, Nara, 634-8521, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuto Matsushita
- Department of Urology, Hamamatsu University Graduate School of Medicine, Hamamatsu, Shizuoka, 431-3125, Japan
| | - Junichi Inokuchi
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Rikiya Taoka
- Department of Urology, Kagawa University Faculty of Medicine, Takamatsu, Kagawa, 761-0793, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Aichi, 464-0021, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Naotaka Nishiyama
- Department of Urology, University of Toyama Faculty of Medicine, Toyama, 930-0194, Japan
| | - Hiroshi Kitamura
- Department of Urology, University of Toyama Faculty of Medicine, Toyama, 930-0194, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University Graduate School of Medicine, Kashihara, Nara, 634-8521, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| |
Collapse
|
15
|
Zhang J, Bao Y. Value of MSCT plus MRI in the Detection of Colon Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6507865. [PMID: 35685721 PMCID: PMC9173996 DOI: 10.1155/2022/6507865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Colon cancer is a common digestive system malignancy with nonspecific early symptoms, which necessitates better early detection methods. The present study was conducted to assess the accuracy and clinical value of multislice spiral CT (MSCT) plus magnetic resonance imaging (MRI) for colon cancer. Between January 2019 and July 2020, 100 patients with pathologically confirmed colon cancer treated in Wuxi People's Hospital were assessed for eligibility and recruited. All eligible patients received MRI and MSCT without any treatment prior to scanning. The accuracy of preoperative diagnosis and staging of colon cancer by MRI, MSCT, and MRI plus MSCT were analyzed using postoperative pathological results as the gold standard, and consistency analysis was performed. The receiver operating characteristic curve (ROC) was plotted, and the area under the curve (AUC) was obtained to analyze the preoperative diagnostic value. The accuracy of MRI, MSCT, and MRI plus MSCT was 98.00%, 96.00%, and 100% with good consistency (Kappa = 0.732, 0.703, and 0.756). The AUC of MRI, MSCT, and MRI plus MSCT was 0.889, 0.861, and 0.903, respectively. The preoperative diagnostic accuracy of MRI for colon cancer at T1, T2, T3, and T4 stages was 76.92%, 82.61%, 73.47%, and 86.67%, respectively, those of MSCT was 53.85%, 69.57%, 63.27%, and 40.00%, respectively, and those of MRI plus MSCT was 100.00%, 95.65%, 95.92%, and 86.67%, respectively. Consistency analysis yielded good consistency for the diagnosis of the T-staging of colon cancer (Kappa = 0.754, 0.731, 0.776). MSCT plus MRI yielded higher accuracy, specificity, and sensitivity in the detection of colon cancer versus the standalone MRI or MSCT, which demonstrated great potential in the early detection of colon cancer with a high clinical value.
Collapse
Affiliation(s)
- Jingni Zhang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Yu Bao
- Medical Imaging Center, Wuxi People's Hospital, Wuxi 214043, Jiangsu Province, China
| |
Collapse
|
16
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
18
|
Alexander AL, Doyle E, Ingham AB, Colditz I, McRae G, Alkemade S, Cervantes MP, Hine BC. The innate immune stimulant Amplimune® is safe to administer to young feedlot cattle. Aust Vet J 2022; 100:261-270. [PMID: 35224736 PMCID: PMC9306767 DOI: 10.1111/avj.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Infectious disease has a significant impact on livestock production. Availability of alternatives to antibiotics to prevent and treat disease is required to reduce reliance on antibiotics while not impacting animal welfare. Innate immune stimulants, such as mycobacterium cell wall fractions (MCWF), are used as alternatives to antibiotics for the treatment and prevention of infectious disease in a number of species including cattle, horses and dogs. This study aimed to evaluate the safety of Amplimune®, an MCWF-based immune stimulant, for weaner Angus cattle. METHODS On day -1 and 0, sixty mixed-sex Angus weaner cattle were transported for 6 h before being inducted and housed in a large single pen, simulating feedlot induction conditions. The cattle were assigned to one of six treatment groups (n = 10 per group): 2 mL Amplimune intramuscularly (2IM); 2 mL Amplimune subcutaneously (2SC); 5 mL Amplimune intramuscularly (5IM); 5 mL Amplimune subcutaneously (5SC); 5 mL saline intramuscularly (SalIM) and 5 mL saline subcutaneously (SalSC) on day 0 following transportation. Body temperature, body weight, concentrations of circulating pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and IL-12) and haematology parameters were measured at various times up to 96 h post-treatment. RESULTS No adverse effects from Amplimune treatment were observed. Amplimune induced an increase in circulating cytokine TNFα concentrations, total white blood cell count and lymphocyte counts indicative of activation of the innate immune system without causing an excessive inflammatory response. CONCLUSIONS Results confirm that Amplimune can be safely administered to beef cattle at the dose rates and via the routes of administration investigated here.
Collapse
Affiliation(s)
- A L Alexander
- The University of New England, Armidale, New South Wales, 2350, Australia.,CSIRO Agriculture and Food, F.D. McMaster Laboratory, New England Hwy, Armidale, New South Wales, 2350, Australia
| | - E Doyle
- The University of New England, Armidale, New South Wales, 2350, Australia
| | - A B Ingham
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - I Colditz
- CSIRO Agriculture and Food, F.D. McMaster Laboratory, New England Hwy, Armidale, New South Wales, 2350, Australia
| | - G McRae
- NovaVive Inc., 15 Dairy Avenue, Napanee, Ontario, K7R 1M4, Canada
| | - S Alkemade
- NovaVive Inc., 15 Dairy Avenue, Napanee, Ontario, K7R 1M4, Canada
| | - M P Cervantes
- NovaVive Inc., 15 Dairy Avenue, Napanee, Ontario, K7R 1M4, Canada
| | - B C Hine
- CSIRO Agriculture and Food, F.D. McMaster Laboratory, New England Hwy, Armidale, New South Wales, 2350, Australia
| |
Collapse
|