1
|
Richterich CA, Logtenberg MEW, Jansen MJH, Toebes M, Bresser K, Borst A, Jurgens AP, Leusen JHW, Schumacher TN. ITPK1 Sensitizes Tumor Cells to IgA-dependent Neutrophil Killing In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1244-1254. [PMID: 39213127 PMCID: PMC7616474 DOI: 10.4049/jimmunol.2300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Neutrophils can efficiently trigger cytotoxicity toward tumor cells and other target cells upon engagement of the IgA receptor CD89. However, the cell-intrinsic factors that influence the induction of cell death upon exposure to neutrophil effector mechanisms in vivo remain largely unknown. To uncover genetic regulators that influence target cell sensitivity to IgA-induced neutrophil-mediated killing, we used a human CD89 (hCD89) transgenic mouse model in which IgA-mediated killing of Her2-positive CD47-deficient murine target cells is mediated by neutrophils. Using a genome-wide in vivo screening approach, we demonstrate that deletion of the gene encoding inositol-tetrakisphosphate 1 kinase (ITPK1) increases survival of target cells in anti-Her2 IgA-treated mice. Moreover, we show that this effect depends on neutrophil activity and on the ITPK1 kinase domain. Notably, ITPK1 deficiency did not measurably impact survival of IgA-opsonized target cells in in vitro systems, underscoring the importance of in vivo screening systems to uncover physiologically relevant regulators of neutrophil killing.
Collapse
Affiliation(s)
- Connor A. Richterich
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Meike E. W. Logtenberg
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Marco J. H. Jansen
- Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kaspar Bresser
- Oncode Institute, Utrecht, the Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory (AMC), Amsterdam UMC, Amsterdam, the Netherlands
| | - Anne Borst
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anouk P. Jurgens
- Oncode Institute, Utrecht, the Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory (AMC), Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Chan C, Cabanes NC, Jansen JHM, Guillaume J, Nederend M, Passchier EM, Gómez-Mellado VE, Peipp M, Boes M, van Tetering G, Leusen JHW. The relevance of tumor target expression levels on IgA-mediated cytotoxicity in cancer immunotherapy. Cancer Immunol Immunother 2024; 73:238. [PMID: 39358557 PMCID: PMC11447191 DOI: 10.1007/s00262-024-03824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Recent advances in cancer immunotherapy, particularly the success of immune checkpoint inhibitors, have reignited interest in targeted monoclonal antibodies for immunotherapy. Antibody therapies aim to minimize on-target, off-tumor toxicity by targeting antigens overexpressed on tumor cells but not on healthy cells. Despite considerable efforts, some therapeutic antibodies have been linked to dose-limiting side effects. Our hypothesis suggests that the efficacy of IgG leads to a lower target expression threshold for tumor cell killing, contributing to these side effects. Earlier, therapeutic IgG antibodies were reformatted into the IgA isotype. Unlike IgG, which primarily engages Fc gamma receptors (FcγR) to induce antibody-dependent cellular cytotoxicity (ADCC) by NK cells and antibody-dependent cellular phagocytosis (ADCP) by monocytes/macrophages, IgA antibodies activate neutrophils through the Fc alpha receptor I (CD89, FcαRI). In previous studies, it appeared that IgA may require a higher target expression threshold for effective killing, and we aimed to investigate this in our current study. Moreover, we investigated how blocking the myeloid checkpoint CD47/SIRPα axis affect the target expression threshold. Using a tetracycline-inducible expression system, we regulated target expression in different cell lines. Our findings from ADCC assays indicate that IgA-mediated PMN ADCC requires a higher antigen expression level than IgG-mediated PBMC ADCC. Furthermore, blocking CD47 enhanced IgA-mediated ADCC, lowering the antigen threshold. Validated in two in vivo models, our results show that IgA significantly reduces tumor growth in high-antigen-expressing tumors without affecting low-antigen-expressing healthy tissues. This suggests IgA-based immunotherapy could potentially minimize on-target, off-tumor side effects, improving treatment efficacy and patient safety.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Núria Casalé Cabanes
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J H Marco Jansen
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Joël Guillaume
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elsemieke M Passchier
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Pediatrics Department, University Medical Center, Utrecht, The Netherlands
| | - Geert van Tetering
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Chan C, Jansen JHM, Hendriks IST, van der Peet IC, Verdonschot MEL, Passchier EM, Tsioumpekou M, Nederend M, Klomp SA, Valerius T, Peipp M, Leusen JHW, Olofsen PA. Enhancing Neutrophil Cytotoxicity of a Panel of Clinical EGFR Antibodies by Fc Engineering to IgA3.0. Mol Cancer Ther 2024; 23:1317-1331. [PMID: 38958494 DOI: 10.1158/1535-7163.mct-24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
EGFR plays an essential role in cellular signaling pathways that regulate cell growth, proliferation, and survival and is often dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years, which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and inducing Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, which are the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition, and ligand blockade. In addition, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared with their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We showed that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared with the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J H Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ilona S T Hendriks
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ida C van der Peet
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meggy E L Verdonschot
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elsemieke M Passchier
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sharon A Klomp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Al-brechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
5
|
Chan C, Stip M, Nederend M, Jansen M, Passchier E, van den Ham F, Wienke J, van Tetering G, Leusen J. Enhancing IgA-mediated neutrophil cytotoxicity against neuroblastoma by CD47 blockade. J Immunother Cancer 2024; 12:e008478. [PMID: 38782540 PMCID: PMC11116899 DOI: 10.1136/jitc-2023-008478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Femke van den Ham
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith Wienke
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Feola S, Hamdan F, Russo S, Chiaro J, Fusciello M, Feodoroff M, Antignani G, D'Alessio F, Mölsä R, Stigzelius V, Bottega P, Pesonen S, Leusen J, Grönholm M, Cerullo V. Novel peptide-based oncolytic vaccine for enhancement of adaptive antitumor immune response via co-engagement of innate Fcγ and Fcα receptors. J Immunother Cancer 2024; 12:e008342. [PMID: 38458776 DOI: 10.1136/jitc-2023-008342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.
Collapse
Affiliation(s)
- Sara Feola
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Federica D'Alessio
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Riikka Mölsä
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Virpi Stigzelius
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Paolo Bottega
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | | | - Jeanette Leusen
- Center for translational immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mikaela Grönholm
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- University of Helsinki Faculty of Pharmacy, Laboratory of Immunovirotherapy, Drug Research Program Helsinki, Uusimaa, FI, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|