1
|
Jaimes-Nino LM, Oettler J. The pace and shape of ant ageing. Biol Rev Camb Philos Soc 2025. [PMID: 40374312 DOI: 10.1111/brv.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Ants have been proposed as good models to study ageing and the effects of extrinsic mortality because of their long lifespans and plasticity of ageing within species. We discuss how age-dependent extrinsic mortality might influence queen lifespan, and how the effect of age-independent extrinsic mortality needs further study, accounting for different density-dependence scenarios. Based on a critical review of the available demographic data, we discuss the selective forces underlying ant ageing. We discuss differences and similarities between the life-history strategy of ants and the reproductive strategies iteroparity and semelparity. We consider how late-life fitness gains for the "superorganism" select for a delay of actuarial, and reproductive senescence, and we suggest future research directions.
Collapse
Affiliation(s)
- Luisa M Jaimes-Nino
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, Mainz, 55128, Germany
- Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| |
Collapse
|
2
|
Ma R, Zhang L, He H. Eco-Morphological Responses of Camponotus japonicus (Hymenoptera: Formicidae) to Varied Climates and Habitats. INSECTS 2024; 15:719. [PMID: 39336687 PMCID: PMC11431994 DOI: 10.3390/insects15090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Ants are a highly adaptable group of insects that have globally established themselves in diverse climates and habitats. This study investigates the influence of climate and habitat on the morphological traits of Camponotus japonicus across 22 sites in mainland China. These sites span three climate zones (mid-temperate, warm temperate, and subtropical) and three habitat types (urban parks, farmlands, and sparse woodlands). Principal component analysis (PCA) was used to determine the principal axis of morphological variation, while hypervolume analysis and centroid distance calculation were used to verify the environmental filtering hypothesis and the optimal transfer hypothesis. The results support both hypotheses showing that climate and habitat significantly affect the morphological space of C. japonicus workers. In particular, the morphological space is more constrained in mid-temperate farmlands, while workers in sparse woodlands exhibit greater morphological variation. In contrast, urban parks are characterized by higher stability and reduced morphological differences. Additionally, robust regression analysis reveals that environmental factors such as temperature, precipitation, humidity, and altitude are closely linked to the morphological traits of the workers. Understanding how ant morphology responds to external environmental changes enhances our understanding of their adaptability and their essential ecological roles across various ecosystems.
Collapse
Affiliation(s)
| | | | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
3
|
Cayuela H, Lackey ACR, Ronget V, Monod-Broca B, Whiteman HH. Polyphenism predicts actuarial senescence and lifespan in tiger salamanders. J Anim Ecol 2024; 93:333-347. [PMID: 38279640 DOI: 10.1111/1365-2656.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/08/2023] [Indexed: 01/28/2024]
Abstract
Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism-the unique sub-type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype-may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature. In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander, Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture-recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture-recapture models and Bayesian age-dependent survival models. Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age-dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late-breeding females also lived longer but showed a senescence rate similar to that of early-breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late-breeding males lived longer but, unexpectedly, had higher senescence than early-breeding males. Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.
Collapse
Affiliation(s)
- Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| | - Victor Ronget
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Benjamin Monod-Broca
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Howard H Whiteman
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
4
|
Willot Q, Ørsted M, Malte H, Overgaard J. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants. Proc Biol Sci 2023; 290:20230985. [PMID: 37670587 PMCID: PMC10510448 DOI: 10.1098/rspb.2023.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species' climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species' distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species' climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.
Collapse
Affiliation(s)
- Quentin Willot
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ørsted
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg E, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
5
|
Chouvenc T, Ban PM, Su NY. Life and Death of Termite Colonies, a Decades-Long Age Demography Perspective. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.911042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A eusocial insect colony represents a complex biological entity that must ensure degrees of perennity once it reaches maturity (production of dispersing imagoes over many successive years) to optimize its reproductive success. It is known that a subterranean termite colony invests differentially in different castes over time and adjusts colony functions depending on colony internal and external conditions over many years of activity. However, the current study demonstrates that Coptotermes formosanus Shiraki field mature colonies go through dramatic demographic changes and breeding structure shifts, even many years after they have reached reproductive success. By analyzing the changes in age demography of C. formosanus colonies from four field sites, we here provide a new perspective on how a colony may function over decades, which reveals that each colony demographic trajectory is unique. In a way, throughout its life, a termite colony displays its own “demographic individuality” that drives its growth, its foraging ability, its competitiveness, its age demography, its senescence and ultimately its death. This study is therefore a narrated story of the life -and death- of different C. formosanus field colonies over decades of observation.
Collapse
|
6
|
Kramer BH, Doorn GSV, Arani BMS, Pen I. Eusociality and the evolution of aging in superorganisms. Am Nat 2022; 200:63-80. [DOI: 10.1086/719666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Giraldo YM, Muscedere ML, Traniello JFA. Eusociality and Senescence: Neuroprotection and Physiological Resilience to Aging in Insect and Mammalian Systems. Front Cell Dev Biol 2021; 9:673172. [PMID: 34211973 PMCID: PMC8239293 DOI: 10.3389/fcell.2021.673172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Are eusociality and extraordinary aging polyphenisms evolutionarily coupled? The remarkable disparity in longevity between social insect queens and sterile workers-decades vs. months, respectively-has long been recognized. In mammals, the lifespan of eusocial naked mole rats is extremely long-roughly 10 times greater than that of mice. Is this robustness to senescence associated with social evolution and shared mechanisms of developmental timing, neuroprotection, antioxidant defenses, and neurophysiology? Focusing on brain senescence, we examine correlates and consequences of aging across two divergent eusocial clades and how they differ from solitary taxa. Chronological age and physiological indicators of neural deterioration, including DNA damage or cell death, appear to be decoupled in eusocial insects. In some species, brain cell death does not increase with worker age and DNA damage occurs at similar rates between queens and workers. In comparison, naked mole rats exhibit characteristics of neonatal mice such as protracted development that may offer protection from aging and environmental stressors. Antioxidant defenses appear to be regulated differently across taxa, suggesting independent adaptations to life history and environment. Eusocial insects and naked mole rats appear to have evolved different mechanisms that lead to similar senescence-resistant phenotypes. Careful selection of comparison taxa and further exploration of the role of metabolism in aging can reveal mechanisms that preserve brain functionality and physiological resilience in eusocial species.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Mario L. Muscedere
- Department of Biology, Boston University, Boston, MA, United States
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Reznikova Z. Ants’ Personality and Its Dependence on Foraging Styles: Research Perspectives. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The paper is devoted to analyzing consistent individual differences in behavior, also known as “personalities,” in the context of a vital ant task—the detection and transportation of food. I am trying to elucidate the extent to which collective cognition is individual-based and whether a single individual’s actions can suffice to direct the entire colony or colony units. The review analyzes personalities in various insects with different life cycles and provides new insights into the role of individuals in directing group actions in ants. Although it is widely accepted that, in eusocial insects, colony personality emerges from the workers’ personalities, there are only a few examples of investigations of personality at the individual level. The central question of the review is how the distribution of behavioral types and cognitive responsibilities within ant colonies depends on a species’ foraging style. In the context of how workers’ behavioral traits display during foraging, a crucial question is what makes an ant a scout that discovers a new food source and mobilizes its nestmates. In mass recruiting, tandem-running, and even in group-recruiting species displaying leadership, the division of labor between scouts and recruits appears to be ephemeral. There is only little, if any, evidence of ants’ careers and behavioral consistency as leaders. Personal traits characterize groups of individuals at the colony level but not performers of functional roles during foraging. The leader-scouting seems to be the only known system that is based on a consistent personal difference between scouting and foraging individuals.
Collapse
|
9
|
Lagos-Oviedo JJ, Sarmiento CE. Task specialization and structure attrition: neotropical social wasps may disperse the cost of mandible demanding labors throughout their lives. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Beros S, Lenhart A, Scharf I, Negroni MA, Menzel F, Foitzik S. Extreme lifespan extension in tapeworm-infected ant workers. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202118. [PMID: 34017599 PMCID: PMC8131941 DOI: 10.1098/rsos.202118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 06/01/2023]
Abstract
Social insects are hosts of diverse parasites, but the influence of these parasites on phenotypic host traits is not yet well understood. Here, we tracked the survival of tapeworm-infected ant workers, their uninfected nest-mates and of ants from unparasitized colonies. Our multi-year study on the ant Temnothorax nylanderi, the intermediate host of the tapeworm Anomotaenia brevis, revealed a prolonged lifespan of infected workers compared with their uninfected peers. Intriguingly, their survival over 3 years did not differ from those of (uninfected) queens, whose lifespan can reach two decades. By contrast, uninfected workers from parasitized colonies suffered from increased mortality compared with uninfected workers from unparasitized colonies. Infected workers exhibited a metabolic rate and lipid content similar to young workers in this species, and they received more social care than uninfected workers and queens in their colonies. This increased attention could be mediated by their deviant chemical profile, which we determined to elicit more interest from uninfected nest-mates in a separate experiment. In conclusion, our study demonstrates an extreme lifespan extension in a social host following tapeworm infection, which appears to enable host workers to retain traits typical for young workers.
Collapse
Affiliation(s)
- Sara Beros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Lenhart
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
12
|
Majoe M, Libbrecht R, Foitzik S, Nehring V. Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190735. [PMID: 33678018 PMCID: PMC7938173 DOI: 10.1098/rstb.2019.0735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. In ants, the most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part owing to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers to oxidative stress. Oxidative stress drastically reduced survival, but this effect was less pronounced in leaf-cutting ant workers from queenless nests. We also found that, irrespective of oxidative stress, outside workers died earlier than inside workers did, likely because they were older. Since At. colombica workers cannot produce fertile offspring, our results indicate that direct reproduction is not necessary to extend the lives of queenless workers. Our findings suggest that workers are less resilient to oxidative stress in the presence of the queen, and raise questions on the proximate and ultimate mechanisms underlying socially mediated variation in worker lifespan. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Volker Nehring
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
13
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
14
|
Negroni MA, Macit MN, Stoldt M, Feldmeyer B, Foitzik S. Molecular regulation of lifespan extension in fertile ant workers. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190736. [PMID: 33678017 DOI: 10.1098/rstb.2019.0736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of sociality in insects caused a divergence in lifespan between reproductive and non-reproductive castes. Ant queens can live for decades, while most workers survive only weeks to a few years. In most organisms, longevity is traded-off with reproduction, but in social insects, these two life-history traits are positively linked. Once fertility is induced in workers, e.g. by queen removal, worker lifespan increases. The molecular regulation of this positive link between fecundity and longevity and generally the molecular underpinnings of caste-specific senescence are not well understood. Here, we investigate the transcriptomic regulation of lifespan and reproduction in fat bodies of three worker groups in the ant Temnothorax rugatulus. In a long-term experiment, workers that became fertile in the absence of the queen showed increased survival and upregulation of genes involved in longevity and fecundity pathways. Interestingly, workers that re-joined their queen after months exhibited intermediate ovary development, but retained a high expression of longevity and fecundity genes. Strikingly, the queen's presence causes a general downregulation of genes in worker fat bodies. Our findings point to long-term consequences of fertility induction in workers, even after re-joining their queen. Moreover, we reveal longevity genes and pathways modulated during insect social evolution. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Development and Control of Behaviour. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Detrain C, Pereira H, Fourcassié V. Differential responses to chemical cues correlate with task performance in ant foragers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2717-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Baudier KM, Ostwald MM, Grüter C, Segers FHID, Roubik DW, Pavlic TP, Pratt SC, Fewell JH. Changing of the guard: mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav Ecol 2019. [DOI: 10.1093/beheco/arz047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Task allocation is a central challenge of collective behavior in a variety of group-living species, and this is particularly the case for the allocation of social insect workers for group defense. In social insects, both benefits and considerable costs are associated with the production of specialized soldiers. We asked whether colonies mitigate costs of production of specialized soldiers by simultaneously employing behavioral flexibility in nonspecialist workers that can augment defense capabilities at short time scales. We studied colonies of the stingless bee Tetragonisca angustula, a species that has 2 discrete nest-guarding tasks typically performed by majors: hovering guarding and standing guarding. Majors showed age polyethism across nest-guarding tasks, first hovering and then changing to the task of standing guarding after 1 week. Colonies were also able to reassign minors to guarding tasks when majors were experimentally removed. Replacement guards persisted in nest defense tasks until colonies produced enough majors to return to their initial state. Tetragonisca angustula colonies thus employed a coordinated set of specialization strategies in nest defense: morphologically specialized soldiers, age polyethism among soldiers within specific guarding tasks, and rapid flexible reallocation of nonspecialists to guarding during soldier loss. This mixed strategy achieves the benefits of a highly specialized defensive force while maintaining the potential for rapid reinforcement when soldiers are lost or colonies face unexpectedly intense attack.
Collapse
Affiliation(s)
| | | | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Biozentrum I, University of Mainz, Mainz, Germany
| | - Francisca H I D Segers
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama, Republic of Panama
| | - Theodore P Pavlic
- Decision Systems Engineering, Arizona State University, Tempe, AZ
- School of Sustainability, Arizona State University, Wrigley Hall, Tempe, AZ, USA
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
18
|
Yanagihara S, Suehiro W, Mitaka Y, Matsuura K. Age-based soldier polyethism: old termite soldiers take more risks than young soldiers. Biol Lett 2019. [PMID: 29514993 DOI: 10.1098/rsbl.2018.0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Who should take on risky tasks in an age-heterogeneous society? Life-history theory predicts that, in social insects, riskier tasks should be undertaken by sterile individuals with a shorter life expectancy. The loss of individuals with shorter life expectancy is less costly for colony reproductive success than the loss of individuals with longer life expectancy. Termite colonies have a sterile soldier caste, specialized defenders engaged in the most risky tasks. Here we show that termite soldiers exhibit age-dependent polyethism, as old soldiers are engaged in front-line defence more than young soldiers. Our nest defence experiment showed that old soldiers went to the front line and blocked the nest opening against approaching predatory ants more often than young soldiers. We also found that young soldiers were more biased toward choosing central nest defence as royal guards than old soldiers. These results demonstrate that termite soldiers have age-based task allocation, by which ageing predisposes soldiers to switch to more dangerous tasks. This age-dependent soldier task allocation increases the life expectancy of soldiers, allowing them to promote their lifetime contribution to colony reproductive success.
Collapse
Affiliation(s)
- Saki Yanagihara
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Wataru Suehiro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Yuki Mitaka
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Iakovlev I, Reznikova Z. Red Wood Ants Display Natural Aversive Learning Differently Depending on Their Task Specialization. Front Psychol 2019; 10:710. [PMID: 30984090 PMCID: PMC6449629 DOI: 10.3389/fpsyg.2019.00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/13/2019] [Indexed: 11/19/2022] Open
Abstract
The adaptive benefits of individual specialization and how learning abilities correlate with task performance are still far from being well-understood. Red wood ants are characterized by their huge colonies and deep professional specialization. We hypothesized that red wood ants Formica aquilonia form aversive learning after having negative encounters with hoverfly larvae differently, depending on their task specialization. We tested this hypothesis, first, by examining whether hunters and aphid milkers learn differently to avoid the nuisance of contacts with syrphid larvae, and, second, by analyzing the difference between learning in "field" and laboratory-reared (naïve) foragers. During the first interaction with the syrphid larva in their lives the naïve foragers showed a significantly higher level of aggressiveness than the members of a natural colony. Naïve foragers applied the "mortal grip," "prolonged bites," and "nibbling" toward the enemy with a significantly higher frequency, whereas members of both "field" groups behaved more carefully and tried to avoid encounters with the larva. The aphid milkers, who had a negative experience of interaction with the larva, being "glued" with its viscous secretion, behaved much less aggressively in the follow-up experiments after 10 min and even 3 days, thus exhibiting the shaping of both short- and long-term memories. However, both "field" hunters and naïve foragers demonstrated no signs of aversive learning. These data provide some new insights into the relationship between task specialization and learning performance in ants. Given our previous results, we speculate that scouts and aphid milkers are the most cognitively gifted specialists in red wood ants, whereas hunters and guards are rather brave than smart.
Collapse
Affiliation(s)
- Ivan Iakovlev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Zhanna Reznikova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
20
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Rozina AA, Lyubetsky VA, Minina EP, Bychkovskaia IB, Markov AV, Skulachev VP. Ants as Object of Gerontological Research. BIOCHEMISTRY (MOSCOW) 2019; 83:1489-1503. [PMID: 30878024 DOI: 10.1134/s0006297918120076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Social insects with identical genotype that form castes with radically different lifespans are a promising model system for studying the mechanisms underlying longevity. The main direction of progressive evolution of social insects, in particular, ants, is the development of the social way of life inextricably linked with the increase in the colony size. Only in a large colony, it is possible to have a developed polyethism, create large food reserves, and actively regulate the nest microclimate. The lifespan of ants hugely varies among genetically similar queens, workers (unproductive females), and males. The main advantage of studies on insects is the determinism of ontogenetic processes, with a single genome leading to completely different lifespans in different castes. This high degree of determinacy is precisely the reason why some researchers (incorrectly) call a colony of ants the "superorganism", emphasizing the fact that during the development, depending on the community needs, ants can switch their ontogenetic programs, which influences their social roles, ability to learn (i.e., the brain [mushroom-like body] plasticity), and, respectively, the spectrum of tasks performed by a given individual. It has been shown that in many types of food behavior, older ants surpass young ones in both performing the tasks and transferring the experience. The balance between the need to reduce the "cost" of non-breeding individuals (short lifespan and small size of workers) and the benefit from experienced long-lived workers possessing useful skills (large size and "non-aging") apparently determines the differences in the lifespan and aging rate of workers in different species of ants. A large spectrum of rigidly determined ontogenetic trajectories in different castes with identical genomes and the possibility of comparison between "evolutionarily advanced" and "primitive" subfamilies (e.g., Formicinae and Ponerinae) make ants an attractive object in the studies of both normal aging and effects of anti-aging drugs.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Rozina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E P Minina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I B Bychkovskaia
- Nikiforov Center of Emergency and Radiation Medicine of the Russian Ministry of Emergency Control, St. Petersburg, 194044, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
Monroy Kuhn JM, Meusemann K, Korb J. Long live the queen, the king and the commoner? Transcript expression differences between old and young in the termite Cryptotermes secundus. PLoS One 2019; 14:e0210371. [PMID: 30759161 PMCID: PMC6373952 DOI: 10.1371/journal.pone.0210371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Social insects provide promising new avenues for aging research. Within a colony, individuals that share the same genetic background can differ in lifespan by up to two orders of magnitude. Reproducing queens (and in termites also kings) can live for more than 20 years, extraordinary lifespans for insects. We studied aging in a termite species, Cryptotermes secundus, which lives in less socially complex societies with a few hundred colony members. Reproductives develop from workers which are totipotent immatures. Comparing transcriptomes of young and old individuals, we found evidence for aging in reproductives that was especially associated with DNA and protein damage and the activity of transposable elements. By contrast, workers seemed to be better protected against aging. Thus our results differed from those obtained for social insects that live in more complex societies. Yet, they are in agreement with lifespan estimates for the study species. Our data are also in line with expectations from evolutionary theory. For individuals that are able to reproduce, it predicts that aging should only start after reaching maturity. As C. secundus workers are immatures with full reproductive options we expect them to invest into anti-aging processes. Our study illustrates that the degree of aging can differ between social insects and that it may be associated with caste-specific opportunities for reproduction.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| |
Collapse
|
22
|
Pinter-Wollman N, Jelić A, Wells NM. The impact of the built environment on health behaviours and disease transmission in social systems. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170245. [PMID: 29967306 PMCID: PMC6030577 DOI: 10.1098/rstb.2017.0245] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2018] [Indexed: 01/08/2023] Open
Abstract
The environment plays an important role in disease dynamics and in determining the health of individuals. Specifically, the built environment has a large impact on the prevention and containment of both chronic and infectious disease in humans and in non-human animals. The effects of the built environment on health can be direct, for example, by influencing environmental quality, or indirect by influencing behaviours that impact disease transmission and health. Furthermore, these impacts can happen at many scales, from the individual to the society, and from the design of the plates we eat from to the design of cities. In this paper, we review the ways that the built environment affects both the prevention and the containment of chronic and infectious disease. We bring examples from both human and animal societies and attempt to identify parallels and gaps between the study of humans and animals that can be capitalized on to advance the scope and perspective of research in each respective field. By consolidating this literature, we hope to highlight the importance of built structures in determining the complex dynamics of disease and in impacting the health behaviours of both humans and animals.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea Jelić
- Department of Architecture, Design and Media Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Nancy M Wells
- Department of Design and Environmental Analysis, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Charbonneau D, Poff C, Nguyen H, Shin MC, Kierstead K, Dornhaus A. Who Are the "Lazy" Ants? The Function of Inactivity in Social Insects and a Possible Role of Constraint: Inactive Ants Are Corpulent and May Be Young and/or Selfish. Integr Comp Biol 2018; 57:649-667. [PMID: 28957517 DOI: 10.1093/icb/icx029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Social insect colonies are commonly thought of as highly organized and efficient complex systems, yet high levels of worker inactivity are common. Although consistently inactive workers have been documented across many species, very little is known about the potential function or costs associated with this behavior. Here we ask what distinguishes these "lazy" individuals from their nestmates. We obtained a large set of behavioral and morphological data about individuals, and tested for consistency with the following evolutionary hypotheses: that inactivity results from constraint caused by worker (a) immaturity or (b) senescence; that (c) inactive workers are reproducing; that inactive workers perform a cryptic task such as (d) acting as communication hubs or (e) food stores; and that (f) inactive workers represent the "slow-paced" end of inter-worker variation in "pace-of-life." We show that inactive workers walk more slowly, have small spatial fidelity zones near the nest center, are more corpulent, are isolated in colony interaction networks, have the smallest behavioral repertoires, and are more likely to have oocytes than other workers. These results are consistent with the hypotheses that inactive workers are immature and/or storing food for the colony; they suggest that workers are not inactive as a consequence of senescence, and that they are not acting as communication hubs. The hypotheses listed above are not mutually exclusive, and likely form a "syndrome" of behaviors common to inactive social insect workers. Their simultaneous contribution to inactivity may explain the difficulty in finding a simple answer to this deceptively simple question.
Collapse
Affiliation(s)
- Daniel Charbonneau
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Biological Sciences West, 1041 East Lowell, Room 235, Tucson, AZ 85721, USA
| | - Corey Poff
- Mathematics and Computer Science Department, Davidson College, 405 N. Main Street, Davidson, NC 28036, USA
| | - Hoan Nguyen
- Department of Computer Sciences, College of Computing and Informatics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Min C Shin
- Department of Computer Sciences, College of Computing and Informatics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Karen Kierstead
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell Street, Tucson, AZ 85721, USA
| | - Anna Dornhaus
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
25
|
The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2333-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Kohlmeier P, Negroni MA, Kever M, Emmling S, Stypa H, Feldmeyer B, Foitzik S. Intrinsic worker mortality depends on behavioral caste and the queens' presence in a social insect. Naturwissenschaften 2017; 104:34. [PMID: 28353195 DOI: 10.1007/s00114-017-1452-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/30/2022]
Abstract
According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany.
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Stefanie Emmling
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Heike Stypa
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
27
|
Giraldo YM, Kamhi JF, Fourcassié V, Moreau M, Robson SKA, Rusakov A, Wimberly L, Diloreto A, Kordek A, Traniello JFA. Lifespan behavioural and neural resilience in a social insect. Proc Biol Sci 2016; 283:rspb.2015.2603. [PMID: 26740614 DOI: 10.1098/rspb.2015.2603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine--neuromodulators that could negatively impact behaviour through age-related declines--increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines.
Collapse
Affiliation(s)
| | - J Frances Kamhi
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Vincent Fourcassié
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Mathieu Moreau
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Simon K A Robson
- College of Marine and Environmental Science, James Cook University, Townsville 4811, Australia
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
28
|
de Verges J, Nehring V. A critical look at proximate causes of social insect senescence: damage accumulation or hyperfunction? CURRENT OPINION IN INSECT SCIENCE 2016; 16:69-75. [PMID: 27720053 DOI: 10.1016/j.cois.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Social insects have received attention for their extreme lifespan variation and reversal of the fecundity/longevity trade-off. However, proximate causes of senescence in general are disputed, and social insects often fail to meet the predictions of prevailing models. We present evidence for and against the long-held free radical theory of aging in social insects, and consider the application of the competing hyperfunction theory. Current results present problems for both theories, and a more complex picture of the biological processes involved emerges. The eusocial life style might allow colonies to allocate damage in ways that create seemingly senescence-free life histories. Only experimental approaches characterizing multiple senescence factors simultaneously will shed light on how social insects defy the conventions of senescence.
Collapse
Affiliation(s)
- Jane de Verges
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Volker Nehring
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany.
| |
Collapse
|
29
|
Monroy Kuhn JM, Korb J. Editorial overview: Social insects: aging and the re-shaping of the fecundity/longevity trade-off with sociality. CURRENT OPINION IN INSECT SCIENCE 2016; 16:vii-x. [PMID: 27720060 DOI: 10.1016/j.cois.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
30
|
Negroni MA, Jongepier E, Feldmeyer B, Kramer BH, Foitzik S. Life history evolution in social insects: a female perspective. CURRENT OPINION IN INSECT SCIENCE 2016; 16:51-57. [PMID: 27720050 DOI: 10.1016/j.cois.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and suggest further research directions on the evolution of life history variation in social insects.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Evelien Jongepier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| | - Boris H Kramer
- Theoretical Research in Evolutionary Life Sciences (TRES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany.
| |
Collapse
|
31
|
Giraldo YM, Rusakov A, Diloreto A, Kordek A, Traniello JFA. Age, worksite location, neuromodulators, and task performance in the ant Pheidole dentata. Behav Ecol Sociobiol 2016; 70:1441-1455. [PMID: 28042198 DOI: 10.1007/s00265-016-2153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Social insect workers modify task performance according to age-related schedules of behavioral development, and/or changing colony labor requirements based on flexible responses that may be independent of age. Using known-age minor workers of the ant Pheidole dentata throughout 68% of their 140-day laboratory lifespan, we asked whether workers found inside or outside the nest differed in task performance and if behaviors were correlated with and/or causally linked to changes in brain serotonin (5HT) and dopamine (DA). Our results suggest that task performance patterns of individually assayed minors collected at these two spatially different worksites were independent of age. Outside-nest minors displayed significantly higher levels of predatory behavior and greater activity than inside-nest minors, but these groups did not differ in brood care or phototaxis. We examined the relationship of 5HT and DA to these behaviors in known-age minors by quantifying individual brain titers. Both monoamines did not increase significantly from 20 to 95 days of age. DA did not appear to directly regulate worksite location, although titers were significantly higher in outside-nest than inside-nest workers. Pharmacological depletion of 5HT did not affect nursing, predation, phototaxis or activity. Our results suggest that worker task capabilities are independent of age beyond 20 days, and only predatory behavior can be consistently predicted by spatial location. This could reflect worker flexibility or variability in the behavior of individuals collected at each location, which could be influenced by complex interactions between age, worksite location, social interactions, neuromodulators, and other environmental and internal regulators of behavior.
Collapse
Affiliation(s)
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
32
|
|
33
|
Dynamical Models of Task Organization in Social Insect Colonies. Bull Math Biol 2016; 78:879-915. [DOI: 10.1007/s11538-016-0165-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/29/2016] [Indexed: 02/04/2023]
|
34
|
Hammel B, Vollet-Neto A, Menezes C, Nascimento FS, Engels W, Grüter C. Soldiers in a Stingless Bee. Am Nat 2016; 187:120-9. [DOI: 10.1086/684192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Kwapich CL, Tschinkel WR. Limited flexibility and unusual longevity shape forager allocation in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2039-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Kramer BH, Schrempf A, Scheuerlein A, Heinze J. Ant Colonies Do Not Trade-Off Reproduction against Maintenance. PLoS One 2015; 10:e0137969. [PMID: 26383861 PMCID: PMC4575186 DOI: 10.1371/journal.pone.0137969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022] Open
Abstract
The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a "superorganism" where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms.
Collapse
Affiliation(s)
- Boris H. Kramer
- Max-Planck-Institute for Demographic Research, Konrad-Zuse-Str. 1, D-18055, Rostock, Germany
| | - Alexandra Schrempf
- Zoology / Evolutionary Biology lab, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Alexander Scheuerlein
- Max-Planck-Institute for Demographic Research, Konrad-Zuse-Str. 1, D-18055, Rostock, Germany
| | - Jürgen Heinze
- Zoology / Evolutionary Biology lab, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| |
Collapse
|
37
|
Fewell JH. Social Biomimicry: what do ants and bees tell us about organization in the natural world? ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10818-015-9207-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Southon RJ, Bell EF, Graystock P, Sumner S. Long live the wasp: adult longevity in captive colonies of the eusocial paper wasp Polistes canadensis (L.). PeerJ 2015; 3:e848. [PMID: 25825677 PMCID: PMC4375972 DOI: 10.7717/peerj.848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/02/2015] [Indexed: 11/23/2022] Open
Abstract
Insects have been used as an exemplary model in studying longevity, from extrinsic mortality pressures to intrinsic senescence. In the highly eusocial insects, great degrees of variation in lifespan exist between morphological castes in relation to extreme divisions of labour, but of particular interest are the primitively eusocial insects. These species represent the ancestral beginnings of eusociality, in which castes are flexible and based on behaviour rather than morphology. Here we present data on the longevity of the primitively eusocial Neotropical paper wasp P. canadensis, in a captive setting removed of environmental hazards. Captive Polistes canadensis had an average lifespan of 193 ± 10.5 days; although this average is shorter than most bee and ant queens, one individual lived for 506 days in the lab-longer than most recorded wasps and bees. Natal colony variation in longevity does exist between P. canadensis colonies, possibly due to nutritional and genetic factors. This study provides a foundation for future investigations on the effects of intrinsic and extrinsic factors on longevity in primitively eusocial insects, as well as the relationship with natal group and cohort size.
Collapse
Affiliation(s)
- Robin J. Southon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emily F. Bell
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - Peter Graystock
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Seirian Sumner
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|