1
|
Trotzier C, Bellanger C, Abdessadeq H, Delannoy P, Mojallal A, Auxenfans C. Deciphering influence of donor age on adipose-derived stem cells: in vitro paracrine function and angiogenic potential. Sci Rep 2024; 14:27589. [PMID: 39528480 PMCID: PMC11555058 DOI: 10.1038/s41598-024-73875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As fat grafting is commonly used as a filler, Adipose-derived stem/stromal cells (ASC) have been reported to be key player in retention rate. Paracrine and differentiation potential of those cells confer them strong pro-angiogenic capacities. However, a full characterization of the influence of aging on ASC has not been reported yet. Here we've investigated the effect of age on paracrine function, stemness and angiogenic potential of ASC. METHODS ASC were extracted from young and old adult donors. We assessed stromal vascular fraction cell populations repartition, ASC stemness potential, capability to differentiate into mesenchymal lineages as well as their secretome. Angiogenic potential was assessed using a sprouting assay, an indirect co-culture of ASC and dermal microvascular endothelial cells (EC). Total vascular sprout length was measured, and co-culture soluble factors were quantified. Pro-angiogenic factors alone or in combination as well as ASC-conditioned medium (CM) were added to EC to assess sprouting induction. RESULTS Decrease of endothelial cells yield and percentage is observed in cells extracted from adipose tissue of older patients, whereas ASC percentage increased with age. Clonogenic potential of ASC is stable with age. ASC can differentiate into adipocytes, chondrocytes and osteoblasts, and aging does not alter this potential. Among the 25 analytes quantified, high levels of pro-angiogenic factors were found, but none is significantly modulated with age. ASC induce a significantly longer vascular sprouts compared to fibroblasts, and no difference was found between young and old ASC donors on that parameter. Higher concentrations of FGF-2, G-CSF, HGF and IL-8, and lower concentrations of VEGF-C were quantified in EC/ASC co-cultures compared to EC/fibroblasts co-cultures. EC/ASC from young donors secrete higher levels of VEGF-A compared to old ones. Neither soluble factor nor CM without cells are able to induce organized sprouts, highlighting the requirement of cell communication for sprouting. CM produced by ASC supporting development of long vascular sprouts promote sprouting in co-cultures that establish shorter sprouts. CONCLUSION Our results show cells from young and old donors exhibit no difference in all assessed parameters, suggesting all patients could be included in clinical applications. We emphasized the leading role of ASC in angiogenesis, without impairment with age, where secretome is a key but not sufficient actor.
Collapse
Affiliation(s)
- Chloe Trotzier
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France.
| | - Clement Bellanger
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Hakima Abdessadeq
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Philippe Delannoy
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Ali Mojallal
- Department of Plastic, Reconstructive and Aesthetic Surgery, La Croix Rousse Hospital, Bernard Lyon 1 University, Lyon, France
| | - Celine Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
2
|
Qu Y, Zhang S, Mu D, Luan J. Effects of Age on the Biological Properties of Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2023; 47:2734-2744. [PMID: 37563434 DOI: 10.1007/s00266-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Donor age is an important factor affecting the biological characteristics of human adipose-derived stem cells. The aim of this study was to compare the effects of age on the biological properties of cryopreserved adipose-derived stem cells and fat survival of cell-assisted lipotransfer. METHODS Human lipoaspirates were obtained from 60 healthy female patients (aged 18-65 years) who underwent abdominal liposuction. Samples were divided into three groups according to donor age: group A, 18-29 years; group B, 30-49 years; and group C, 50-65 years. Adipose-derived stem cells were obtained by in vitro culture at the second passage and cryopreserved for 4 weeks. The cryopreserved ASCs were examined for biological characteristics, including cell proliferation, wound healing and adipogenic differentiation. Then, the fat survival of cryopreserved ASC-assisted fat transplantation was compared at different ages. RESULTS SVF viability decreased with increasing age. Moreover, there was a decline in cell proliferation and migration of ASCs with increasing age. A significant difference was found in the adipogenic differentiation of ASCs in the three groups. There were significant differences in graft retention in different age groups. ASC-assisted fat grafting was more effective in young people than in elderly people. CONCLUSIONS Honor age affects the proliferation and migration of adipose-derived stem cells but not the adipogenic differentiation potential of ASCs. Cryopreserved ASCs from younger people more effectively improved the fat survival of grafts. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yaping Qu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Sihang Zhang
- School of Public Health, Peking University, Beijing, China
| | - Dali Mu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
3
|
Pinheiro-Machado E, Getova VE, Harmsen MC, Burgess JK, Smink AM. Towards standardization of human adipose-derived stromal cells secretomes. Stem Cell Rev Rep 2023; 19:2131-2140. [PMID: 37300663 PMCID: PMC10579120 DOI: 10.1007/s12015-023-10567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Vasilena E Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
4
|
Kim YS, Oh SM, Suh DS, Tak DH, Kwon YB, Koh YG. Cartilage lesion size and number of stromal vascular fraction (SVF) cells strongly influenced the SVF implantation outcomes in patients with knee osteoarthritis. J Exp Orthop 2023; 10:28. [PMID: 36918463 PMCID: PMC10014644 DOI: 10.1186/s40634-023-00592-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE This study evaluated outcomes in patients with knee osteoarthritis following stromal vascular fraction implantation and assessed the associated prognostic factors. METHODS We retrospectively evaluated 43 patients who underwent follow-up magnetic resonance imaging 12 months after stromal vascular fraction implantation for knee osteoarthritis. Pain was assessed using the visual analogue scale and measured at baseline and 1-, 3-, 6-, and 12-month follow-up appointments. In addition, cartilage repair was evaluated based on the Magnetic Resonance Observation of Cartilage Repair Tissue scoring system using the magnetic resonance imaging from the 12-month follow-up. Finally, we evaluated the effects of various factors on outcomes following stromal vascular fraction implantation. RESULTS Compared to the baseline value, the mean visual analogue scale score significantly and progressively decreased until 12 months post-treatment (P < 0.05 for all, except n.s. between the 1 and 3-month follow-ups). The mean Magnetic Resonance Observation of Cartilage Repair Tissue score was 70.5 ± 11.1. Furthermore, the mean visual analogue scale and Magnetic Resonance Observation of Cartilage Repair Tissue scores significantly correlated 12 months postoperatively (P = 0.002). Additionally, the cartilage lesion size and the number of stromal vascular fraction cells significantly correlated with the 12-month visual analogue scale scores and the Magnetic Resonance Observation of Cartilage Repair Tissue score. Multivariate analyses determined that the cartilage lesion size and the number of stromal vascular fraction cells had a high prognostic significance for unsatisfactory outcomes. CONCLUSION Stromal vascular fraction implantation improved pain and cartilage regeneration for patients with knee osteoarthritis. The cartilage lesion size and the number of stromal vascular fraction cells significantly influenced the postoperative outcomes. Thus, these findings may serve as a basis for preoperative surgical decisions. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Sun Mi Oh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Dong Suk Suh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Dae Hyun Tak
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Yoo Beom Kwon
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Yong Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
5
|
Frias F, Matos B, Jarnalo M, Freitas-Ribeiro S, Reis RL, Pirraco RP, Horta R. Stromal Vascular Fraction Obtained From Subcutaneous Adipose Tissue: Ex-Obese and Older Population as Main Clinical Targets. J Surg Res 2023; 283:632-639. [PMID: 36446251 DOI: 10.1016/j.jss.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Human adipose tissue contains a heterogeneous and synergistic mixture of cells called stromal vascular fraction (SVF) with highly proliferative and angiogenic properties, conferring promising applicability in the field of regenerative medicine. This study aims to investigate if age, body mass index (BMI), history of obesity and massive weight loss, and harvest site are related to SVF cell marker expression. METHODS A total of 26 samples of subcutaneous adipose tissue were harvested from patients admitted to the Plastic and Reconstructive department in University Hospital Center of São João, Porto, Portugal, for body contouring surgery. The percentage of cells expressing CD31, CD34, CD45, CD73, CD90, and CD105 was assessed and compared with patient's age, BMI, history of obesity and massive weight loss (ex-obese group), and harvest site. RESULTS In the ex-obese group, a significantly higher number of cells expressing CD90 (P = 0.002) was found. BMI, harvest site, and age appear to have no association with SVF subpopulations. CONCLUSIONS This study suggests that ex-obese patients have a higher percentage of SVF cells expressing CD90, which correlates with higher proliferative and angiogenic rates. The effect of former obesity and massive weight loss on the expression of CD90 is a new and relevant finding because it makes this population a suitable candidate for reconstructive and aesthetic surgery and other fields of regenerative medicine. The use of SVF appears also promising in older patients because no negative correlation between increasing age and different cell markers expression was found.
Collapse
Affiliation(s)
- Francisca Frias
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, and Burn Unit, Centro Hospitalar de São João, University of Porto, Porto, Portugal.
| | - Beatriz Matos
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, and Burn Unit, Centro Hospitalar de São João, University of Porto, Porto, Portugal
| | - Mariana Jarnalo
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, and Burn Unit, Centro Hospitalar de São João, University of Porto, Porto, Portugal
| | - Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Horta
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, and Burn Unit, Centro Hospitalar de São João, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Di Stefano AB, Cammarata E, Trapani M, Pirrello R, Montesano L, Meraviglia S, Moschella F, Cordova A, Toia F. Re: Correlation between tissue-harvesting method and donor-site with the yield of spheroids from adipose-derived stem cells. J Plast Reconstr Aesthet Surg 2023; 77:177-178. [PMID: 36571964 DOI: 10.1016/j.bjps.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Emanuele Cammarata
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Roberto Pirrello
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Serena Meraviglia
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), University of Palermo, Palermo 90134, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-Plastic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo 90127, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo 90127, Italy.
| |
Collapse
|
7
|
Georgiev-Hristov T, García-Arranz M, Trébol-López J, Barba-Recreo P, García-Olmo D. Searching for the Optimal Donor for Allogenic Adipose-Derived Stem Cells: A Comprehensive Review. Pharmaceutics 2022; 14:2338. [PMID: 36365156 PMCID: PMC9696054 DOI: 10.3390/pharmaceutics14112338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose-derived stem cells comprise several clinically beneficial qualities that have been explored in basic research and have motivated several clinical studies with promising results. After being approved in the European Union, UK, Switzerland, Israel, and Japan, allogeneic adipose-derived stem cells (darvadstrocel) have been recently granted a regenerative medicine advanced therapy (RMAT) designation by US FDA for complex perianal fistulas in adults with Crohn's disease. This huge scientific step is likely to impact the future spread of the indications of allogeneic adipose-derived stem cell applications. The current knowledge on adipose stem cell harvest describes quantitative and qualitative differences that could be influenced by different donor conditions and donor sites. In this comprehensive review, we summarize the current knowledge on the topic and propose donor profiles that could provide the optimal initial quality of this living drug, as a starting point for further applications and studies in different pathological conditions.
Collapse
Affiliation(s)
- Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, 28400 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
| | - Mariano García-Arranz
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jacobo Trébol-López
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Paula Barba-Recreo
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
- Servicio de Cirugía Maxilofacial, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Damián García-Olmo
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
8
|
Schmitz D, Robering JW, Weisbach V, Arkudas A, Ludolph I, Horch RE, Boos AM, Kengelbach-Weigand A. Specific features of ex-obese patients significantly influence the functional cell properties of adipose-derived stromal cells. J Cell Mol Med 2022; 26:4463-4478. [PMID: 35818175 PMCID: PMC9357603 DOI: 10.1111/jcmm.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adipose-derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex-obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies.
Collapse
Affiliation(s)
- Deborah Schmitz
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Jan W Robering
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ludolph
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja M Boos
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
10
|
Juntunen M, Heinonen S, Huhtala H, Rissanen A, Kaprio J, Kuismanen K, Pietiläinen KH, Miettinen S, Patrikoski M. Evaluation of the effect of donor weight on adipose stromal/stem cell characteristics by using weight-discordant monozygotic twin pairs. Stem Cell Res Ther 2021; 12:516. [PMID: 34565451 PMCID: PMC8474937 DOI: 10.1186/s13287-021-02587-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose stromal/stem cells (ASCs) are promising candidates for future clinical applications. ASCs have regenerative capacity, low immunogenicity, and immunomodulatory ability. The success of future cell-based therapies depends on the appropriate selection of donors. Several factors, including age, sex, and body mass index (BMI), may influence ASC characteristics. Our aim was to investigate the effect of acquired weight on ASC characteristics under the same genetic background using ASCs derived from monozygotic (MZ) twin pairs.
Methods ASCs were isolated from subcutaneous adipose tissue from five weight-discordant (WD, within-pair difference in BMI > 3 kg/m2) MZ twin pairs, with measured BMI and metabolic status. The ASC immunophenotype, proliferation and osteogenic and adipogenic differentiation capacity were studied. ASC immunogenicity, immunosuppression capacity and the expression of inflammation markers were investigated. ASC angiogenic potential was assessed in cocultures with endothelial cells. Results ASCs showed low immunogenicity, proliferation, and osteogenic differentiation capacity independent of weight among all donors. ASCs showed a mesenchymal stem cell-like immunophenotype; however, the expression of CD146 was significantly higher in leaner WD twins than in heavier cotwins. ASCs from heavier twins from WD pairs showed significantly greater adipogenic differentiation capacity and higher expression of TNF and lower angiogenic potential compared with their leaner cotwins. ASCs showed immunosuppressive capacity in direct cocultures; however, heavier WD twins showed stronger immunosuppressive capacity than leaner cotwins. Conclusions Our genetically matched data suggest that a higher weight of the donor may have some effect on ASC characteristics, especially on angiogenic and adipogenic potential, which should be considered when ASCs are used clinically. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02587-0.
Collapse
Affiliation(s)
- Miia Juntunen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland. .,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kirsi Kuismanen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Mimmi Patrikoski
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Li K, Shi G, Lei X, Huang Y, Li X, Bai L, Qin C. Age-related alteration in characteristics, function, and transcription features of ADSCs. Stem Cell Res Ther 2021; 12:473. [PMID: 34425900 PMCID: PMC8383427 DOI: 10.1186/s13287-021-02509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Adipose tissue-derived stem cells (ADSCs) autologous transplantation has been a promising strategy for aging-related disorders. However, the relationship between ADSCs senescence and organismal aging has not been clearly established. Therefore, we aimed at evaluating senescence properties of ADSCs from different age donors and to verify the influence of organismal aging on the proliferation and function of ADSCs in vitro, providing the theoretical basis for the clinical application of autologous ADSCs transplantation. METHODS AND RESULTS The ADSCs were obtained from 1-month-old and 20-month-old mice. The cells characteristics, functions, gene expression levels, apoptosis proportion, cell cycle, SA-β-gal staining, and transcription features were evaluated. Compared to ADSCs from 1-month-old mice, ADSCs from 20-month-old mice exhibited some senescence-associated changes, including inhibited abilities to proliferate. Moreover, differentiation abilities, cell surface markers, and cytokines secreting differed between 1M and 20M ADSCs. SA-β-Gal staining did not reveal differences between the two donor groups, while cells exhibited more remarkable age-related changes through continuous passages. Based on transcriptome analysis and further detection, the CCL7-CCL2-CCR2 axis is the most probable mechanism for the differences. CONCLUSIONS ADSCs from old donors have some age-related alterations. The CCL7-CCL2-CCR2 axis is a potential target for gene therapy to reduce the harmful effects of ADSCs from old donors. To improve on autologous transplantation, we would recommend that ADSCs should be cryopreserved in youth with a minimum number of passages or block CCL7-CCL2-CCR2 to abolish the effects of age-related alterations in ADSCs through the Chemokine signaling pathway.
Collapse
Affiliation(s)
- Keya Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xuepei Lei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiying Huang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xinyue Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
12
|
Prantl L, Eigenberger A, Brix E, Kempa S, Baringer M, Felthaus O. Adipose Tissue-Derived Stem Cell Yield Depends on Isolation Protocol and Cell Counting Method. Cells 2021; 10:cells10051113. [PMID: 34063138 PMCID: PMC8148142 DOI: 10.3390/cells10051113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
In plastic surgery, lipofilling is a frequent procedure. Unsatisfactory vascularization and impaired cell vitality can lead to unpredictable take rates in the fat graft. The proliferation and neovascularization inducing properties of adipose tissue-derived stem cells may contribute to solve this problem. Therefore, the enrichment of fat grafts with stem cells is studied intensively. However, it is difficult to compare these studies because many factors—often not precisely described—are influencing the results. Our study summarizes some factors which influence the cell yield like harvesting, isolation procedure and quantification. Stem cells were isolated after liposuction. Quantification was done using a cell chamber, colony counting, or flow cytometry with changes to one parameter, only, for each comparison. Quantification of cells isolated after liposuction at the same harvesting site from the same patient can vary greatly depending on the details of the isolation protocol and the method of quantification. Cell yield can be influenced strongly by many factors. Therefore, a comparison of different studies should be handled with care.
Collapse
|
13
|
Andjelkov K, Conde-Green A, Mosahebi A. Smoking and Physical Activity Significantly Influence Stromal Vascular Fraction Cell Yield and Viability. Aesthetic Plast Surg 2021; 45:315-321. [PMID: 33083844 DOI: 10.1007/s00266-020-02008-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Subcutaneous tissue is an abundant source of adipose-derived regenerative cells. It is readily available and easy to extract by means of liposuction, making it one of the most popular sources for tissue engineering and regenerative medical applications. METHODS The stromal vascular fraction (SVF) cell yield and viability of the lipoaspirate obtained from 43 patients undergoing elective liposuction were examined in correlation with their age, gender, body mass index, smoking status, and physical activity. The lipoaspirate was processed with the Celution® 800/CRS system to isolate the SVF and a few drops of the obtained pellet were used for cell counting with NecleoCounter® NC-100TM. RESULTS Twenty-eight (65.1%) were men and 15 (34.9%) were women with an average age of 40.7 ± 10.4 years (women) and 38.9 ± 11.8 years (men). Viable SVF cells/g fat was significantly correlated with smoking level (negative correlation, ρ= - 0.312, P < 0.05) and with marginal significance with female gender. Cell viability showed a significant negative correlation with physical activity level (ρ = - 0.432, P < 0.01); borderline significance for correlation of this parameter with smoking level should not be neglected. Other parameters did not influence the cell yield nor the viability of the stromal vascular fraction. CONCLUSION Many factors may influence SVF cell yield and viability. Our findings indicate that age and smoking significantly influenced SVF cell yield, age positively while smoking negatively. Increased physical activity had a negative correlation with SVF cell viability. LEVEL OF EVIDENCE N/A This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Katarina Andjelkov
- Faculty of Medicine, University of Belgrade, BelPrime Clinic, 16 Brane Crncevica, 11000, Belgrade, Serbia.
| | | | | |
Collapse
|
14
|
Kuhlmann C, Schenck TL, Haas EM, Giunta R, Wiggenhauser PS. [Current review of factors in the stem cell donor that influence the regenerative potential of adipose tissue-derived stem cells]. HANDCHIR MIKROCHIR P 2020; 52:521-532. [PMID: 33291167 DOI: 10.1055/a-1250-7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Regenerative therapies like cell-assisted lipotransfer or preclinical experimental studies use adipose tissue-derived stem cells (ASCs) as the main therapeutic agent. But there are also factors depending on the clinical donor that influence the cell yield and regenerative potential of human ASCs and stromal vascular fraction (SVF). Therefore, the aim of this review was to identify and evaluate these factors according to current literature. METHODS For this purpose, a systematic literature review was performed with focus on factors affecting the regenerative potential of ASCs and SVF using the National Library of Medicine. RESULTS Currently, there is an abundance of studies regarding clinical donor factors influencing ASCs properties. But there is some contradiction and need for further investigation. Nevertheless, we identified several recurrent factors: age, sex, weight, diabetes, lipoedema, use of antidepressants, anti-hormonal therapy and chemotherapy. CONCLUSION We recommend characterisation of the ASC donor cohort in all publications, regardless of whether they are experimental studies or clinical trials. By these means, donor factors that influence experimental or clinical findings can be made transparent and results are more comparable. Moreover, this knowledge can be used for study design to form a homogenous donor cohort by precise clinical history and physical examination.
Collapse
Affiliation(s)
| | | | | | | | - Paul Severin Wiggenhauser
- Klinikum der Universität München, Abteilung Handchirurgie, Plastische Chirurgie, Ästhetische Chirurgie
| |
Collapse
|
15
|
Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-Derived Stem Cells for Regenerative Wound Healing Applications: Understanding the Clinical and Regulatory Environment. Aesthet Surg J 2020; 40:784-799. [PMID: 31406975 DOI: 10.1093/asj/sjz214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing interest in the regenerative potential of adipose-derived stem cells (ADSCs) for wound healing applications. ADSCs have been shown to promote revascularization, activate local stem cell niches, reduce oxidative stress, and modulate immune responses. Combined with the fact that they can be harvested in large numbers with minimal donor site morbidity, ADSC products represent promising regenerative cell therapies. This article provides a detailed description of the defining characteristics and therapeutic potential of ADSCs, with a focus on understanding how ADSCs promote tissue regeneration and repair. It summarizes the current regulatory environment governing the use of ADSC products across Europe and the United States and examines how various adipose-derived products conform to the current UK legislative framework. Advice is given to clinicians and researchers on how novel ADSC therapeutics may be developed in accordance with regulatory guidelines.
Collapse
Affiliation(s)
| | - Benjamin D Weil
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
16
|
Analysis of Adipose-Derived Stem Cells from Different Donor Areas and Their Influence on Fibroblasts In Vitro. Aesthetic Plast Surg 2020; 44:971-978. [PMID: 31897623 DOI: 10.1007/s00266-019-01586-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND New regenerative treatments have emerged with the use of multipotent mesenchymal cells, with special interest in adipose-derived stem cells (ADSCs). In recent years, studies that have sought to identify possible quantitative or qualitative differences in ADSCs derived from different donor subcutaneous adipose tissue have shown divergent results making the determination of a preferential donor area still considered inconclusive. MATERIALS AND METHODS The number of ADSCs present in the adipose tissue collected by liposuction was quantified between five different body areas from 17 women, by means of the CFU-F assay and to investigate possible qualitative differences in the ADSCs from these different areas by analyzing: cell surface markers, cell kinetics, action of the supernatant produced by ADSCs from different body areas on fibroblast migration and, finally, differences in the secretome present in the supernatant produced by these cells. RESULTS The highest mean concentration of CFU-Fs was the dorsum (23.20 ± 26.13), and the lowest was the thighs (6.87 ± 5.04). No qualitative differences were observed in the expression of the cell surface markers or in cell kinetics. Supernatants produced by the ADSCs derived from the abdomen and the thighs demonstrated an increased rate of migration of fibroblasts in vitro similarly. No differences were observed in the secretome between the ADSCs groups. CONCLUSIONS It was observed that the region of the dorsal upper back presented a greater number of ADSCs than the thighs. No qualitative differences were observed between the ADSCs of the five areas analyzed. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
17
|
The Fabrication and Evaluation of a Potential Biomaterial Produced with Stem Cell Sheet Technology for Future Regenerative Medicine. Stem Cells Int 2020; 2020:9567362. [PMID: 32104186 PMCID: PMC7035578 DOI: 10.1155/2020/9567362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/04/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
To date, the decellularized scaffold has been widely explored as a source of biological scaffolds for regenerative medicine. However, the acellular matrix derived from natural tissues and organs has a lot of defects, including the limited amount of autogenous tissue and surgical complication such as risk of blood loss, wound infection, pain, shock, and functional damage in the donor part of the body. In this study, we prepared acellular matrix using adipose-derived stem cell (ADSC) sheets and evaluate the cellular compatibility and immunoreactivity. The ADSC sheets were fabricated and subsequently decellularized using repeated freeze-thaw, Triton X-100 and SDS decellularization. Oral mucosal epithelial cells were seeded onto the decellularized ADSC sheets to evaluate the cell replantation ability, and silk fibroin was used as the control. Then, acellular matrix was transplanted onto subcutaneous tissue for 1 week or 3 weeks; H&E staining and immunohistochemical analysis of CD68 expression and quantitative real-time PCR (qPCR) were performed to evaluate the immunogenicity and biocompatibility. The ADSC sheet-derived ECM scaffolds preserved the three-dimensional architecture of ECM and retained the cytokines by Triton X-100 decellularization protocols. Compared with silk fibroin in vitro, the oral mucosal epithelial cells survived better on the decellularized ADSC sheets with an intact and consecutive epidermal cellular layer. Compared with porcine small intestinal submucosa (SIS) in vivo, the homogeneous decellularized ADSC sheets had less monocyte-macrophage infiltrating in vivo implantation. During 3 weeks after transplantation, the mRNA expression of cytokines, such as IL-4/IL-10, was obviously higher in decellularized ADSC sheets than that of porcine SIS. A Triton X-100 method can achieve effective cell removal, retain major ECM components, and preserve the ultrastructure of ADSC sheets. The decellularized ADSC sheets possess good recellularization capacity and excellent biocompatibility. This study demonstrated the potential suitability of utilizing acellular matrix from ADSC sheets for soft tissue regeneration and repair.
Collapse
|
18
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
Papadopulos NA, Wigand S, Kuntz N, Piringer M, Machens HG, Klüter H, Bieback K, Karagianni M. The Impact of Harvesting Systems and Donor Characteristics on Viability of Nucleated Cells in Adipose Tissue: A First Step Towards a Manufacturing Process. J Craniofac Surg 2019; 30:716-720. [PMID: 30817533 DOI: 10.1097/scs.0000000000005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue contains an abundant population of mesenchymal stromal cells (= adipose stromal cells [ASC]) with multilineage differentiation, immunomodulatory and trophic potential promising for cell-based therapies. Although intensely investigated in pre- and clinical studies, little is known about the impact of donor characteristics on the viability of ASC. To correlate patient data to the quality of processed adipose tissue and to establish a first step towards a manufacturing process for cell therapy, we evaluated the effects of 2 harvesting systems (LipiVage, TTF-System) and donor characteristics on cell viability of nucleated cells in a cohort of 44 samples obtained from 17 donors.The impact of donor-specific factors (localization, age, body-mass-index, chronic diseases, intake of drugs, nicotine consumption or disorders of the thyroid gland) and the harvesting system on nucleated cell (NC) counts and viability of processed lipoaspirates were statistically analyzed.Increasing age has a significant positive influence on NC viability (P = 0.001). Donors with intake of thyroid hormones based on a hypothyroidism and suctioned with the LipiVage-System reached a significantly higher viability of NC (P = 0.038). No statistical difference was shown between the 2 harvesting-systems (P = 0.338) and the donor sites (P = 0.294).We focused on a potential correlation between NC viability and donor characteristics. Based on the donor cohort investigated in this study, cells from elderly patients suctioned with the LipiVage-System and taking thyroid hormones yielded cells of higher viability, suggesting an improved quality for subsequent manufacturing procedures. Further investigations are necessary to understand and correlate this data to ASC in vitro characteristics.
Collapse
Affiliation(s)
- Nikolaos A Papadopulos
- Department of Plastic Surgery & Hand Surgery.,Department of Plastic Surgery and Burns, Alexandroupoli University General Hospital, Democritus University of Thrace, Alexandroupoli, Greece
| | | | | | | | | | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University
| | - Marianna Karagianni
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University
| |
Collapse
|
20
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
21
|
Alaaeddine N, El Atat O, Saliba N, Feghali Z, Nasr M, Tarabey B, Hilal G, Hashim H. Effect of age and body mass index on the yield of stromal vascular fraction. J Cosmet Dermatol 2017; 17:1233-1239. [DOI: 10.1111/jocd.12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Nada Alaaeddine
- Faculty of Medicine Regenerative Medicine and Inflammation St Joseph University Beirut Lebanon
| | - Oula El Atat
- Faculty of Medicine Regenerative Medicine and Inflammation St Joseph University Beirut Lebanon
| | | | | | | | | | - George Hilal
- Faculty of Medicine Cancer and Metabolism Laboratory St Joseph University Beirut Lebanon
| | | |
Collapse
|
22
|
Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Sci Rep 2017; 7:10015. [PMID: 28855688 PMCID: PMC5577104 DOI: 10.1038/s41598-017-10710-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
In the past decade, adipose tissue has become a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The adipose source offers two options for the isolation of regenerative cells: the enzymatic digestion an expensive time-consuming procedure lacking a common standard operating protocol, or the non-enzymatic dissociation methods based on mechanical forces to break the processed adipose tissue. Here, we propose innovative inexpensive non-enzymatic protocols to collect and concentrate clinically useful regenerative cells from adipose tissue by centrifugation of the infranatant fraction of lipoaspirate as first step, usually discarded as a byproduct of the surgical procedure, and by fat shaking and wash as second enrichment step. The isolated cells were characterized according to the criteria proposed by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) to define human mesenchymal stem cells, and the results were compared with matched lipoaspirate samples processed with collagenase. The results demonstrated the usability of these new procedures as an alternative to fat grafting for treating stem cell-depleted tissues and for specific application requiring minimal or null soft tissue augmentation, such as skin diseases including severe burn and post-oncological scaring, chronic non-healing wounds, and vitiligo.
Collapse
|
23
|
Kokai LE, Traktuev DO, Zhang L, Merfeld-Clauss S, DiBernardo G, Lu H, Marra KG, Donnenberg A, Donnenberg V, Meyer EM, Fodor PB, March KL, Rubin JP. Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthet Surg J 2017; 37:454-463. [PMID: 28364523 DOI: 10.1093/asj/sjw197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The progressive decline in tissue mechanical strength that occurs with aging is hypothesized to be due to a loss of resident stem cell number and function. As such, there is concern regarding use of autologous adult stem cell therapy in older patients. To abrogate this, many patients elect to cryopreserve the adipose stromal-vascular fraction (SVF) of lipoaspirate, which contains resident adipose stem cells (ASC). However, it is not clear yet if there is any clinical benefit from banking cells at a younger age. Objectives We performed a comparative analysis of SVF composition and ASC function from cells obtained under GMP conditions from the same three patients with time gap of 7 to 12 years. Methods SVF, cryobanked under good manufacturing practice (GMP) conditions, was thawed and cell yield, viability, and cellular composition were assessed. In parallel, ASC proliferation and efficiency of tri-lineage differentiation were evaluated. Results The results showed no significant differences existed in cell yield and SVF subpopulation composition within the same patient between harvest procedures 7 to 12 years apart. Further, no change in proliferation rates of cultured ASCs was found, and expanded cells from all patients were capable of tri-lineage differentiation. Conclusions By harvesting fat from the same patient at two time points, we have shown that despite the natural human aging process, the prevalence and functional activity of ASCs in an adult mesenchymal stem cell, is highly preserved. Level of Evidence 5.
Collapse
Affiliation(s)
- Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry O Traktuev
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Liyong Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hongyan Lu
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Albert Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vera Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Michael Meyer
- Flow Cytometry Facility, University of Pittsburgh Cancer Center, Pittsburgh, PA, USA
| | - Peter B Fodor
- Plastic surgeon in private practice in Santa Monica, CA, USA
| | - Keith L March
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 2017; 8:45. [PMID: 28241882 PMCID: PMC5329955 DOI: 10.1186/s13287-017-0483-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The applications for fat grafting have increased recently, within both regenerative and reconstructive surgery. Although fat harvesting, processing and injection techniques have been extensively studied and standardised, this has not had a big impact on the variability of outcome following fat grafting. This suggests a possible larger role of patient characteristics on adipocyte and adipose-derived stem cell (ADSC) viability and function. This systematic review aims to collate current evidence on the effect of patient factors on adipocyte and ADSC behaviour. METHODS A systematic literature review was performed using MEDLINE, Cochrane Library and EMBASE. It includes outcomes observed in in vitro analyses, in vivo animal studies and clinical studies. Data from basic science work have been included in the discussion to enhance our understanding of the mechanism behind ADSC behaviour. RESULTS A total of 41 papers were included in this review. Accumulating evidence indicates decreased proliferation and differentiation potential of ADSCs with increasing age, body mass index, diabetes mellitus and exposure to radiotherapy and Tamoxifen, although this was not uniformly seen across all studies. Gender, donor site preference, HIV status and chemotherapy did not show a significant influence on fat retention. Circulating oestrogen levels have been shown to support both adipocyte function and graft viability. Evidence so far suggests no significant impact of total cholesterol, hypertension, renal disease, physical exercise and peripheral vascular disease on ADSC yield. CONCLUSIONS A more uniform comparison of all factors highlighted in this review, with the application of a combination of tests for each outcome measure, is essential to fully understand factors that affect adipocyte and ADSC viability, as well as functionality. As these patient factors interact, future studies looking at adipocyte viability need to take them into consideration for conclusions to be meaningful. This would provide crucial information for surgeons when deciding appropriate volumes of lipoaspirate to inject, improve patient selection, and counsel patient expectations with regards to outcomes and likelihood for repeat procedures. An improved understanding will also assist in identification of patient groups that would benefit from graft enrichment and cryopreservation techniques.
Collapse
Affiliation(s)
- Jajini Varghese
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
| | - Michelle Griffin
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Afshin Mosahebi
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter Butler
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
25
|
Labeling adipose derived stem cell sheet by ultrasmall super-paramagnetic Fe 3O 4 nanoparticles and magnetic resonance tracking in vivo. Sci Rep 2017; 7:42793. [PMID: 28220818 PMCID: PMC5318892 DOI: 10.1038/srep42793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Cell sheet therapy has emerged as a potential therapeutic option for reparation and reconstruction of damaged tissues and organs. However, an effective means to assess the fate and distribution of transplanted cell sheets in a serial and noninvasive manner is still lacking. To investigate the feasibility of tracking Adipose derived stem cells (ADSCs) sheet in vivo using ultrasmall super-paramagnetic Fe3O4 nanoparticles (USPIO), canine ADSCs were cultured and incubated with USPIO and 0.75 μg/ml Poly-L-Lysine (PLL) for 12 h. Labeling efficiency, cell viability, apoptotic cell rate were assessed to screen the optimum concentrations of USPIO for best labeling ADSCs. The results showed ADSCs were labeled by USPIO at an iron dose of 50 μg/ml for a 12 h incubation time, which can most efficiently mark cells and did not impair the cell survival, self-renewal, and proliferation capacity. USPIO-labeled ADSCs sheets can be easily and clearly detected in vivo and have persisted for at least 12 weeks. Our experiment confirmed USPIO was feasible for in vivo labeling of the ADSCs sheets with the optimal concentration of 50 μg Fe/ml and the tracing time is no less than 12 weeks.
Collapse
|
26
|
Mojallal A, Shipkov C. Commentary on: Exposure to Tumescent Solution Significantly Increases Phosphorylation of Perilipin in Adipocytes. Aesthet Surg J 2017; 37:248-249. [PMID: 28096119 DOI: 10.1093/asj/sjw213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ali Mojallal
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| | - Christo Shipkov
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
27
|
Grasys J, Kim BS, Pallua N. Content of Soluble Factors and Characteristics of Stromal Vascular Fraction Cells in Lipoaspirates from Different Subcutaneous Adipose Tissue Depots. Aesthet Surg J 2016; 36:831-41. [PMID: 26906346 DOI: 10.1093/asj/sjw022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although fat grafting has emerged as a major force in plastic, reconstructive, and aesthetic surgery, some questions regarding its reliability and regenerative potential remain unanswered. OBJECTIVES The authors examined the influence of three anatomic areas on various lipoaspirate properties to identify the most appropriate harvest site for fat-grafting procedures. METHODS Lipoaspirates from 25 healthy patients were harvested from the abdomen, inner thigh, and knee. The authors measured the content of soluble factors in the lipoaspirate followed by the assessment of the yield, adipogenic differentiation, proliferation of stromal vascular fraction (SVF) cells, and the percentage of adipose-derived stem cells (ASC) in the SVF. The results also were correlated with the age and body mass index of the donors. RESULTS Lipoaspirates from the abdomen showed significantly higher concentrations of matrix metalloproteinase (MMP)-9 compared with the knee. The content of basic fibroblast growth factor (b-FGF), platelet-derived growth factor (PDGF)-BB, and insulin-like growth factor (IGF)-1 tended to be highest in the abdomen but did not reach statistical significance. Vascular endothelial growth factor (VEGF)-A and bFGF-2 contents both correlated negatively with age in lipoaspirates from at least two different anatomic areas. CONCLUSIONS The authors' results indicate that the abdomen may be a slight favorite over the inner thigh and knee because of its richer content of soluble factors. However, because only the difference of MMP-9 content actually reached statistical significance and because no differences in SVF characteristics were observed, a decision primarily based on other criteria appears to be justifiable.
Collapse
Affiliation(s)
- Justinas Grasys
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bong-Sung Kim
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Duscher D, Luan A, Rennert RC, Atashroo D, Maan ZN, Brett EA, Whittam AJ, Ho N, Lin M, Hu MS, Walmsley GG, Wenny R, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Gurtner GC. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. J Transl Med 2016; 14:126. [PMID: 27153799 PMCID: PMC4859988 DOI: 10.1186/s12967-016-0881-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from the common technique of suction-assisted lipoaspiration (SAL) versus resection. Methods Human adipose tissue was obtained from paired abdominoplasty and SAL samples from three female donors, and was processed to isolate the stromal vascular fraction. Fluorescence-activated cell sorting was used to determine ASC yield, and cell viability was assayed. Adipogenic and osteogenic differentiation capacity were assessed in vitro using phenotypic staining and quantification of gene expression. Finally, ASCs were applied in an in vivo model of tissue repair to evaluate their regenerative potential. Results SAL specimens provided significantly fewer ASCs when compared to excised fat tissue, however, with equivalent viability. SAL-derived ASCs demonstrated greater expression of the adipogenic markers FABP-4 and LPL, although this did not result in a difference in adipogenic differentiation. There were no differences detected in osteogenic differentiation capacity as measured by alkaline phosphatase, mineralization or osteogenic gene expression. Both SAL- and resection-derived ASCs enhanced significantly cutaneous healing and vascularization in vivo, with no significant difference between the two groups. Conclusion SAL provides viable ASCs with full capacity for multi-lineage differentiation and tissue regeneration, and is an effective method of obtaining ASCs for cell-based therapies.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria. .,Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany.
| | - Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth A Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie Ho
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Lin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raphael Wenny
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Manfred Schmidt
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Arndt F Schilling
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Georg M Huemer
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
30
|
Palumbo P, Miconi G, Cinque B, La Torre C, Lombardi F, Zoccali G, Orsini G, Leocata P, Giuliani M, Cifone MG. In vitro evaluation of different methods of handling human liposuction aspirate and their effect on adipocytes and adipose derived stem cells. J Cell Physiol 2015; 230:1974-81. [PMID: 25736190 DOI: 10.1002/jcp.24965] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Nowadays, fat tissue transplantation is widely used in regenerative and reconstructive surgery. However, a shared method of lipoaspirate handling for ensuring a good quality fat transplant has not yet been established. The study was to identify a method to recover from the lipoaspirate samples the highest number of human viable adipose tissue-derived stem cells (hADSCs) included in stromal vascular fraction (SVF) cells and of adipocytes suitable for transplantation, avoiding an extreme handling. We compared the lipoaspirate spontaneous stratification (10-20-30 min) with the centrifugation technique at different speeds (90-400-1500 × g). After each procedure, lipoaspirate was separated into top oily lipid layer, liquid fraction, "middle layer", and bottom layer. We assessed the number of both adipocytes in the middle layer and SVF cells in all layers. The histology of middle layer and the surface phenotype of SVF cells by stemness markers (CD105+, CD90+, CD45-) was analyzed as well. The results showed a normal architecture in all conditions except for samples centrifuged at 1500 × g. In both methods, the flow cytometry analysis showed that greater number of ADSCs was in middle layer; in the fluid portion and in bottom layer was not revealed significant expression levels of stemness markers. Our findings indicate that spontaneous stratification at 20 min and centrifugation at 400 × g are efficient approaches to obtain highly viable ADSCs cells and adipocytes, ensuring a good thickness of lipoaspirate for autologous fat transfer. Since an important aspect of surgery practice consists of gain time, the 400 × g centrifugation could be the recommended method when the necessary instrumentation is available.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy. Expert Rev Mol Med 2015; 17:e11. [PMID: 26052798 DOI: 10.1017/erm.2015.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASCs), there have been high expectations of their putative clinical use. Recent advances support these expectations, and it is expected that the transition from pre-clinical and clinical studies to implementation as a standard treatment modality is imminent. However ASCs must be isolated and expanded according to good manufacturing practice guidelines and a basic assurance of quality, safety, and medical effectiveness is needed for authorisation by regulatory agencies, such as European Medicines Agency and US Food and Drug Administration. In this review, a collection of studies investigating the influence of different steps of the isolation and expansion protocol on the yield and functionality of ASCs has been presented in an attempt to come up with best recommendations that ensure potential beneficial clinical outcome of using ASCs in any therapeutic setting. If the findings confirm the initial observations of beneficial effects of ASCs, the path is paved for implementing these ASC-based therapies as standard treatment options.
Collapse
|
32
|
Veronesi F, Pagani S, Della Bella E, Giavaresi G, Fini M. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9647. [PMID: 24687841 PMCID: PMC4082606 DOI: 10.1007/s11357-014-9647-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/18/2014] [Indexed: 05/13/2023]
Abstract
Osteoporosis due to estrogen deficiency is an increasing bone health issue worldwide: new strategies are being studied for regenerative medicine of bone pathologies in these patients. The most commonly used cells for tissue engineering therapy are the bone marrow mesenchymal stem cells (BMSCs), but they might be negatively affected by aging and estrogen deficiency. Besides the general advantages of adipose-derived mesenchymal stem cells (ADSCs) over BMSCs, ADSCs also seem to be less affected by aging than BMSCs, but in the literature, little is known about ADSCs in estrogen deficiency. The present study investigated the in vitro behavior of ADSCs, isolated from healthy (SHAM) and estrogen-deficient (OVX) rats. Phenotype, clonogenicity, viability, and osteogenic differentiation, at both cellular and molecular levels, were evaluated with or without osteogenic stimuli. Pro-inflammatory cytokines, growth factors, and adipogenic differentiation markers were also analyzed. There were no significant differences between OVX and SHAM ADSCs in some analyzed parameters. In addition, clonogenicity, osteopontin (Spp1) gene expression, alkaline phosphatase (ALP) activity at 2 weeks of culture, total collagen (COLL), osteocalcin (Bglap) gene expression and production, and matrix mineralization were significantly higher in OVX than in SHAM ADSCs. Besides the increase in some osteogenic markers, peroxisome proliferator-activated receptor gamma (Pparg) gene was also more expressed in OVX in osteogenic medium, with a concomitant estrogen receptor 1 (Esr1) gene expression decrease. These results underlined that ADSCs were not affected by estrogen deficiency in an osteogenic microenvironment.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | |
Collapse
|
33
|
Duhoux A, Chennoufi M, Lantieri L, Hivelin M. Complications of fat grafts growth after weight gain: Report of a severe diplopia. J Plast Reconstr Aesthet Surg 2013; 66:987-90. [DOI: 10.1016/j.bjps.2012.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
|
34
|
Buschmann J, Gao S, Härter L, Hemmi S, Welti M, Werner CML, Calcagni M, Cinelli P, Wanner GA. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions? Cytotherapy 2013; 15:1098-105. [PMID: 23800730 DOI: 10.1016/j.jcyt.2013.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. METHODS The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. RESULTS Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. CONCLUSIONS The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate.
Collapse
Affiliation(s)
- Johanna Buschmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guidotti S, Facchini A, Platano D, Olivotto E, Minguzzi M, Trisolino G, Filardo G, Cetrullo S, Tantini B, Martucci E, Facchini A, Flamigni F, Borzì RM. Enhanced Osteoblastogenesis of Adipose-Derived Stem Cells on Spermine Delivery via β-Catenin Activation. Stem Cells Dev 2013; 22:1588-601. [DOI: 10.1089/scd.2012.0399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Serena Guidotti
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Annalisa Facchini
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | - Daniela Platano
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Minguzzi
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Giovanni Trisolino
- Chirurgia ricostruttiva articolare dell'anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Laboratorio di Biomeccanica e Innovazione Tecnologica, Clinica III, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | | | - Ermanno Martucci
- Chirurgia ricostruttiva articolare dell'anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Facchini
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
36
|
Natesan S, Zamora DO, Wrice NL, Baer DG, Christy RJ. Bilayer Hydrogel With Autologous Stem Cells Derived From Debrided Human Burn Skin for Improved Skin Regeneration. J Burn Care Res 2013; 34:18-30. [DOI: 10.1097/bcr.0b013e3182642c0e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells: the great WAT hope. Trends Endocrinol Metab 2012; 23:270-7. [PMID: 22417866 PMCID: PMC3367055 DOI: 10.1016/j.tem.2012.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
The past decade has witnessed an explosion in research into adipose tissue stem cells (ASCs), facilitated by their ease of isolation from white adipose tissue (WAT) and fueled by their therapeutic potential. Recent developments have extended ASC multipotency to include endodermal and ectodermal cell types, as well as the generation of induced pluripotent stem cells. This expanding multipotency has been paralleled by burgeoning translational applications, ranging from tissue engineering to anti-cancer therapy, that are currently subject to clinical trials. However, this promise is tempered by potential pitfalls, such as tumorigenicity, and is further undermined by lingering uncertainties regarding the precise identity of ASCs. Confronting these issues will be essential if we are to bypass the pitfalls and develop the promises of ASCs.
Collapse
Affiliation(s)
- William P Cawthorn
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor, MI 48109 United States of America
| | - Erica L Scheller
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor, MI 48109 United States of America
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor, MI 48109 United States of America
- Corresponding author Ormond A MacDougald University of Michigan Brehm Center, Room 6313 1000 Wall St Ann Arbor MI 48105 Tel: 734-647-4880 Fax: 734-232-8175
| |
Collapse
|
38
|
Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ. Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 2012; 4:025004. [PMID: 22522924 DOI: 10.1088/1758-5082/4/2/025004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipose-derived stromal/stem cells (ASCs) have been gaining recognition as an extremely versatile cell source for tissue engineering. The usefulness of ASCs in biofabrication is further enhanced by our demonstration of the unique properties of these cells when they are cultured as three-dimensional cellular aggregates or spheroids. As described herein, three-dimensional formulations, or self-assembling ASC spheroids develop their own extracellular matrix that serves to increase the robustness of the cells to mechanical stresses. The composition of the extracellular matrix can be altered based on the external environment of the spheroids and these constructs can be grown in a reproducible manner and to a consistent size. The spheroid formulation helps preserve the viability and developmental plasticity of ASCs even under defined, serum-free media conditions. For the first time, we show that multiple generations of adherent ASCs produced from these spheroids retain their ability to differentiate into multiple cell/tissue types. These demonstrated properties support the idea that culture-expanded ASCs are an excellent candidate cellular material for 'organ printing'-the approach of developing complex tissue structures from a standardized cell 'ink' or cell formulation.
Collapse
Affiliation(s)
- S K Kapur
- Department of Surgery: Division of Plastic and Reconstructive Surgery, University of Wisconsin Hospital and Clinics, G5/361 Clinical Science Center, 600 Highland Ave, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 2012; 53:227-46. [PMID: 22140268 PMCID: PMC3269153 DOI: 10.1194/jlr.r021089] [Citation(s) in RCA: 555] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction of adipose tissue and led to our current understanding that adipogenesis is important not only for WAT expansion, but also for maintenance of adipocyte numbers under normal metabolic states. At the turn of the millenium, studies investigating preadipocyte differentiation collided with developments in stem cell research, leading to the discovery of multipotent stem cells within WAT. Such adipose tissue-derived stem cells (ASCs) are capable of differentiating into numerous cell types of both mesodermal and nonmesodermal origin, leading to their extensive investigation from a therapeutic and tissue engineering perspective. However, the insights gained through studying ASCs have also contributed to more-recent progress in attempts to better characterize committed preadipocytes in adipose tissue. Thus, ASC research has gone back to its roots, thereby expanding our knowledge of preadipocyte commitment and adipose tissue biology.
Collapse
Affiliation(s)
- William P Cawthorn
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
40
|
Potential for neural differentiation of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:89-115. [PMID: 22899379 DOI: 10.1007/10_2012_152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult human stem cells have gained progressive interest as a promising source of autologous cells to be used as therapeutic vehicles. Particularly, mesenchymal stem cells (MSCs) represent a great tool in regenerative medicine because of their ability to differentiate into a variety of specialized cells. Among adult tissues in which MSCs are resident, adipose tissue has shown clear advantages over other sources of MSCs (ease of surgical access, availability, and isolation), making adipose tissue the ideal large-scale source for research on clinical applications. Stem cells derived from the adipose tissue (adipose-derived stem cells = ADSCs) possess a great and unique regenerative potential: they are self-renewing and can differentiate along several mesenchymal tissue lineages (adipocytes, osteoblasts, myocytes, chondrocytes, endothelial cells, and cardiomyocytes), among which neuronal-like cells gained particular interest. In view of the promising clinical applications in tissue regeneration, research has been conducted towards the creation of a successful protocol for achieving cells with a well-defined neural phenotype from adipose tissue. The promising results obtained open new scenarios for innovative approaches for a cell-based treatment of neurological degenerative disorders.
Collapse
|