1
|
Schindler A, Fischer J, Beeskow AB, Lincke T, Ebel S, Seehofer D, Denecke T, Veelken R, Sabri O, Öcal O, Seidensticker M, Berg T, van Bömmel F. Impact of IL-8 on survival after TARE in HCC: a comprehensive investigation and external validation from the SORAMIC trial. J Cancer Res Clin Oncol 2024; 150:486. [PMID: 39503874 PMCID: PMC11541297 DOI: 10.1007/s00432-024-05947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE In the treatment of hepatocellular carcinoma (HCC) with transarterial radioembolization (TARE), identifying reliable biomarkers for predicting survival outcomes remains a critical challenge. We aimed to address this gap by investigating the significance of serum cytokines associated with inflammation as potential biomarkers for the selection of patients for TARE. METHODS Our retrospective study involved 161 patients diagnosed with HCC who underwent Y90 radioembolization at our medical center between 2010 and 2020. Serum samples from a subset of 78 patients were retrospectively analyzed to determine the concentrations of pro-inflammatory cytokines. The results from the prospective SORAMIC trial were used for independent validation. RESULTS With a median overall survival of 36 weeks (range 4-436), our study showed the strongest correlation between 12-week survival and IL-8 levels before treatment (p < 0.001), while other relevant interleukins, interferon-α2, INF-γ, TNF-α and MCP-1 were not associated with survival. IL-8 levels below the cut-off of 190 pg/mL were significantly associated with increased 12-week and 24-week survival, with hazard ratios of 19.01 (95% CI: 2.29-157.89) and 2.57 (95% CI: 1.05-6.31), respectively (p = 0.006 and p = 0.039, respectively). In the adjusted multivariate analysis, the 190 pg/mL cut-off for IL-8 remained independently associated with 12- (p = 0.011) and 24-week survival (p = 0.039). Similarly, the SORAMIC population showed a strong association between IL-8 levels and 36-week survival (p = 0.03). CONCLUSION Our study emphasizes the pivotal role of IL-8 as a valuable parameter, demonstrating its potential for predicting treatment outcomes and assessing liver function in patients with HCC undergoing TARE. The robustness of these findings warrants further validation.
Collapse
Affiliation(s)
- Aaron Schindler
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Anne-Bettina Beeskow
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Lincke
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Rhea Veelken
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany.
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany.
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
2
|
Kitsel Y, Petre EN, Wong P, Sotirchos V, Vakiani E, Dimopoulos PM, Ganesh K, Rousseau B, Sofocleous CT. Systemic Immunological Changes After Yttrium-90 Radioembolization: A Pilot Prospective Observational Study-Clinical Insights. Cardiovasc Intervent Radiol 2024; 47:1461-1470. [PMID: 39406871 PMCID: PMC12083698 DOI: 10.1007/s00270-024-03870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE To prospectively investigate levels of circulating cytokines, changes in frequencies of various immune cell subsets and expression of proliferation and checkpoint molecules on T cells in the peripheral blood after yttrium-90 radioembolization (TARE) of colorectal cancer liver metastases (CLM). MATERIALS AND METHODS We prospectively collected, isolated, and froze peripheral blood mononuclear cells (PBMC) and plasma samples from 15 patients immediately before, immediately after, 3 and 6 weeks post-TARE of CLM. Plasma samples were assessed for various cytokines using a multiplex immunoassay platform. PBMC samples were analyzed in a monocyte/dendritic cell (DC)/B cell flow panel and a T cell activation/exhaustion flow phenotyping panel. We compared the levels at the respective time points using Wilcoxon signed rank test. RESULTS IFN-g significantly decreased immediately after (mean 1.62 vs. 3.02 at baseline, p = 0.04) and increased at 6 weeks compared to the immediately post-TARE nadir (mean 9.42 vs. 1.62, p = 0.04). IL-10 decreased at 3 weeks (mean 0.36 vs. 1.75, p = 0.025) post-TARE compared to baseline. Increased CD3+T cells (mean 78.24 vs. 60.8, p = 0.002) and decreased CTLA-4+CD4+T cells (mean 2.58 vs. 4.41, p = 0.033) were observed at 3 weeks compared to baseline. Increased Ki-67+ proliferating CD8+T cells at 3 and 6 weeks (mean 7.28 and 9.06, respectively, vs. 3.93 at baseline, p = 0.02 and 0.03) were recorded. CONCLUSION A shift toward a favorable antitumoral cytokinic and immune cells response was observed after TARE. Significant changes were in specialized immune cells subsets playing important roles in the activation of the immune system. These results support trials combining TARE with immunotherapy for patients with CLM.
Collapse
Affiliation(s)
- Yuliya Kitsel
- Interventional Oncology/Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue; IR Suite H118, New York, NY, 10075, USA
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Elena N Petre
- Interventional Oncology/Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue; IR Suite H118, New York, NY, 10075, USA
| | - Phillip Wong
- Immune Monitoring Core Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vlasios Sotirchos
- Interventional Oncology/Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue; IR Suite H118, New York, NY, 10075, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Platon M Dimopoulos
- Interventional Oncology/Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue; IR Suite H118, New York, NY, 10075, USA
- General University Hospital of Patras, Rio, Patras, Greece
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Constantinos T Sofocleous
- Interventional Oncology/Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue; IR Suite H118, New York, NY, 10075, USA.
| |
Collapse
|
3
|
Hao K, Paik AJ, Han LH, Makary MS. Yttrium-90 radioembolization treatment strategies for management of hepatocellular carcinoma. World J Radiol 2024; 16:512-527. [PMID: 39494134 PMCID: PMC11525828 DOI: 10.4329/wjr.v16.i10.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
As the third leading cause of cancer-related deaths worldwide, hepatocellular carcinoma (HCC) represents a significant global health challenge. This paper provides an introduction and comprehensive review of transarterial radioembolization (TARE) with Yttrium-90 (Y90), a widely performed transcatheter procedure for HCC patients who are not suitable candidates for surgery. TARE involves the targeted delivery of radioactive microspheres to liver tumors, offering a promising treatment option for managing HCC across various stages of the disease. By evaluating Y90 TARE outcomes across early, intermediate, and advanced stages of HCC, the review aims to present a thorough understanding of its efficacy and safety. Additionally, this paper highlights future research directions focusing on the potential of combination therapies with systemic and immunotherapies, as well as personalized treatments. The exploration of these innovative approaches aims to improve treatment outcomes, reduce adverse events, and provide new therapeutic opportunities for HCC patients. The review underscores the importance of ongoing research and clinical trials to optimize TARE further and integrate it into comprehensive HCC treatment paradigms.
Collapse
Affiliation(s)
- Kelly Hao
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Andrew J Paik
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Lauren H Han
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Mina S Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
4
|
Franzè MS, Vigneron P, Sessa A, Saitta C, Chalaye J, Tacher V, Luciani A, Regnault H, Bejan A, Rhaiem R, Sommacale D, Leroy V, Brustia R, Raimondo G, Amaddeo G. Prognostic factors influencing outcomes in hepatocellular carcinoma patients undergoing selective internal radiation therapy. Ann Hepatol 2024; 30:101539. [PMID: 39179159 DOI: 10.1016/j.aohep.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 08/26/2024]
Abstract
Selective internal radiation therapy (SIRT) has emerged as a viable endovascular treatment strategy for hepatocellular carcinoma (HCC). According to the Barcelona Clinic Liver Cancer (BCLC) classification, SIRT is currently recommended for early- and intermediate-stage HCC that is unsuitable for alternative locoregional therapies. Additionally, SIRT remains a recommended treatment for patients with advanced-stage HCC and portal vein thrombosis (PVT) without extrahepatic metastasis. Several studies have shown that SIRT is a versatile and promising treatment with a wide range of applications. Consequently, given its favourable characteristics in various scenarios, SIRT could be an encouraging treatment option for patients with HCC across different BCLC stages. Over the past decade, an increasing number of studies have focused on better understanding the prognostic factors associated with SIRT to identify patients who derive the most benefit from this treatment or to refine the optimal technical procedures of SIRT. Several variables can influence treatment decisions, with a growing emphasis on a personalised approach. This review, based on the literature, will focus on the prognostic factors associated with the effectiveness of radioembolization and related complications. By comprehensively analysing these factors, we aimed to provide a clearer understanding of how to optimise the use of SIRT in managing HCC patients, thereby enhancing outcomes across various clinical scenarios.
Collapse
Affiliation(s)
- Maria Stella Franzè
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paul Vigneron
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Anna Sessa
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Julia Chalaye
- Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Vania Tacher
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Alain Luciani
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Hélène Regnault
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Ancuta Bejan
- Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Rami Rhaiem
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatobiliary, Pancreatic and Digestive Surgery, Robert Debré University Hospital, Reims, France; University Reims Champagne-Ardenne, France
| | - Daniele Sommacale
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Digestive and Hepatobiliary Surgery, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Vincent Leroy
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Raffaele Brustia
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Digestive and Hepatobiliary Surgery, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuliana Amaddeo
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France.
| |
Collapse
|
5
|
Karimi A, Yarmohammadi H, Erinjeri JP. Immune Effects of Intra-Arterial Liver-Directed Therapies. J Vasc Interv Radiol 2024; 35:178-184. [PMID: 38272638 PMCID: PMC11334421 DOI: 10.1016/j.jvir.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
Image-guided intra-arterial locoregional therapies (LRTs) such as transarterial embolization, transarterial chemoembolization, and transarterial radioembolization exhibit effects on the immune system. Understanding the humoral (cytokine, chemokine, and growth factor) and cellular (T cell, neutrophil, dendritic cell, and macrophage) mechanisms underlying the immune effects of LRT is crucial to designing rational and effective combinations of immunotherapy and interventional radiology procedures. This article aims to review the immune effects of intra-arterial LRTs and provide insight into strategies to combine LRTs with systemic immunotherapy.
Collapse
Affiliation(s)
- Anita Karimi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
6
|
Morkunas E, Vaitkeviciute E, Varkalaite G, Pilvinis V, Skieceviciene J, Kupcinskas J. Diagnostic and Prognostic Value of IL-10, FABP2 and LPS Levels in HCC Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2191. [PMID: 38138294 PMCID: PMC10744942 DOI: 10.3390/medicina59122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Hepatocellular carcinoma (HCC) still lacks valuable diagnostic and prognostic tools. This study aimed to investigate the potential diagnostic and prognostic value of baseline interleukin (IL)-10, fatty acid-binding protein 2 (FABP2) and lipopolysaccharide (LPS) levels in patients with HCC. Serum levels of IL-10, FABP2 and LPS in 47 newly diagnosed HCC patients and 50 healthy individuals were estimated and compared. The best cut-off points for baseline IL-10, FABP2 and LPS levels predicting overall survival (OS) were evaluated. Both levels of FABP2 and IL-10 were significantly higher in HCC patients vs. control group (median 2095 vs. 1772 pg/mL, p = 0.026; 9.94 vs. 4.89 pg/mL, p < 0.001) and may serve as potential biomarkers in complex HCC diagnostic tools. The cut-off value of 2479 pg/mL for FABP2 was determined to have the highest sensitivity (66.7%) and specificity (55.6%) to distinguish patients with a median OS longer than 17 months. However, the median OS of patients with high and low levels of FABP2 were not significantly different (p = 0.896). The prognostic value of LPS as well as FABP2 and IL-10 for HCC patients appears to be limited.
Collapse
Affiliation(s)
- Egidijus Morkunas
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Evelina Vaitkeviciute
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (E.V.)
| | - Greta Varkalaite
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (E.V.)
| | - Vidas Pilvinis
- Department of Anesthesiology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (E.V.)
| | - Juozas Kupcinskas
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (E.V.)
| |
Collapse
|
7
|
Young S, Hannallah J, Goldberg D, Khreiss M, Shroff R, Arshad J, Scott A, Woodhead G. Liver-Directed Therapy Combined with Systemic Therapy: Current Status and Future Directions. Semin Intervent Radiol 2023; 40:515-523. [PMID: 38274222 PMCID: PMC10807971 DOI: 10.1055/s-0043-1777711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In the past several decades, major advances in both systemic and locoregional therapies have been made for many cancer patients. This has led to modern cancer treatment algorithms frequently calling for active interventions by multiple subspecialists at the same time. One of the areas where this can be clearly seen is the concomitant use of locoregional and systemic therapies in patients with primary or secondary cancers of the liver. These combined algorithms have gained favor over the last decade and are largely focused on the allure of the combined ability to control systemic disease while at the same time addressing refractory/resistant clonal populations. While the general concept has gained favor and is likely to only increase in popularity with the continued establishment of viable immunotherapy treatments, for many patients questions remain. Lingering concerns over the increase in toxicity when combining treatment methods, patient selection, and sequencing remain for multiple cancer patient populations. While further work remains, some of these questions have been addressed in the literature. This article reviews the available data on three commonly treated primary and secondary cancers of the liver, namely, hepatocellular carcinoma, cholangiocarcinoma, and metastatic colorectal cancer. Furthermore, strengths and weaknesses are reviewed and future directions are discussed.
Collapse
Affiliation(s)
- Shamar Young
- Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Jack Hannallah
- Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Dan Goldberg
- Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Mohammad Khreiss
- Division of Surgical Oncology, Department of Surgery, University of Arizona, Tucson, Arizona
| | - Rachna Shroff
- Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Junaid Arshad
- Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Aaron Scott
- Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Gregory Woodhead
- Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Young S, Hannallah J, Goldberg D, Sanghvi T, Arshad J, Scott A, Woodhead G. Friend or Foe? Locoregional Therapies and Immunotherapies in the Current Hepatocellular Treatment Landscape. Int J Mol Sci 2023; 24:11434. [PMID: 37511193 PMCID: PMC10380625 DOI: 10.3390/ijms241411434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last several decades, a number of new treatment options for patients with hepatocellular carcinoma (HCC) have been developed. While treatment decisions for some patients remain clear cut, a large numbers of patients have multiple treatment options, and it can be hard for multidisciplinary teams to come to unanimous decisions on which treatment strategy or sequence of treatments is best. This article reviews the available data with regard to two treatment strategies, immunotherapies and locoregional therapies, with a focus on the potential of locoregional therapies to be combined with checkpoint inhibitors to improve outcomes in patients with locally advanced HCC. In this review, the available data on the immunomodulatory effects of locoregional therapies is discussed along with available clinical data on outcomes when the two strategies are combined.
Collapse
Affiliation(s)
- Shamar Young
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Jack Hannallah
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Dan Goldberg
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Tina Sanghvi
- Department of Radiology, Southern Arizona VA, Tucson, AZ 85723, USA
| | - Junaid Arshad
- Department of Medicine, Division of Hematology and Oncology, University of Arizona, Tucson, AZ 85724, USA
| | - Aaron Scott
- Department of Medicine, Division of Hematology and Oncology, University of Arizona, Tucson, AZ 85724, USA
| | - Gregory Woodhead
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Khan F, Jones K, Lyon P. Immune checkpoint inhibition: a future guided by radiology. Br J Radiol 2023; 96:20220565. [PMID: 36752570 PMCID: PMC10321249 DOI: 10.1259/bjr.20220565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
The limitation of the function of antitumour immune cells is a common hallmark of cancers that enables their survival. As such, the potential of immune checkpoint inhibition (ICI) acts as a paradigm shift in the treatment of a range of cancers but has not yet been fully capitalised. Combining minimally and non-invasive locoregional therapies offered by radiologists with ICI is now an active field of research with the aim of furthering therapeutic capabilities in medical oncology. In parallel to this impending advancement, the "imaging toolbox" available to radiologists is also growing, enabling more refined tumour characterisation as well as greater accuracy in evaluating responses to therapy. Options range from metabolite labelling to cellular localisation to immune checkpoint screening. It is foreseeable that these novel imaging techniques will be integrated into personalised treatment algorithms. This growth in the field must include updating the current standardised imaging criteria to ensure they are fit for purpose. Such criteria is crucial to both appropriately guide clinical decision-making regarding next steps of treatment, but also provide reliable prognosis. Quantitative approaches to these novel imaging techniques are also already being investigated to further optimise personalised therapeutic decision-making. The therapeutic potential of specific ICIs and locoregional therapies could be determined before administration thus limiting unnecessary side-effects whilst maintaining efficacy. Several radiological aspects of oncological care are advancing simultaneously. Therefore, it is essential that each development is assessed for clinical use and optimised to ensure the best treatment decisions are being offered to the patient. In this review, we discuss state of the art advances in novel functional imaging techniques in the field of immuno-oncology both pre-clinically and clinically.
Collapse
Affiliation(s)
- Faraaz Khan
- Foundation Doctor, Buckinghamshire Hospitals NHS Trust, Amersham, Buckinghamshire, United Kingdom
| | - Keaton Jones
- Academic Clinical Lecturer Nuffield Department of Surgical Sciences University of Oxford, Wellington Square, Oxford, United Kingdom
| | - Paul Lyon
- Consultant Radiologist, Department of Radiology, Oxford University Hospitals, Headington, Oxford, United Kingdom
| |
Collapse
|
10
|
Moroney J, Trivella J, George B, White SB. A Paradigm Shift in Primary Liver Cancer Therapy Utilizing Genomics, Molecular Biomarkers, and Artificial Intelligence. Cancers (Basel) 2023; 15:2791. [PMID: 37345129 PMCID: PMC10216313 DOI: 10.3390/cancers15102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. Conventional therapies offer limited survival benefit despite improvements in locoregional liver-directed therapies, which highlights the underlying complexity of liver cancers. This review explores the latest research in primary liver cancer therapies, focusing on developments in genomics, molecular biomarkers, and artificial intelligence. Attention is also given to ongoing research and future directions of immunotherapy and locoregional therapies of primary liver cancers.
Collapse
Affiliation(s)
- James Moroney
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Juan Trivella
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah B. White
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Brandi N, Renzulli M. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24108598. [PMID: 37239941 DOI: 10.3390/ijms24108598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy has remarkably revolutionized the management of advanced HCC and prompted clinical trials, with therapeutic agents being used to selectively target immune cells rather than cancer cells. Currently, there is great interest in the possibility of combining locoregional treatments with immunotherapy for HCC, as this combination is emerging as an effective and synergistic tool for enhancing immunity. On the one hand, immunotherapy could amplify and prolong the antitumoral immune response of locoregional treatments, improving patients' outcomes and reducing recurrence rates. On the other hand, locoregional therapies have been shown to positively alter the tumor immune microenvironment and could therefore enhance the efficacy of immunotherapy. Despite the encouraging results, many unanswered questions still remain, including which immunotherapy and locoregional treatment can guarantee the best survival and clinical outcomes; the most effective timing and sequence to obtain the most effective therapeutic response; and which biological and/or genetic biomarkers can be used to identify patients likely to benefit from this combined approach. Based on the current reported evidence and ongoing trials, the present review summarizes the current application of immunotherapy in combination with locoregional therapies for the treatment of HCC, and provides a critical evaluation of the current status and future directions.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
12
|
Cancer Immunology: Impact of Radioembolization of Hepatocellular Carcinoma on Immune Response Modulation. AJR Am J Roentgenol 2023; 220:863-872. [PMID: 36752368 DOI: 10.2214/ajr.22.28800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the fourth most common cause of cancer mortality. The tumor microenvironment (TME) is increasingly recognized as having a central role in HCC carcinogenesis, with factors such as tumor and immune cell interactions, cytokines, and extracellular matrix serving key roles. Transarterial radioembolization (TARE) is a locoregional therapy for HCC that not only has a direct tumoricidal effect, but induces an immune response against tumor cells with subsequent immunogenic cell death. This TARE-induced tumor immunogenicity occurs through enhancement of tumor-associated antigen expression, as well as recruitment and diversification of tumor-infiltrating lymphocytes. In addition, immunologically related biomarkers, including the neutrophil-to-lymphocyte ratio, lymphocyte count, and cytokine levels, may be useful tools to predict outcomes after TARE. Early data are promising regarding the potential synergistic benefit from treatment algorithms that combine TARE and immunotherapies, and interest is growing in the clinical application of such combinations. This review provides an overview of cancer immunology, summarizes the available data regarding the biologic effects of TARE on local and systemic immune responses, and explores the potential role of the combination of TARE and immunotherapy for HCC.
Collapse
|
13
|
Öcal O, Zech CJ, Fabritius MP, Loewe C, van Delden O, Vandecaveye V, Gebauer B, Berg T, Sengel C, Bargellini I, Iezzi R, Benito A, Pech M, Gasbarrini A, Sangro B, Malfertheiner P, Ricke J, Seidensticker M. Non-hypervascular hepatobiliary phase hypointense lesions detected in patients with hepatocellular carcinoma: a post hoc analysis of SORAMIC trial to identify risk factors for progression. Eur Radiol 2022; 33:493-500. [PMID: 35881180 DOI: 10.1007/s00330-022-09000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To identify clinical and imaging parameters associated with progression of non-hypervascular hepatobiliary phase hypointense lesions during follow-up in patients who received treatment for hepatocellular carcinoma. METHODS A total of 67 patients with 106 lesions were identified after screening 538 patients who underwent gadoxetic acid-enhanced MRI within the SORAMIC trial. All patients were allocated to the trial treatment according to the trial scheme, and 61 of 67 patients received systemic treatment with sorafenib (either alone or combined with locoregional therapies) during the trial period. Follow-up images after treatment according to trial scheme were reviewed for subsequent hypervascularization or > 1 cm size increase. The correlation between progression and several imaging and clinical parameters was assessed using univariable and multivariable analyses. RESULTS On a median 178 (range, 48-1072) days follow-up period, progression was encountered in 18 (16.9%) lesions in 12 (17.9%) patients. In univariable analysis size > 12.6 mm (p = 0.070), ECOG-PS (p = 0.025), hypointensity at T1-weighted imaging (p = 0.028), hyperintensity at T2-weighted imaging (p < 0.001), hyperintensity at DWI images (p = 0.007), and cirrhosis (p = 0.065) were correlated with progression during follow-up. Hyperintensity at T2 images (p = 0.011) was an independent risk factor for progression in multivariable analysis, as well as cirrhosis (p = 0.033) and ECOG-PS (p = 0.030). CONCLUSIONS Non-hypervascular hepatobiliary phase hypointense lesions are associated with subsequent progression after treatment in patients with HCC. T2 hyperintensity, diffusion restriction, cirrhosis, and higher ECOG-PS could identify lesions with increased risk. These factors should be considered for further diagnostic evaluation or treatment of such lesions. KEY POINTS • Non-hypervascular hepatobiliary phase hypointense lesions have considerable risk of progression in patients with hepatocellular carcinoma receiving treatment. • T2 hyperintensity, cirrhosis, ECOG-PS, and hyperintensity at DWI are associated with increased risk of progression. • Non-hypervascular hepatobiliary phase hypointense lesions should be considered in the decision-making process of locoregional therapies, especially in the presence of these risk factors.
Collapse
Affiliation(s)
- Osman Öcal
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christian Loewe
- Section of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Otto van Delden
- Department of Radiology and Nuclear Medicine, Academic University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bernhard Gebauer
- Department of Radiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Thomas Berg
- Klinik und Poliklinik für Gastroenterologie, Sektion Hepatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Irene Bargellini
- Department of Vascular and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Roberto Iezzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Rome, Italy
| | - Alberto Benito
- Abdominal Radiology Unit, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | | | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
14
|
Öcal O, Schütte K, Kupčinskas J, Morkunas E, Jurkeviciute G, de Toni EN, Ben Khaled N, Berg T, Malfertheiner P, Klümpen HJ, Sengel C, Basu B, Valle JW, Benckert J, Gasbarrini A, Palmer D, Seidensticker R, Wildgruber M, Sangro B, Pech M, Ricke J, Seidensticker M. Baseline Interleukin-6 and -8 predict response and survival in patients with advanced hepatocellular carcinoma treated with sorafenib monotherapy: an exploratory post hoc analysis of the SORAMIC trial. J Cancer Res Clin Oncol 2022; 148:475-485. [PMID: 33855585 PMCID: PMC8800931 DOI: 10.1007/s00432-021-03627-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/14/2022]
Abstract
PURPOSE To explore the potential correlation between baseline interleukin (IL) values and overall survival or objective response in patients with hepatocellular carcinoma (HCC) receiving sorafenib. METHODS A subset of patients with HCC undergoing sorafenib monotherapy within a prospective multicenter phase II trial (SORAMIC, sorafenib treatment alone vs. combined with Y90 radioembolization) underwent baseline IL-6 and IL-8 assessment before treatment initiation. In this exploratory post hoc analysis, the best cut-off points for baseline IL-6 and IL-8 values predicting overall survival (OS) were evaluated, as well as correlation with the objective response. RESULTS Forty-seven patients (43 male) with a median OS of 13.8 months were analyzed. Cut-off values of 8.58 and 57.9 pg/mL most effectively predicted overall survival for IL-6 and IL-8, respectively. Patients with high IL-6 (HR, 4.1 [1.9-8.9], p < 0.001) and IL-8 (HR, 2.4 [1.2-4.7], p = 0.009) had significantly shorter overall survival than patients with low IL values. Multivariate analysis confirmed IL-6 (HR, 2.99 [1.22-7.3], p = 0.017) and IL-8 (HR, 2.19 [1.02-4.7], p = 0.044) as independent predictors of OS. Baseline IL-6 and IL-8 with respective cut-off values predicted objective response rates according to mRECIST in a subset of 42 patients with follow-up imaging available (IL-6, 46.6% vs. 19.2%, p = 0.007; IL-8, 50.0% vs. 17.4%, p = 0.011). CONCLUSION IL-6 and IL-8 baseline values predicted outcomes of sorafenib-treated patients in this well-characterized prospective cohort of the SORAMIC trial. We suggest that the respective cut-off values might serve for validation in larger cohorts, potentially offering guidance for improved patient selection.
Collapse
Affiliation(s)
- Osman Öcal
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Juozas Kupčinskas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egidijus Morkunas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabija Jurkeviciute
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Enrico N de Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Berg
- Klinik Und Poliklinik Für Gastroenterologie, Sektion Hepatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Heinz Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Juan W Valle
- Division of Cancer Sciences and Department of Medical Oncology, The Christie NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Julia Benckert
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Roma, Italy
| | - Daniel Palmer
- Molecular and Clinical Cancer Medicine, University Hospitals and Clatterbridge, University of Liverpool, Liverpool, UK
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
15
|
Ricke J, Schinner R, Seidensticker M, Gasbarrini A, van Delden OM, Amthauer H, Peynircioglu B, Bargellini I, Iezzi R, De Toni EN, Malfertheiner P, Pech M, Sangro B. Liver function after combined selective internal radiation therapy or sorafenib monotherapy in advanced hepatocellular carcinoma. J Hepatol 2021; 75:1387-1396. [PMID: 34454995 DOI: 10.1016/j.jhep.2021.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS SORAMIC is a previously published randomised controlled trial assessing survival in patients with advanced hepatocellular carcinoma who received sorafenib with or without selective internal radiation therapy (SIRT). Based on the per-protocol (PP) population, we assessed whether the outcome of patients receiving SIRT+sorafenib vs. sorafenib alone was affected by adverse effects of SIRT on liver function. METHODS The PP population consisted of 109 (SIRT+sorafenib) vs. 173 patients (sorafenib alone). Comparisons were made between subgroups who achieved a significant survival benefit or trend towards improved survival with SIRT and the inverse group without a survival benefit: <65 years-old vs. ≥65 years-old, Child-Pugh 5 vs. 6, no transarterial chemoembolisation (TACE) vs. prior TACE, no cirrhosis vs. cirrhosis, non-alcohol- vs. alcohol-related aetiology. The albumin-bilirubin (ALBI) score was used to monitor liver function over time during follow-up. RESULTS ALBI scores increased in all patient groups during follow-up. In the PP population, ALBI score increases were higher in the SIRT+sorafenib than the sorafenib arm (p = 0.0021 month 4, p <0.0001 from month 6). SIRT+sorafenib conferred a survival benefit compared to sorafenib alone in patients aged <65 years-old, those without cirrhosis, those with Child-Pugh 5, and those who had not received TACE. A higher increase in ALBI score was observed in the inverse subgroups in whom survival was not improved by adding SIRT (age ≥65 years-old, p <0.05; cirrhosis, p = 0.07; Child-Pugh 6, p <0.05; prior TACE, p = 0.08). CONCLUSION SIRT frequently has a negative, often subclinical, effect on liver function in patients with hepatocellular carcinoma, which may impair prognosis after treatment. Careful patient selection for SIRT as well as prevention of clinical and subclinical liver damage by selective treatments, high tumour uptake ratio, and medical prophylaxis could translate into better efficacy. CLINICAL TRIAL NUMBER EudraCT 2009-012576-27, NCT01126645 LAY SUMMARY: This study of treatments in patients with hepatocellular carcinoma found that selective internal radiation therapy (SIRT) has an adverse effect on liver function that may affect patient outcomes. Patients should be carefully selected before they undergo SIRT and the treatment technique should be optimised for maximum protection of non-target liver parenchyma.
Collapse
Affiliation(s)
- Jens Ricke
- Department of Radiology, Ludwig Maximilan University Munich, München, Germany.
| | - Regina Schinner
- Department of Radiology, Ludwig Maximilan University Munich, München, Germany
| | - Max Seidensticker
- Department of Radiology, Ludwig Maximilan University Munich, München, Germany
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Medicina interna e gastroenterologia, Roma, Italy
| | - Otto M van Delden
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Irene Bargellini
- Department of Vascular and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Roberto Iezzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - Enrico N De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Peter Malfertheiner
- Department of Radiology and Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| |
Collapse
|
16
|
Biondetti P, Saggiante L, Ierardi AM, Iavarone M, Sangiovanni A, Pesapane F, Fumarola EM, Lampertico P, Carrafiello G. Interventional Radiology Image-Guided Locoregional Therapies (LRTs) and Immunotherapy for the Treatment of HCC. Cancers (Basel) 2021; 13:5797. [PMID: 34830949 PMCID: PMC8616392 DOI: 10.3390/cancers13225797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Image-guided locoregional therapies (LRTs) are a crucial asset in the treatment of hepatocellular carcinoma (HCC), which has proven to be characterized by an impaired antitumor immune status. LRTs not only directly destroy tumor cells but also have an immunomodulating role, altering the tumor microenvironment with potential systemic effects. Nevertheless, the immune activation against HCC induced by LRTs is not strong enough on its own to generate a systemic significant antitumor response, and it is incapable of preventing tumor recurrence. Currently, there is great interest in the possibility of combining LRTs with immunotherapy for HCC, as this combination may result in a mutually beneficial and synergistic relationship. On the one hand, immunotherapy could amplify and prolong the antitumoral immune response of LRTs, reducing recurrence cases and improving outcome. On the other hand, LTRs counteract the typical immunosuppressive HCC microenvironment and status and could therefore enhance the efficacy of immunotherapy. Here, after reviewing the current therapeutic options for HCC, we focus on LRTs, describing for each of them the technique and data on its effect on the immune system. Then, we describe the current status of immunotherapy and finally report the recently published and ongoing clinical studies testing this combination.
Collapse
Affiliation(s)
- Pierpaolo Biondetti
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Lorenzo Saggiante
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Anna Maria Ierardi
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Massimo Iavarone
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Angelo Sangiovanni
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Filippo Pesapane
- Radiology Department, IEO European Institute of Oncology IRCCS, 20122 Milan, Italy;
| | - Enrico Maria Fumarola
- Diagnostic and Interventional Radiology Department, ASST Santi Paolo e Carlo, 20122 Milan, Italy;
| | - Pietro Lampertico
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Gianpaolo Carrafiello
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| |
Collapse
|
17
|
Cousins MM, Devasia TP, Maurino CM, Mikell J, Schipper MJ, Kaza RK, Lawrence TS, Cuneo KC, Dewaraja YK. Pre-treatment sTNFR1 and HGF levels predict toxicity and overall survival after 90Y radioembolization: potential novel application of biomarkers for personalized management of hepatotoxicity. J Nucl Med 2021; 63:882-889. [PMID: 34503962 DOI: 10.2967/jnumed.121.262447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Liver function may be negatively affected by radiation for treatment of hepatic malignancy. Pretreatment blood cytokine levels are biomarkers for prediction of toxicity and survival after external beam radiation therapy. We hypothesized that cytokines may also predict outcomes after radioembolization, enabling a biomarker-driven personalized approach to treatment. Methods: Pre-therapy blood samples from patients enrolled on a prospective protocol evaluating 90Y radioembolization for management of intrahepatic malignancy were analyzed for two cytokines selected based on prior studies in stereotactic body radiotherapy (SBRT), soluble tumor necrosis factor receptor 1 (sTNFR1) and hepatocyte growth factor (HGF), via enzyme-linked immunosorbent assay (ELISA), and key dosimetric parameters were derived from post-treatment 90Y PET/CT imaging. Toxicity was defined as a change in albumin-bilirubin score (ALBI) from baseline to follow up [3-6-month post-treatment (ΔALBI)]. Associations of cytokine levels, dose metrics, and baseline liver function with toxicity and overall survival were assessed. Results: Data from 43 patients treated with 90Y radioembolization for primary [48.8% (21/43)] or secondary [51.2% (22/43)] malignancy were assessed. Examined dose metrics and baseline liver function were not associated with liver toxicity; however, levels of sTNFR1 (P = 0.045) and HGF (P = 0.005) were associated with liver toxicity in univariate models. Cytokines were the only predictors of toxicity in multivariable models including dose metrics and prior liver directed therapy. sTNFR1 (HR 12.3; CI 3.5-42.5, p<0.001) and HGF (HR 7.5; CI 2.4-23.1, p<0.001) predicted overall survival, and findings were similar when models were controlled for absorbed dose and presence of metastatic disease. Conclusion: Pretreatment cytokine levels predict liver toxicity and overall survival. These pathways can be targeted with available drugs, an advantage over previously studied dose metrics and liver function tests. Interventions directed at the TNF alpha axis should be considered in future studies for prevention of liver toxicity, and HGF should be explored further to determine whether its elevation drives toxicity or indicates ongoing liver regeneration after prior injury.
Collapse
Affiliation(s)
- Matthew M Cousins
- Department of Radiation Oncology, University of Michigan, United States
| | - Theresa P Devasia
- Department of Radiation Oncology, University of Michigan, United States
| | | | - Justin Mikell
- Department of Radiation Oncology, University of Michigan, United States
| | | | - Ravi K Kaza
- Department of Radiology, University of Michigan
| | | | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, United States
| | | |
Collapse
|
18
|
Immune Responses Following Locoregional Treatment for Hepatocellular Carcinoma: Possible Roles of Adjuvant Immunotherapy. Pharmaceutics 2021; 13:pharmaceutics13091387. [PMID: 34575463 PMCID: PMC8471821 DOI: 10.3390/pharmaceutics13091387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related deaths worldwide. Unlike other types of cancer, HCC can be treated with locoregional treatments (LRTs) such as radiofrequency ablation (RFA) or transarterial chemoembolization (TACE). However, recurrences following LRTs are common, and strategies to improve long-term outcomes need to be developed. The exhaustion of anti-tumor immunity in HCC has been well established in many reports and the immunomodulatory effects of LRTs (enhancement of tumor antigen-specific T cell responses after RFA, reduction of effector regulatory T cells after TACE) have also been reported in several previous studies. However, a comprehensive review of previous studies and the possible roles of immunotherapy following LRTs in HCC are not known. In this review, we discuss the immunological evidence of current clinical trials using LRTs and combined immunotherapies, and the possible role of this strategy.
Collapse
|
19
|
Öcal O, Kupčinskas J, Morkunas E, Amthauer H, Schütte K, Malfertheiner P, Klümpen HJ, Sengel C, Benckert J, Seidensticker R, Sangro B, Wildgruber M, Pech M, Bartenstein P, Ricke J, Seidensticker M. Prognostic value of baseline interleukin 6 levels in liver decompensation and survival in HCC patients undergoing radioembolization. EJNMMI Res 2021; 11:51. [PMID: 34080071 PMCID: PMC8172845 DOI: 10.1186/s13550-021-00791-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background To confirm the prognostic value of previously published baseline interleukin 6 (IL6) and IL8 cutoff values in survival and liver dysfunction in patients with advanced HCC undergoing 90Y radioembolization. Methods A total of 83 patients (77 male) represented a subset of HCC patients undergoing 90Y radioembolization combined with sorafenib as part of the prospective multicenter phase II trial SORAMIC. IL6 and IL8 levels were determined in serum samples collected at baseline. In this post hoc analysis, we sought to confirm the prognostic value of baseline cutoff values of 6.53 pg/mL and 60.8 pg/mL for IL6 and IL8, respectively, in overall survival (OS) or liver dysfunction (grade 2 bilirubin increase) after treatment. Results Median OS was 12.0 months. While low baseline albumin and high bilirubin values were associated with high IL6, liver cirrhosis, alcoholic liver disease, and portal vein infiltration were associated with high IL8. In univariate analysis, high baseline IL6 and IL8 were associated with significantly shorter overall survival (7.8 vs. 19.0 months for IL6 and 8.4 vs. 16.0 months for IL8). In addition to IL values, liver cirrhosis, Child–Pugh grade, baseline albumin (< 36 g/dL), and total bilirubin (≥ 17 µmol/L), and higher mALBI grade (2b &3) values were associated with OS. At multivariate analysis, high baseline IL6 was the only independent prognostic factor for OS (HR 2.35 [1.35–4.1], p = 0.002). Risk factors for liver dysfunction were high baseline IL6, albumin, and total bilirubin, and mALBI grade as found in univariate analysis. High baseline IL6 (HR 2.67 [1.21–5.94], p = 0.016) and total bilirubin ≥ 17 µmol/L (HR 3.73 [1.72–8.06], p < 0.001) were independently associated with liver dysfunction. Conclusion In advanced HCC patients receiving 90Y radioembolization combined with sorafenib, baseline IL6 values proved to be prognostic, confirming previous findings in patients undergoing 90Yradioembolization. IL6 might be useful for patient selection or stratification in future trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00791-w.
Collapse
Affiliation(s)
- Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Juozas Kupčinskas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egidijus Morkunas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Peter Malfertheiner
- Department of Internal Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Heinz Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Julia Benckert
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
20
|
Induction of Contralateral Hepatic Hypertrophy by Unilobar Yttrium-90 Transarterial Radioembolization versus Portal Vein Embolization: An Animal Study. J Vasc Interv Radiol 2021; 32:836-842.e2. [PMID: 33689835 DOI: 10.1016/j.jvir.2021.01.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To compare hepatic hypertrophy in the contralateral lobe achieved by unilobar transarterial radioembolization (TARE) versus portal vein embolization (PVE) in a swine model. METHODS After an escalation study to determine the optimum dose to achieve hypertrophy after unilobar TARE in 4 animals, 16 pigs were treated by TARE (yttrium-90 resin microspheres) or PVE (lipiodol/n-butyl cyanoacrylate). Liver volume was calculated based on CT before treatment and during 6 months of follow-up. Independent t-test (P < .05) was used to compare hypertrophy. The relationship between hypertrophy after TARE and absorbed dose was calculated using the Pearson correlation. RESULTS At 2 and 4 weeks after treatment, a significantly higher degree of future liver remnant hypertrophy was observed in the PVE group versus the TARE group, with a median volume gain of 31% (interquartile range [IQR]: 16%-66%) for PVE versus 23% (IQR: 6%-36%) for TARE after 2 weeks and 51% (IQR: 47%-69%) for PVE versus 29% (IQR: 20%-50%) for TARE after 4 weeks. After 3 and 6 months, hypertrophy converged without a statistically significant difference, with a volume gain of 103% (IQR: 86%-119%) for PVE versus 82% (IQR: 70%-96%) for TARE after 3 months and 115% (IQR: 70%-46%) for PVE versus 86% (IQR: 58%-111%) for TARE after 6 months. A strong correlation was observed between radiation dose (median 162 Gy, IQR: 139-175) and hypertrophy. CONCLUSIONS PVE resulted in rapid hypertrophy within 1 month of the procedure, followed by a plateau, whereas TARE resulted in comparable hypertrophy by 3-6 months. TARE-induced hypertrophy correlated with radiation absorbed dose.
Collapse
|
21
|
Liu CA, Lee IC, Lee RC, Chen JL, Chao Y, Hou MC, Huang YH. Prediction of survival according to kinetic changes of cytokines and hepatitis status following radioembolization with yttrium-90 microspheres. J Formos Med Assoc 2020; 120:1127-1136. [PMID: 32978044 DOI: 10.1016/j.jfma.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/PURPOSE Yttrium-90 radioembolization (Y90-RE) may exert an immunomodulatory effect on the tumor microenvironment of hepatocellular carcinoma (HCC). Whether the host immune alterations after Y90-RE correlated with outcomes and whether Y90-RE affects viral hepatitis reactivation remains unclear. METHODS Between July 2014 and July 2015, 18 patients undergoing Y90-RE for HCC were prospectively enrolled. Serum levels of virological markers, cytokines and chemokines were measured at baseline, 2, 4, and 12 weeks after Y90-RE. Factors associated with the clinical outcomes were evaluated. RESULTS The disease control rate of Y90-RE was 44.4% (8 of 18) at 12 weeks, including 1 case with complete response, 4 cases with partial response, and 3 cases with stable disease. Significant elevation from baseline to week 2 and week 4 were noted in IL-10 level (8.4 ± 33.8, 15.7 ± 31.6, and 16.0 ± 41.7 pg/mL, P = 0.041 and 0.013, respectively) and IP-10 level (113.5 ± 97.8, 189.1 ± 164.4, and 168.6 ± 150.5 pg/mL, P = 0.027 and 0.026, respectively). After Y90-RE, transient HBV reactivation occurred in 2 patients, and 1 out of 3 HCV-infected patients exhibited HCV reactivation. Univariate analysis revealed that lower baseline IP-10 (≤200 pg/mL) and alanine aminotransferase (ALT) (≤50 U/L) levels were associated with better overall survival. Multivariate analysis identified an IP-10 level of 200 pg/mL (HR = 4.374, P = 0.045) as a predictor of overall survival. CONCLUSION Baseline serum IP-10 level is a predictor of survival for HCC patients undergoing Y90-RE. HBV and HCV reactivation may develop after Y90-RE treatment.
Collapse
Affiliation(s)
- Chien-An Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Cheng Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Rheun-Chuan Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jian-Ling Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
22
|
Helmberger T. The evolution of interventional oncology in the 21st century. Br J Radiol 2020; 93:20200112. [PMID: 32706978 PMCID: PMC7465871 DOI: 10.1259/bjr.20200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Interventional oncology (IO) has proven to be highly efficient in the local therapy of numerous malignant tumors in addition to surgery, chemotherapy, and radiotherapy. Due to the advent of immune-oncology with the possibility of tumor control at the molecular and cellular levels, a system change is currently emerging. This will significantly rule oncology in the coming decades. Therefore, one cannot think about IO in the 21st century without considering immunology. For IO, this means paying much more attention to the immunomodulatory effects of the interventional techniques, which have so far been neglected, and to explore the synergistic possibilities with immuno-oncology. It can be expected that the combined use of IO and immuno-oncology will help to overcome the limitations of the latter, such as limited local effects and a high rate of side-effects. To do this, however, sectoral boundaries must be removed and interdisciplinary research efforts must be strengthened. In case of success, IO will face an exciting future.
Collapse
Affiliation(s)
- Thomas Helmberger
- Department of Radiology, Neuroradiology, and minimal-invasive Therapy, Munich Klinik Bogenhausen Englschalkingerstr. 77 81925, Munich, Germany
| |
Collapse
|
23
|
Nance ME, Biedermann GB, Bhat AP, Davis RM. Chemorefractory liver metastasis from cervical cancer successfully treated with a combination of yttrium-90 and immunotherapy. Radiol Case Rep 2020; 15:1359-1365. [PMID: 32636973 PMCID: PMC7327429 DOI: 10.1016/j.radcr.2020.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Liver metastases in cervical cancer is rare and can be difficult-to-treat. The current guidelines established by the Gynecologic Oncology Group recommend platinum-based systemic chemotherapy in combination with an anti-angiogenic agent such as bevacizumab, however, overall survival remains poor following diagnosis and options for patients who fail chemotherapy are limited. Yttrium-90 (Y90) radioembolization (RE) has shown great promise in the treatment of chemo-refractory colorectal liver metastases. We describe a 30-year-old female with a history of stage IB endocervical adenocarcinoma who later developed metastases to the liver, that were unresponsive to multiple chemotherapeutics and chemoembolization, and was successfully treated with Y90 RE with concurrent systemic Pembrolizumab. The Y90 RE treatment resulted in positive clinical and imaging responses with improvement in her quality of life, all of which continue to persist at the time of writing this manuscript about 8-months into her RE treatment.
Collapse
Affiliation(s)
- Michael E. Nance
- School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Radiology, Section of Vascular and Interventional Radiology, University of Missouri, One Hospital drive, Columbia, MO 65212, USA
| | - Gregory B. Biedermann
- Department of Radiology, Section of Radiation Oncology, University of Missouri, Columbia, Columbia, MO, USA
| | - Ambarish P. Bhat
- Department of Radiology, Section of Vascular and Interventional Radiology, University of Missouri, One Hospital drive, Columbia, MO 65212, USA
| | - Ryan M. Davis
- Department of Radiology, Section of Vascular and Interventional Radiology, University of Missouri, One Hospital drive, Columbia, MO 65212, USA
| |
Collapse
|
24
|
Casadei-Gardini A, Orsi G, Caputo F, Ercolani G. Developments in predictive biomarkers for hepatocellular carcinoma therapy. Expert Rev Anticancer Ther 2020; 20:63-74. [PMID: 31910040 DOI: 10.1080/14737140.2020.1712198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and the third largest cause of cancer-relateddeaths worldwide. Potentially curative treatments (surgical resection, radiofrequency or liver transplantation) are only available for few patients, while transarterial chemoembolization (TACE) or systemic agents are the best treatments for intermediate and advanced stage disease. The identification of markers that allow us to choose the best treatment for the patient is urgent.Areas covered: In this review we summarize the potential biological markers to predict the efficacy of all treatment available in patients with HCC and discuss anew biomarker with ahigher potential of success in the next future.Expert opinion: HCC is aheterogeneous disease. Tumors are heterogeneous in terms of genetic alteration,with spatial heterogeneity in cellular density, necrosis and angiogenesis.This heterogeneity may affect prognosis and treatment. Tumor heterogeneity can be difficult to quantify with traditional imaging due to subjective assessment of images; the same for sampling biopsy, which evaluates only asmall part of the tumor. We think that combining multi-OMICSwith radiomics represents apromising strategy for evaluating tumor heterogenicity and for identifying biomarkers of response and prognosis.
Collapse
Affiliation(s)
- Andrea Casadei-Gardini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orsi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Ercolani
- General and Oncology Surgery, Morgagni-Pierantoni Hospital, Forli, Italy.,Department of Medical & Surgical Sciences-DIMEC, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
26
|
Greten TF, Mauda-Havakuk M, Heinrich B, Korangy F, Wood BJ. Combined locoregional-immunotherapy for liver cancer. J Hepatol 2019; 70:999-1007. [PMID: 30738077 PMCID: PMC6462230 DOI: 10.1016/j.jhep.2019.01.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
Locoregional therapies are commonly used to treat patients with hepatocellular carcinoma. It has been noted for many years that locoregional therapies may have additional systemic effects other than simple tumour elimination. Immunological "side effects" have been described in response to locoregional therapies in animal studies and in patients. With the advent of immunotherapy for hepatocellular carcinoma, there is increasing interest in determining the best way to combine immunotherapy with locoregional therapies. Herein, we provide a compact summary of answered and unanswered questions in the field, including: What animal model is best suited to test combined immune-locoregional treatments? How does tumour cell death affect immune responses? What type of immune responses have been observed in patients treated with different types of locoregional therapies? What can be surmised from the results of the first study testing the combination of locoregional therapy with immune checkpoint blockade? Finally, we discuss the outlook for this rapidly growing area of research, focussing on the issues which must be overcome to bridge the gap between interventional radiology and cancer immunology.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States; NCI CCR Liver Cancer Program, United States.
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, United States; NIBIB & NIH Clinical Center Clinical Translational Research Fellowship Program, United States
| | - Bernd Heinrich
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, United States; NCI CCR Liver Cancer Program, United States
| |
Collapse
|
27
|
Erinjeri JP, Fine GC, Adema GJ, Ahmed M, Chapiro J, den Brok M, Duran R, Hunt SJ, Johnson DT, Ricke J, Sze DY, Toskich BB, Wood BJ, Woodrum D, Goldberg SN. Immunotherapy and the Interventional Oncologist: Challenges and Opportunities-A Society of Interventional Oncology White Paper. Radiology 2019; 292:25-34. [PMID: 31012818 DOI: 10.1148/radiol.2019182326] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interventional oncology is a subspecialty field of interventional radiology that addresses the diagnosis and treatment of cancer and cancer-related problems by using targeted minimally invasive procedures performed with image guidance. Immuno-oncology is an innovative area of cancer research and practice that seeks to help the patient's own immune system fight cancer. Both interventional oncology and immuno-oncology can potentially play a pivotal role in cancer management plans when used alongside medical, surgical, and radiation oncology in the care of cancer patients.
Collapse
Affiliation(s)
- Joseph P Erinjeri
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Gabriel C Fine
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Gosse J Adema
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Muneeb Ahmed
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Julius Chapiro
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Martijn den Brok
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Rafael Duran
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Stephen J Hunt
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - D Thor Johnson
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Jens Ricke
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Daniel Y Sze
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Beau Bosko Toskich
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Bradford J Wood
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - David Woodrum
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - S Nahum Goldberg
- From the Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-118, New York, NY 10065 (J.P.E.); Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah (G.C.F.); Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands (G.J.A., M.d.B.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (M.A.); Division of Vascular and Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.C.); Department of Radiodiagnostic and Interventional Radiology, University of Lausanne, Lausanne, Switzerland (R.D.); Penn Image-Guided Interventions Laboratory and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (S.J.H.); Department of Radiology, University of Colorado, Denver, Colo (D.T.J.); Department of Radiology, Ludwig-Maximilian University, Munich, Germany (J.R.); Division of Vascular and Interventional Radiology, Stanford University, Stanford, Calif (D.Y.S.); Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Center for Interventional Oncology, National Cancer Institute, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (B.J.W.); Department of Radiology, Mayo Clinic, Rochester Minn (D.W.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| |
Collapse
|
28
|
Dosimetric parameters predicting contralateral liver hypertrophy after unilobar radioembolization of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2017; 45:392-401. [PMID: 29177870 PMCID: PMC5787216 DOI: 10.1007/s00259-017-3845-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Purpose This study aimed at identifying prior therapy dosimetric parameters using 99mTc-labeled macro-aggregates of albumin (MAA) that are associated with contralateral hepatic hypertrophy occurring after unilobar radioembolization of hepatocellular carcinoma (HCC) performed with 90Y–loaded glass microspheres. Methods The dosimetry data of 73 HCC patients were collected prior to the treatment with 90Y–loaded microspheres for unilateral disease. The injected liver dose (ILD), the tumor dose (TD) and healthy injected liver dose (HILD) were calculated based on MAA quantification. Following treatment, the maximal hypertrophy (MHT) of an untreated lobe was calculated. Results Mean MHT was 35.4 ± 40.4%. When using continuous variables, the MHT was not correlated with any tested variable, i.e., injected activity, ILD, HILD or TD except with a percentage of future remnant liver (FRL) following the 90Y–microspheres injection (r = −0.56). MHT ≥ 10% was significantly more frequent for patients with HILD ≥ 88 Gy, (52% of the cases), i.e., in 92.2% versus 65.7% for HILD < 88 Gy (p = 0.032). MHT ≥ 10% was also significantly more frequent for patients with a TD ≥ 205 Gy and a tumor volume (VT) ≥ 100 cm3 in patients with initial FRL < 50%. MHT ≥10% was seen in 83.9% for patients with either an HILD ≥ 88 Gy or a TD ≥ 205 Gy for tumors larger than 100cm3 (85% of the cases), versus only 54.5% (p = 0.0265) for patients with none of those parameters. MHT ≥10% was also associated with FRL and the Child-Pugh score. Using multivariate analysis, the Child-Pugh score (p < 0.0001), FRL (p = 0.0023) and HILD (p = 0.0029) were still significantly associated with MHT ≥10%. Conclusion This study demonstrates for the first time that HILD is significantly associated with liver hypertrophy. There is also an impact of high tumor doses in large lesions in one subgroup of patients. Larger prospective studies evaluating the MAA dosimetric parameters have to be conducted to confirm these promising results.
Collapse
|