1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Clewett D, Huang R, Davachi L. Locus coeruleus activation "resets" hippocampal event representations and separates adjacent memories. Neuron 2025:S0896-6273(25)00360-5. [PMID: 40482639 DOI: 10.1016/j.neuron.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/13/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025]
Abstract
Memories reflect the ebb and flow of experiences, capturing distinct events from our lives. Using a combination of functional magnetic resonance imaging (fMRI), neuromelanin imaging, and pupillometry, we show that arousal and locus coeruleus (LC) activation segment continuous experiences into discrete memories. As sequences unfold, encountering a context shift or event boundary triggers pupil-linked arousal and LC processes that predict later memory separation. Boundaries, furthermore, promote temporal pattern separation within the left hippocampal dentate gyrus, which correlates with heightened LC responses to those same transition points. Unlike transient LC effects, indirect structural and functional markers of elevated background LC activation correlate with reduced arousal-related LC and pupil responses at boundaries, suggesting that hyperarousal disrupts event segmentation. Our findings support the idea that arousal mechanisms initiate a neural and memory "reset" in response to significant changes, fundamentally shaping the episodes that define episodic memory.
Collapse
Affiliation(s)
- David Clewett
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA.
| | - Ringo Huang
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY 10027, USA; Nathan Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
3
|
Allendorfer JB, Nenert R, Shamshiri E, Ranuzzi G, Begnaud J, Verner R, Szaflarski JP, Microburst Study Group. Resting-state functional connectivity changes with microburst vagus nerve stimulation therapy. Epilepsia Open 2025. [PMID: 40432245 DOI: 10.1002/epi4.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
OBJECTIVE Microburst vagus nerve stimulation (μVNS) may reduce seizure frequency in drug-resistant epilepsy (DRE) via targeted thalamic plasticity. We prospectively investigated the role of thalamic resting-state functional connectivity (rsFC) in μVNS effects and hypothesized a relationship between thalamic rsFC and long-term seizure frequency changes. METHODS Eighteen patients with focal (Foc) and 10 with generalized (Gen) DRE underwent 3T resting-state fMRI at 2 weeks post-implantation and before starting (baseline) and after 6 months of μVNS. Resting-state fMRI analyses were performed using in-house Matlab scripts. Nonparametric permutation tests assessed baseline group differences in rsFC between automated anatomical atlas (AAL) brain regions and longitudinal rsFC changes. Spearman correlations were performed between baseline thalamus rsFC and percent change in seizures after 12 months of μVNS (PCHG-12). RESULTS Gen had stronger baseline rsFC between AAL regions compared with Foc. Gen showed significant baseline-to-6-month rsFC changes, including a decrease between the left thalamus and left superior parietal lobule. Foc showed significant rsFC changes, including increases between the left thalamus and four regions: right middle cingulum (Lthal-Rmidcing), right angular gyrus (Lthal-Rangular), left angular gyrus (Lthal-Langular), and left precuneus (Lthal-Lprecuneus), and increases between the right thalamus and left angular gyrus (Rthal-Langular). Foc showed negative correlations between PCHG-12 and baseline rsFC for Lthal-Rmidcing (ρ = -0.61; p = 0.007), Lthal-Rangular (ρ = -0.51; p = 0.032), and Rthal-Langular (ρ = -0.52; p = 0.028). SIGNIFICANCE Baseline thalamic rsFC is correlated with long-term seizure frequency reduction with μVNS in focal DRE. RsFC may be a potential biomarker for μVNS response in focal-onset seizure patients; this relationship may be different in DRE with generalized seizures. PLAIN LANGUAGE SUMMARY We investigated how stimulating the vagus nerve in a specific manner may reduce seizure frequency in people with drug-resistant epilepsy through its actions on how a part of the brain called the thalamus is functionally connected to other brain regions. People with focal seizures showed a different pattern of changes in thalamus functional connectivity than those with generalized seizures after 6 months of stimulation. People with focal seizures also showed that stronger functional connectivity between the thalamus and other brain regions at baseline was related to a greater decrease in seizure frequency after 12 months of stimulation.
Collapse
Affiliation(s)
- Jane B Allendorfer
- Department of Neurology and the UAB Epilepsy Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rodolphe Nenert
- Department of Neurology and the UAB Epilepsy Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - Jerzy P Szaflarski
- Department of Neurology and the UAB Epilepsy Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
Collaborators
Rebecca O'Dwyer, Michael Macken, Blake Newman, Cornelia Drees, Danielle McDermott, Lesley Kaye, Mesha Gay Brown, Muhammad Zafar, William Tatum, Selim Benbadis, Pegah Afra, Zeenat Jaisani, Kristl Vonck,
Collapse
|
4
|
Giofrè F, Lugaresi A, Baccari F, Lui E, Roberts S, Malpas C, Kalincik T. The topography of infratentorial lesions in depression and anxiety in multiple sclerosis. J Neurol 2025; 272:420. [PMID: 40418350 DOI: 10.1007/s00415-025-13167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Depression and anxiety are highly prevalent in multiple sclerosis and significantly impact patient outcomes. However, their link to specific areas of demyelination remains unclear. OBJECTIVES This study examines the association between infratentorial lesions and depression or anxiety, focusing on three regions of interest: raphe nuclei, locus coeruleus, and cerebellar lobule VIIA. METHODS Patients were recruited from the cognitive neuroimmunology clinic at the Royal Melbourne Hospital. Participants were categorised as belonging to the groups 'depression'/'no depression' and 'anxiety'/'no anxiety' based on SPECTRA Indices of Psychopathology. MRI scans were examined for lesion presence in regions of interest. Association analyses were performed using multivariable logistic regression, adjusting for demographics, clinical parameters, and therapy. RESULTS Of 73 patients, 21 (29%) had clinically relevant depressive symptoms, and 18 (25%) had anxiety. Depression was significantly associated with lesions in the raphe nuclei (47.6% vs. 17.3%, OR 10.5, 95%CI 1.9-57.5, p=0.007) and locus coeruleus (38.1% vs. 15.4%, OR 20.5, 95%CI 2.3-184, p=0.007). Anxiety showed a potential association with locus coeruleus lesions (38.9% vs. 16.4%, OR 8.62, 95%CI 0.9-79.2, p=0.057). CONCLUSIONS Depression in multiple sclerosis is associated with lesions within serotoninergic and noradrenergic brainstem nuclei. No definitive anatomical substrate for anxiety was identified. These findings suggest that inflammatory structural changes may underlie mood disorders in multiple sclerosis, potentially serving as early imaging markers of susceptibility to depression.
Collapse
Affiliation(s)
- Federica Giofrè
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Alessandra Lugaresi
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Flavia Baccari
- Unità Operativa di Epidemiologia e Statistica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elaine Lui
- Department of Radiology, The University of Melbourne, Melbourne, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Melbourne, Australia
| | - Stefanie Roberts
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Neurology, Neuroimmunology Centre, The Royal Melbourne Hospital, Melbourne, Australia
| | - Charles Malpas
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Neurology, Neuroimmunology Centre, The Royal Melbourne Hospital, Melbourne, Australia
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Australia.
- Department of Neurology, Neuroimmunology Centre, The Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|
5
|
Mortazavi N, Talwar P, Koshmanova E, Sharifpour R, Beckers E, Berger A, Campbell I, Paparella I, Balda F, Dardour Hamzaoui I, Berthomier C, Bastin C, Phillips C, Maquet P, Collette F, Zubkov M, Lamalle L, Vandewalle G. REM sleep quality is associated with balanced tonic activity of the locus coeruleus during wakefulness. J Biomed Sci 2025; 32:35. [PMID: 40069818 PMCID: PMC11900061 DOI: 10.1186/s12929-025-01127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Animal studies established that the locus coeruleus (LC) plays important roles in sleep and wakefulness regulation. Whether it contributes to sleep variability in humans is not yet established. Here, we investigated if the in vivo activity of the LC is related to the variability in the quality of Rapid Eye Movement (REM) sleep. METHODS We assessed the LC activity of 34 healthy younger (~ 22y) and 18 older (~ 61y) individuals engaged in bottom-up and top-down cognitive tasks using 7-Tesla functional Magnetic Resonance Imaging (fMRI). We further recorded their sleep electroencephalogram (EEG) to evaluate associations between LC fMRI measures and REM sleep EEG metrics. RESULTS Theta oscillation energy during REM sleep was positively associated with LC response in the top-down task. In contrast, REM sleep theta energy was negatively associated with LC activity in older individuals during the bottom-up task. Importantly, sigma oscillations power immediately preceding a REM sleep episode was positively associated with LC activity in the top-down task. CONCLUSIONS LC activity during wakefulness was related to REM sleep intensity and to a transient EEG change preceding REM sleep, a feature causally related to LC activity in animal studies. The associations depend on the cognitive task, suggesting that a balanced level of LC tonic activity during wakefulness is required for optimal expression of REM sleep. The findings may have implications for the high prevalence of sleep complaints reported in aging and for disorders such as insomnia, Alzheimer's, and Parkinson's disease, for which the LC may play pivotal roles through sleep.
Collapse
Affiliation(s)
- Nasrin Mortazavi
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Puneet Talwar
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Elise Beckers
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Alexandre Berger
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Department of Clinical Neuroscience, Institute of Neuroscience (Ions), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Islay Campbell
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ilenia Paparella
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Fermin Balda
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ismael Dardour Hamzaoui
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | | | - Christine Bastin
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Psyncog, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Pierre Maquet
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Neurology Department, CHU de Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Psyncog, University of Liège, Liège, Belgium
| | - Mikhail Zubkov
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Laurent Lamalle
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
6
|
Hary AT, Chadha S, Mercaldo N, Smith EMC, van der Kouwe AJW, Fischl B, Mount C, Kozanno L, Frosch MP, Augustinack JC. Locus coeruleus tau validates and informs high-resolution MRI in aging and at earliest Alzheimer's pathology stages. Acta Neuropathol Commun 2025; 13:44. [PMID: 40022196 PMCID: PMC11871710 DOI: 10.1186/s40478-025-01957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
The locus coeruleus (LC) has been identified as a site that develops phosphorylated tau pathology earlier than cerebral cortex. We present data using high-resolution postmortem MRI and validated tau histopathology in controls and the earliest Braak and Braak (BB) stages (BBI-BBII) in LC. The high-resolution ex vivo MRI provides a 3D volume (quantitative), while the histology reveals tau specificity and severity burden (semi-quantitative). We mapped our highly regionally specific LC data onto high-resolution 3D MRI reconstructions of the same samples used in histology (n = 11). We noted significant structural subatrophy between BB 0 and II (30.0% smaller volumes, p = 0.0381), a trend which primarily affected the rostral-most LC (49.2% smaller average volume, p = 0.0381). We show histopathology data on both the LC and neighboring dorsal raphe caudal (DRc), which were assessed at multiple rostrocaudal levels and mapped with highly sensitive tau severity spatial matrices. We observed significant LC tau accumulation between BB I and II (37.6% increase, p < 0.0001), which may reflect pathology change prior to presumptive cognitive impairment at BB III. Tau pathology was most severe in the middle portion of the LC (11.3% greater compared to rostral LC, p = 0.0289) when including BB III. We noted a significant rostrocaudal gradient of DRc tau severity (58.2% decrease between rostral and caudal DRc, p < 0.0001), suggesting selective regional vulnerabilities of both nuclei. Our study represents a rigorous approach to investigating LC and DRc pathology, having multiple histology sections per sublevel and high-resolution MRI to measure the whole LC, without missing slices in a histological only approach. Taken together, our findings provide novel validated data that demonstrate the tau pathology occurring in the LC and DRc during preclinical AD stages, and alongside spatial reconstructions that will serve as valuable references for in vivo LC imaging.
Collapse
Affiliation(s)
- Alexander T Hary
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Smriti Chadha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Erin-Marie C Smith
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - André J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce Fischl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher Mount
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Liana Kozanno
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew P Frosch
- Harvard Medical School, Boston, MA, 02115, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Sinakevitch IT, McDermott KE, Gray DT, Barnes CA. A combined MRI, histological and immunohistochemical rendering of the rhesus macaque locus coeruleus (LC) enables the differentiation of three distinct LC subcompartments. J Chem Neuroanat 2024; 140:102449. [PMID: 39084478 PMCID: PMC11392618 DOI: 10.1016/j.jchemneu.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Locus coeruleus (LC) neurons send their noradrenergic axons across multiple brain regions, including neocortex, subcortical regions, and spinal cord. Many aspects of cognition are known to be dependent on the noradrenergic system, and it has been suggested that dysfunction in this system may play central roles in cognitive decline associated with both normative aging and neurodegenerative disease. While basic anatomical and biochemical features of the LC have been examined in many species, detailed characterizations of the structure and function of the LC across the lifespan are not currently available. This includes the rhesus macaque, which is an important model of human brain function because of their striking similarities in brain architecture and behavioral capacities. In the present study, we describe a method to combine structural MRI, Nissl, and immunofluorescent histology from individual monkeys to reconstruct, in 3 dimensions, the entire macaque LC nucleus. Using these combined methods, a standardized volume of the LC was determined, and high-resolution confocal images of tyrosine hydroxylase-positive neurons were mapped into this volume. This detailed representation of the LC allows definitions to be proposed for three distinct subnuclei, including a medial region and a lateral region (based on location with respect to the central gray, inside or outside, respectively), and a compact region (defined by densely packed neurons within the medial compartment). This enabled the volume to be estimated and cell density to be calculated independently in each LC subnucleus for the first time. This combination of methods should allow precise characterization of the LC and has the potential to do the same for other nuclei with distinct molecular features.
Collapse
Affiliation(s)
- Irina T Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Kelsey E McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Daniel T Gray
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States.
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
8
|
Dünnwald M, Krohn F, Sciarra A, Sarkar M, Schneider A, Fliessbach K, Kimmich O, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Teipel S, Kilimann I, Goerss D, Spottke A, Brustkern J, Heneka MT, Brosseron F, Lüsebrink F, Hämmerer D, Düzel E, Tönnies K, Oeltze-Jafra S, Betts MJ. Fully Automated MRI-based Analysis of the Locus Coeruleus in Aging and Alzheimer's Disease Dementia using ELSI-Net. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605356. [PMID: 39091766 PMCID: PMC11291139 DOI: 10.1101/2024.07.26.605356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
INTRODUCTION The Locus Coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's Disease (AD). Magnetic Resonance Imaging based LC features have shown potential to assess LC integrity in vivo. METHODS We present a Deep Learning based LC segmentation and feature extraction method: ELSI-Net and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology. RESULTS ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found. DISCUSSION Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Nets general applicability.
Collapse
Affiliation(s)
- Max Dünnwald
- Department of Neurology, Otto von Guericke University Magdeburg (OvGU), Germany
- Faculty of Computer Science, OvGU, Germany
| | - Friedrich Krohn
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
| | - Alessandro Sciarra
- Department of Neurology, Otto von Guericke University Magdeburg (OvGU), Germany
| | - Mousumi Sarkar
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, University of Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Germany
| | | | | | - Enise I. Incesoy
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
- DZNE, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Germany
| | - Stefan Teipel
- DZNE, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Germany
| | - Ingo Kilimann
- DZNE, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Germany
| | - Doreen Goerss
- DZNE, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Germany
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | | | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
- DZNE, Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, United Kingdom
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
- DZNE, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, United Kingdom
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - Steffen Oeltze-Jafra
- Peter L. Reichertz Institute for Medical Informatics, Hannover Medical School, Germany
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, OvGU, Germany
- DZNE, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
9
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Engels-Domínguez N, Koops EA, Hsieh S, Wiklund EE, Schultz AP, Riphagen JM, Prokopiou PC, Hanseeuw BJ, Rentz DM, Sperling RA, Johnson KA, Jacobs HIL. Lower in vivo locus coeruleus integrity is associated with lower cortical thickness in older individuals with elevated Alzheimer's pathology: a cohort study. Alzheimers Res Ther 2024; 16:129. [PMID: 38886798 PMCID: PMC11181564 DOI: 10.1186/s13195-024-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Elouise A Koops
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Stephanie Hsieh
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Emma E Wiklund
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Aaron P Schultz
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Prokopis C Prokopiou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bernard J Hanseeuw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Aganj I, Mora J, Fischl B, Augustinack JC. Automatic geometry-based estimation of the locus coeruleus region on T 1-weighted magnetic resonance images. Front Neurosci 2024; 18:1375530. [PMID: 38774790 PMCID: PMC11106368 DOI: 10.3389/fnins.2024.1375530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. For out-of-sample segmentation, we compare the results with atlas-based segmentation, as well as test the hypothesis that using the phase image as input can improve the robustness. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report provides an evaluation of computational methods estimating neural structure.
Collapse
Affiliation(s)
- Iman Aganj
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| | - Jocelyn Mora
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Bruce Fischl
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| | - Jean C. Augustinack
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Palermo G, Galgani A, Bellini G, Lombardo F, Martini N, Morganti R, Paoli D, De Cori S, Frijia F, Siciliano G, Ceravolo R, Giorgi FS. Neurogenic orthostatic hypotension in Parkinson's disease: is there a role for locus coeruleus magnetic resonance imaging? J Neural Transm (Vienna) 2024; 131:157-164. [PMID: 38032367 PMCID: PMC10791951 DOI: 10.1007/s00702-023-02721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and degenerates early in Parkinson's disease (PD). The objective of this study is to test whether degeneration of the LC is associated with orthostatic hypotension (OH) in PD. A total of 22 cognitively intact PD patients and 52 age-matched healthy volunteers underwent 3 T magnetic resonance (MRI) with neuromelanin-sensitive T1-weighted sequences (LC-MRI). For each subject, a template space-based LC-MRI was used to calculate LC signal intensity (LC contrast ratio-LCCR) and the estimated number of voxels (LCVOX) belonging to LC. Then, we compared the LC-MRI parameters in PD patients with OH (PDOH+) versus without OH (PDOH-) (matched for sex, age, and disease duration) using one-way analysis of variance followed by multiple comparison tests. We also tested for correlations between subject's LC-MRI features and orthostatic drop in systolic blood pressure (SBP). PDOH- and PDOH+ did not differ significantly (p > 0.05) based on demographics and clinical characteristics, except for blood pressure measurements and SCOPA-AUT cardiovascular domain (p < 0.05). LCCR and LCVOX measures were significantly lower in PD compared to HC, while no differences were observed between PDOH- and PDOH+. Additionally, no correlation was found between the LC-MRI parameters and the orthostatic drop in SBP or the clinical severity of autonomic symptoms (p > 0.05). Conversely, RBD symptom severity negatively correlated with several LC-MRI parameters. Our results failed to indicate a link between the LC-MRI features and the presence of OH in PD but confirmed a marked alteration of LC signal in PD patients.
Collapse
Affiliation(s)
- Giovanni Palermo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Nicola Martini
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | | | - Davide Paoli
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara De Cori
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | - Francesca Frijia
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
- Bioengineering Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | - Gabriele Siciliano
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Aganj I, Mora J, Fischl B, Augustinack JC. Automatic Geometry-based Estimation of the Locus Coeruleus Region on T 1-Weighted Magnetic Resonance Images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576958. [PMID: 38328208 PMCID: PMC10849695 DOI: 10.1101/2024.01.23.576958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. We also test the hypothesis that using the phase image as input can improve the robustness of out-of-sample segmentation. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report contributes and provides an evaluation of two computational methods estimating neural structure.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Jean C. Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 PMCID: PMC12101226 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| |
Collapse
|
16
|
Quattrini G, Pini L, Boscolo Galazzo I, Jelescu IO, Jovicich J, Manenti R, Frisoni GB, Marizzoni M, Pizzini FB, Pievani M. Microstructural alterations in the locus coeruleus-entorhinal cortex pathway in Alzheimer's disease and frontotemporal dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12513. [PMID: 38213948 PMCID: PMC10781651 DOI: 10.1002/dad2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION We investigated in vivo the microstructural integrity of the pathway connecting the locus coeruleus to the transentorhinal cortex (LC-TEC) in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD). METHODS Diffusion-weighted MRI scans were collected for 21 AD, 20 behavioral variants of FTD (bvFTD), and 20 controls. Fractional anisotropy (FA), mean, axial, and radial diffusivities (MD, AxD, RD) were computed in the LC-TEC pathway using a normative atlas. Atrophy was assessed using cortical thickness and correlated with microstructural measures. RESULTS We found (i) higher RD in AD than controls; (ii) higher MD, RD, and AxD, and lower FA in bvFTD than controls and AD; and (iii) a negative association between LC-TEC MD, RD, and AxD, and entorhinal cortex (EC) thickness in bvFTD (all p < 0.050). DISCUSSION LC-TEC microstructural alterations are more pronounced in bvFTD than AD, possibly reflecting neurodegeneration secondary to EC atrophy. Highlights Microstructural integrity of LC-TEC pathway is understudied in AD and bvFTD.LC-TEC microstructural alterations are present in both AD and bvFTD.Greater LC-TEC microstructural alterations in bvFTD than AD.LC-TEC microstructural alterations in bvFTD are associated to EC neurodegeneration.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Lorenzo Pini
- Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | | | - Ileana O. Jelescu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jorge Jovicich
- Center of Mind/Brain SciencesUniversity of TrentoRoveretoItaly
| | - Rosa Manenti
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giovanni B. Frisoni
- Memory Center and LANVIE ‐ Laboratory of Neuroimaging of AgingUniversity Hospitals and University of GenevaGenevaSwitzerland
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Laboratory of Biological PsychiatryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Francesca B. Pizzini
- Department of Engineering for Innovation MedicineUniversity of VeronaVeronaItaly
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| |
Collapse
|
17
|
Beckers E, Riphagen JM, Van Egroo M, Bennett DA, Jacobs HIL. Sparse Asymmetry in Locus Coeruleus Pathology in Alzheimer's Disease. J Alzheimers Dis 2024; 99:105-111. [PMID: 38607758 DOI: 10.3233/jad-231328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Joost M Riphagen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Galgani A, Giorgi FS. Exploring the Role of Locus Coeruleus in Alzheimer's Disease: a Comprehensive Update on MRI Studies and Implications. Curr Neurol Neurosci Rep 2023; 23:925-936. [PMID: 38064152 PMCID: PMC10724305 DOI: 10.1007/s11910-023-01324-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE OF REVIEW Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
19
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruiz E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts M, Jacobs HIL, Pereira JB. Age-related differences in the functional topography of the locus coeruleus and their implications for cognitive and affective functions. eLife 2023; 12:RP87188. [PMID: 37650882 PMCID: PMC10471162 DOI: 10.7554/elife.87188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg UniversityGoteborgSweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- University of Eastern FinlandKuopioFinland
| | - Per Svenningsson
- University of Eastern FinlandKuopioFinland
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Giovanni Volpe
- Department of Physics, Goteborg UniversityGoteborgSweden
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences, University of MagdeburgMagdeburgGermany
| | - Heidi IL Jacobs
- Maastricht UniversityMaastrichtNetherlands
- Massachusetts General HospitalBostonUnited States
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund UniversityLundSweden
| |
Collapse
|
20
|
Yamazaki Y, Suwabe K, Nagano-Saito A, Saotome K, Kuwamizu R, Hiraga T, Torma F, Suzuki K, Sankai Y, Yassa MA, Soya H. A possible contribution of the locus coeruleus to arousal enhancement with mild exercise: evidence from pupillometry and neuromelanin imaging. Cereb Cortex Commun 2023; 4:tgad010. [PMID: 37323937 PMCID: PMC10267300 DOI: 10.1093/texcom/tgad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/17/2023] Open
Abstract
Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Kazuya Suwabe
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, 120 Ryugasaki, Ibaraki 301-0844, Japan
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsuko Nagano-Saito
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Department of Radiology, Ushiku Aiwa General Hospital, 896 Inoko-cho, Ushiku, Ibaraki 300-1296, Japan
| | - Kousaku Saotome
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Graduate School of Letters, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Ferenc Torma
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Michael A Yassa
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92679-3800, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92679-3800, United States
| | - Hideaki Soya
- Corresponding author: Laboratory of Exercise Biochemistry and Neuroendocrinology; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
21
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruis E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts MJ, Jacobs H, Pereira JB. Age-related differences in the functional topography of the locus coeruleus: implications for cognitive and affective functions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.25.23286442. [PMID: 37333117 PMCID: PMC10274957 DOI: 10.1101/2023.02.25.23286442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging and whether it is associated with cognition and mood. Here we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years old (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg University, Goteborg, Sweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- University of Eastern Finland, Kuopio, Finland
| | - Per Svenningsson
- University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Mathew J. Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Heidi Jacobs
- Maastricht University, Maastricht, The Netherlands
- Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Joana B. Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Van Egroo M, Riphagen JM, Ashton NJ, Janelidze S, Sperling RA, Johnson KA, Yang HS, Bennett DA, Blennow K, Hansson O, Zetterberg H, Jacobs HIL. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau. Mol Psychiatry 2023; 28:2412-2422. [PMID: 37020050 PMCID: PMC10073793 DOI: 10.1038/s41380-023-02041-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Autopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP). We found that higher plasma measures of phosphorylated tau, in particular ptau231, correlated negatively with dorso-rostral LC integrity, whereas correlations for neurodegenerative plasma markers (neurofilament light, total tau) were scattered throughout the LC including middle to caudal sections. In contrast, the plasma Aβ42/40 ratio, associated with brain amyloidosis, did not correlate with LC integrity. These findings were specific to the rostral LC and not observed when using the entire LC or the hippocampus. Furthermore, in the MAP data, we observed higher rostral than caudal tangle density in the LC, independent of the disease stage. The in vivo LC-phosphorylated tau correlations became significant from midlife, with the earliest effect for ptau231, starting at about age 55. Finally, interactions between lower rostral LC integrity and higher ptau231 concentrations predicted lower cognitive performance. Together, these findings demonstrate a specific rostral vulnerability to early phosphorylated tau species that can be detected with dedicated magnetic resonance imaging measures, highlighting the promise of LC imaging as an early marker of AD-related processes.
Collapse
Grants
- R01 AG017917 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG074220 NIA NIH HHS
- K23 AG062750 NIA NIH HHS
- R01 AG068062 NIA NIH HHS
- K01 AG001016 NIA NIH HHS
- ZEN-21-848495 Alzheimer's Association
- P01 AG036694 NIA NIH HHS
- R01 AG062559 NIA NIH HHS
- R01 AG015819 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- Alzheimer Nederland WE.03-2019-02
- BrightFocus Foundation (BrightFocus)
- Alzheimer’s Association
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236)
- Cure Alzheimer’s Fund (Alzheimer’s Disease Research Foundation)
- Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2021-0293), The Parkinson foundation of Sweden (1280/20), the Cure Alzheimer’s fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712 and #101053962), Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Reisa A Sperling
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun-Sik Yang
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Deli A, Toth R, Zamora M, Divanbeighi Zand AP, Green AL, Denison T. The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10123850. [PMID: 37249946 PMCID: PMC7614576 DOI: 10.1109/ner52421.2023.10123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surgical neuromodulation through implantable devices allows for stimulation delivery to subcortical regions, crucial for symptom control in many debilitating neurological conditions. Novel closed-loop algorithms deliver therapy tailor-made to endogenous physiological activity, however rely on precise sensing of signals such as subcortical oscillations. The frequency of such intrinsic activity can vary depending on subcortical target nucleus, while factors such as regional anatomy may also contribute to variability in sensing signals. While artefact parameters have been explored in more 'standard' and commonly used targets (such as the basal ganglia, which are implanted in movement disorders), characterisation in novel candidate nuclei is still under investigation. One such important area is the brainstem, which contains nuclei crucial for arousal and autonomic regulation. The brainstem provides additional implantation targets for treatment indications in disorders of consciousness and sleep, yet poses distinct anatomical challenges compared to central subcortical targets. Here we investigate the region-specific artefacts encountered during activity and rest while streaming data from brainstem implants with a cranially-mounted device in two patients. Such artefacts result from this complex anatomical environment and its interactions with physiological parameters such as head movement and cardiac functions. The implications of the micromotion-induced artefacts, and potential mitigation, are then considered for future closed-loop stimulation methods.
Collapse
Affiliation(s)
- Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Alexander L. Green
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
24
|
Sibahi A, Gandhi R, Al-Haddad R, Therriault J, Pascoal T, Chamoun M, Boutin-Miller K, Tardif C, Rosa-Neto P, Cassidy CM. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp 2023; 44:3913-3925. [PMID: 37126580 DOI: 10.1002/hbm.26324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Following the development of magnetic resonance imaging (MRI) methods to assay the integrity of catecholamine nuclei, including the locus coeruleus (LC), there has been an effort to develop automated methods that can accurately segment this small structure in an automated manner to promote its widespread use and overcome limitations of manual segmentation. Here we characterize an automated LC segmentation approach (referred to as the funnel-tip [FT] method) in healthy individuals and individuals with LC degeneration in the context of Alzheimer's disease (AD, confirmed with tau-PET imaging using [18F]MK6240). The first sample included n = 190 individuals across the AD spectrum from cognitively normal to moderate AD. LC signal assayed with FT segmentation showed excellent agreement with manual segmentation (intraclass correlation coefficient [ICC] = 0.91). Compared to other methods, the FT method showed numerically higher correlation to AD status (defined by presence of tau: Cohen's d = 0.64) and AD severity (Braak stage: Pearson R = -.35, cognitive function: R = .25). In a separate sample of n = 12 control participants, the FT method showed excellent scan-rescan reliability (ICC = 0.82). In another sample of n = 30 control participants, we found that the structure of the LC defined by FT segmentation approximated its expected shape as a contiguous line: <5% of LC voxels strayed >1 voxel (0.69 mm) from this line. The FT LC segmentation shows high agreement with manual segmentation and captures LC degeneration in AD. This practical method may facilitate larger research studies of the human LC-norepinephrine system and has potential to support future use of neuromelanin-sensitive MRI as a clinical biomarker.
Collapse
Affiliation(s)
- Ahmad Sibahi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rushali Gandhi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rami Al-Haddad
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tharick Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Krysta Boutin-Miller
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Clifford M Cassidy
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Yi YJ, Lüsebrink F, Ludwig M, Maaß A, Ziegler G, Yakupov R, Kreißl MC, Betts M, Speck O, Düzel E, Hämmerer D. It is the locus coeruleus! Or… is it?: a proposition for analyses and reporting standards for structural and functional magnetic resonance imaging of the noradrenergic locus coeruleus. Neurobiol Aging 2023; 129:137-148. [PMID: 37329853 DOI: 10.1016/j.neurobiolaging.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
The noradrenergic locus coeruleus (LC) is one of the protein pathology epicenters in neurodegenerative diseases. In contrast to PET (positron emission tomography), MRI (magnetic resonance imaging) offers the spatial resolution necessary to investigate the 3-4 mm wide and 1.5 cm long LC. However, standard data postprocessing is often too spatially imprecise to allow investigating the structure and function of the LC at the group level. Our analysis pipeline uses a combination of existing toolboxes (SPM12, ANTs, FSL, FreeSurfer), and is tailored towards achieving suitable spatial precision in the brainstem area. Its effectiveness is demonstrated using 2 datasets comprising both younger and older adults. We also suggest quality assessment procedures which allow to quantify the spatial precision obtained. Spatial deviations below 2.5 mm in the LC area are achieved, which is superior to current standard approaches. Relevant for ageing and clinical researchers interested in brainstem imaging, we provide a tool for more reliable analyses of structural and functional LC imaging data which can be also adapted for investigating other nuclei of the brainstem.
Collapse
Affiliation(s)
- Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Falk Lüsebrink
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Medicine and Digitalization, Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael C Kreißl
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Division of Nuclear Medicine, Department of Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK; Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging 2023; 57:337-352. [PMID: 36017746 PMCID: PMC10086789 DOI: 10.1002/jmri.28414] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program, Detroit, Michigan, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,SpinTech, Inc, Bingham Farms, Michigan, USA
| |
Collapse
|
27
|
Aghakhanyan G, Galgani A, Vergallo A, Lombardo F, Martini N, Baldacci F, Tognoni G, Leo A, Guidoccio F, Siciliano G, Fornai F, Pavese N, Volterrani D, Giorgi FS. Brain metabolic correlates of Locus Coeruleus degeneration in Alzheimer's disease: a multimodal neuroimaging study. Neurobiol Aging 2023; 122:12-21. [PMID: 36463849 DOI: 10.1016/j.neurobiolaging.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Locus Coeruleus (LC) degeneration occurs early in Alzheimer's disease (AD) and this could affect several brain regions innervated by LC noradrenergic axon terminals, as these bear neuroprotective effects and modulate neurovascular coupling/neuronal activity. We used LC-sensitive Magnetic Resonance imaging (MRI) sequences enabling LC integrity quantification, and [18F]Fluorodeoxyglucose (FDG) PET, to investigate the association of LC-MRI changes with brain glucose metabolism in cognitively impaired patients (30 amnesticMCI and 13 demented ones). Fifteen cognitively intact age-matched controls (HCs) were submitted only to LC-MRI for comparison with patients. Voxel-wise regression analyses of [18F]FDG images were conducted using the LC-MRI parameters signal intensity (LCCR) and LC-belonging voxels (LCVOX). Both LCCR and LCVOX were significantly lower in patients compared to HCs, and were directly associated with [18F]FDG uptake in fronto-parietal cortical areas, mainly involving the left hemisphere (p < 0.001, kE > 100). These results suggest a possible association between LC degeneration and cortical hypometabolism in degenerative cognitive impairment with a prevalent left-hemispheric vulnerability, and that LC degeneration might be linked to large-scale functional network alteration in AD pathology.
Collapse
Affiliation(s)
- Gayane Aghakhanyan
- Nuclear Medicine Unit - Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Neurology Unit - Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | | | | | - Filippo Baldacci
- Neurology Unit - Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit - Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Leo
- Nuclear Medicine Unit - Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Federica Guidoccio
- Nuclear Medicine Unit - Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Nuclear Medicine Unit - Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nicola Pavese
- Clinical Aging Research Unit, Newcastle University, Newcastle upon Tyne, UK; Institute of Clinical Medicine, PET Centre, Aarhus University, Aarhus, Denmark
| | - Duccio Volterrani
- Nuclear Medicine Unit - Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Filippo S Giorgi
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
28
|
Galgani A, Lombardo F, Martini N, Vergallo A, Bastiani L, Hampel H, Hlavata H, Baldacci F, Tognoni G, De Marchi D, Ghicopulos I, De Cori S, Biagioni F, Busceti CL, Ceravolo R, Bonuccelli U, Chiappino D, Siciliano G, Fornai F, Pavese N, Giorgi FS. Magnetic resonance imaging Locus Coeruleus abnormality in amnestic Mild Cognitive Impairment is associated with future progression to dementia. Eur J Neurol 2023; 30:32-46. [PMID: 36086917 PMCID: PMC10092028 DOI: 10.1111/ene.15556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Human neuropathological studies indicate that the pontine nucleus Locus Coeruleus (LC) undergoes significant and early degeneration in Alzheimer's disease. This line of evidence alongside experimental data suggests that the LC functional/structural decay may represent a critical factor for Alzheimer's disease pathophysiological and clinical progression. In the present prospective study, we used Magnetic Resonance Imaging (MRI) with LC-sensitive sequence (LC-MRI) to investigate in vivo the LC involvement in Alzheimer's disease progression, and whether specific LC-MRI features at baseline are associated with prognosis and cognitive performance in amnestic Mild Cognitive Impairment. METHODS LC-MRI parameters were measured at baseline by a template-based method on 3.0-T magnetic resonance images in 34 patients with Alzheimer's disease dementia, 73 patients with amnestic Mild Cognitive Impairment, and 53 cognitively intact individuals. A thorough neurological and neuropsychological assessment was performed at baseline and 2.5-year follow-up. RESULTS In subjects with Mild Cognitive Impairment who converted to dementia (n = 32), the LC intensity and number of LC-related voxels were significantly lower than in cognitively intact individuals, resembling those observed in demented patients. Such a reduction was not detected in Mild Cognitive Impairment individuals, who remained stable at follow-up. In Mild Cognitive Impairment subjects converting to dementia, LC-MRI parameter reduction was maximal in the rostral part of the left nucleus. Structural equation modeling analysis showed that LC-MRI parameters positively correlate with cognitive performance. CONCLUSIONS Our findings highlight a potential role of LC-MRI for predicting clinical progression in Mild Cognitive Impairment and support the key role of LC degeneration in the Alzheimer clinical continuum.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Lombardo
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Martini
- Deep Health Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Andrea Vergallo
- GRC No. 21, Alzheimer Precision Medicine, Public Hospital Network of Paris, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Luca Bastiani
- Institute of Clinical Physiology of National Research Council, Pisa, Italy
| | - Harald Hampel
- GRC No. 21, Alzheimer Precision Medicine, Public Hospital Network of Paris, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Hana Hlavata
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniele De Marchi
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Irene Ghicopulos
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara De Cori
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Francesca Biagioni
- Scientific Institute for Research and Health Care Neuromed, Pozzilli, Italy
| | | | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Dante Chiappino
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, G. Monasterio Foundation-National Research Council/Tuscany Region, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Scientific Institute for Research and Health Care Neuromed, Pozzilli, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Institute of Clinical Medicine, Positron Emission Tomography Center, Aarhus University, Aarhus, Denmark
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
KOÇ GG. Ergonomi ve Locus Coeruleus. ARŞIV KAYNAK TARAMA DERGISI 2022. [DOI: 10.17827/aktd.1220966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pons ta tüp şeklinde bir anatomik şekle sahip olan locus coeruleus küçük yapısına rağmen nerdeyse tüm merkezi sinir sistemini (M.S.S’yi) etkilemektedir. Yaklaşık iki yüzyıl önce fark edilen locus coeruleus, noradrenalin kaynağı olup hücrelerinin içerdiği nöromelanin pigmentinden kaynaklı koyu mavi olarak görülmektedir. Bu nedenle, Latince’de coeruleus (gökyüzü mavisi) olarak isimlendirilmiştir. Ponsta bilateral olarak yerleşim gösteren bu hücre grubu yaklaşık olarak 45,000 ile 50,000 hücre içermektedir. Son yıllarda gelişen teknoloji ve optogenetik çalışmalar, fonksiyonel manyetik rezonans görüntüleme (MRG) teknikleri ile locus coeruleus ile ilgili pek çok bilginin elde edilmesini sağlamıştır. Bu anatomik yapının dikkat, uyanıklık, stress gibi bilişsel özelliklerde anahtar rol oynadığı bilinmektedir. Okülomotor fonksiyonların zihinsel işlevleri yansıtması nedeniyle özellikle ergonomi alanında çalışan mühendislerin ilgi odağı olmuştur.
Sunulan bu derleme çalışmasında locus coeruleusun anatomik yapısı, fizyolojik özellikleri ve nöroergonomi alanında klinik öneminin ortaya konması amaçlanmıştır. Ayrıca, nörobilim ve beyin görüntüleme konusunda meydana gelen gelişmeler ışığında bu anatomik yapının nöroergonomide de ele alınması gerektiğini ve bu alanda yapılacak çalışmaların artması görüşündeyiz.
Collapse
|
30
|
Ji S, Choi EJ, Sohn B, Baik K, Shin NY, Moon WJ, Park S, Song S, Lee PH, Shin DH, Oh SH, Kim EY, Lee J. Sandwich spatial saturation for neuromelanin-sensitive MRI: Development and multi-center trial. Neuroimage 2022; 264:119706. [PMID: 36349597 DOI: 10.1016/j.neuroimage.2022.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Neuromelanin (NM)-sensitive MRI using a magnetization transfer (MT)-prepared T1-weighted sequence has been suggested as a tool to visualize NM contents in the brain. In this study, a new NM-sensitive imaging method, sandwichNM, is proposed by utilizing the incidental MT effects of spatial saturation RF pulses in order to generate consistent high-quality NM images using product sequences. The spatial saturation pulses are located both superior and inferior to the imaging volume, increasing MT weighting while avoiding asymmetric MT effects. When the parameters of the spatial saturation were optimized, sandwichNM reported a higher NM contrast ratio than those of conventional NM-sensitive imaging methods with matched parameters for comparability with sandwichNM (SandwichNM: 23.6 ± 5.4%; MT-prepared TSE: 20.6 ± 7.4%; MT-prepared GRE: 17.4 ± 6.0%). In a multi-vendor experiment, the sandwichNM images displayed higher means and lower standard deviations of the NM contrast ratio across subjects in all three vendors (SandwichNM vs. MT-prepared GRE; Vendor A: 28.4 ± 1.5% vs. 24.4 ± 2.8%; Vendor B: 27.2 ± 1.0% vs. 13.3 ± 1.3%; Vendor C: 27.3 ± 0.7% vs. 20.1 ± 0.9%). For each subject, the standard deviations of the NM contrast ratio across the vendors were substantially lower in SandwichNM (SandwichNM vs. MT-prepared GRE; subject 1: 1.5% vs. 8.1%, subject 2: 1.1 % vs. 5.1%, subject 3: 0.9% vs. 4.0%, subject 4: 1.1% vs. 5.3%), demonstrating consistent contrasts across the vendors. The proposed method utilizes product sequences, requiring no alteration of a sequence and, therefore, may have a wide practical utility in exploring the NM imaging.
Collapse
Affiliation(s)
- Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | | | | | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Seoul, Republic of Korea
| | | | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, Republic of Korea.
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Calarco N, Cassidy CM, Selby B, Hawco C, Voineskos AN, Diniz BS, Nikolova YS. Associations between locus coeruleus integrity and diagnosis, age, and cognitive performance in older adults with and without late-life depression: An exploratory study. Neuroimage Clin 2022; 36:103182. [PMID: 36088841 PMCID: PMC9474922 DOI: 10.1016/j.nicl.2022.103182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Late-life depression (LLD) is a risk factor for age-dependent cognitive deterioration. Norepinephrine-related degeneration in the locus coeruleus (LC) may explain this link. To examine the LC norepinephrine system in vivo, we acquired neuromelanin-sensitive MRI (NM-MRI) in a sample of 48 participants, including 25 with LLD (18 women, age 68.08 ± 5.41) and 23 never-depressed comparison participants (ND, 12 women, age 70 ± 8.02), matched on age and cognitive status. We employed a semi-automated procedure to segment the LC into three bilateral sections along its rostro-caudal extent, and calculated relative contrast as a proxy of integrity. Then, we examined associations between integrity and LLD diagnosis, age, and cognition, as measured via the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Delis-Kaplan Executive Function System (D-KEFS). We did not identify an effect of LLD diagnosis nor age on LC integrity, but exploratory canonical correlation analysis across the combined participant sample revealed a strong (Rc = 0.853) and significant multivariate relationship between integrity and cognition (Wilks' λ = 0.03, F(84, 162.44) = 1.66, p = <.01). The first and only significant variate explained 72.83% model variance, and linked better attention and delayed memory performance, faster processing speed, and lower verbal fluency performance with higher integrity in the right rostral but lower integrity in the left caudal LC. Our results complement prior evidence of LC involvement in cognition in healthy older adults, and extend this association to individuals with LLD.
Collapse
Affiliation(s)
- Navona Calarco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Clifford M. Cassidy
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
| | - Ben Selby
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Corresponding author at: Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1L8, Canada.
| |
Collapse
|
32
|
Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sci 2022; 12:brainsci12081085. [PMID: 36009148 PMCID: PMC9405540 DOI: 10.3390/brainsci12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The locus coeruleus (LC) is one of the most commonly studied brainstem nuclei when investigating brain–behavior associations. The LC serves as a major brainstem relay for both ascending bottom-up and descending top-down projections. Specifically, noradrenergic (NA) LC neurons not only connect globally to higher-order subcortical nuclei and cortex to mediate arousal and attention but also directly project to other brainstem nuclei and to the spinal cord to control autonomic function. Despite the extensive investigation of LC function using electrophysiological recordings and cellular/molecular imaging for both cognitive research and the contribution of LC to different pathological states, the role of neuroimaging to investigate LC function has been restricted. For instance, it remains challenging to identify LC-specific activation with functional MRI (fMRI) in animal models, due to the small size of this nucleus. Here, we discuss the complexity of fMRI applications toward LC activity mapping in mouse brains by highlighting the technological challenges. Further, we introduce a single-vessel fMRI mapping approach to elucidate the vascular specificity of high-resolution fMRI signals coupled to LC activation in the mouse brainstem.
Collapse
|
33
|
Chen YN, Zheng X, Chen HL, Gao JX, Li XX, Xie JF, Xie YP, Spruyt K, Shao YF, Hou YP. Stereotaxic atlas of the infant rat brain at postnatal days 7–13. Front Neuroanat 2022; 16:968320. [PMID: 36032994 PMCID: PMC9412974 DOI: 10.3389/fnana.2022.968320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, researchers have paid progressively more attention to the study of neural development in infant rats. However, due to the lack of complete intracerebral localization information, such as clear nuclear cluster boundaries, identified main brain structures, and reliable stereotaxic coordinates, it is difficult and restricted to apply technical neuroscience to infant rat’s brain. The present study was undertaken to refine the atlas of infant rats. As such, we established a stereotaxic atlas of the infant rat’s brain at postnatal days 7–13. Furthermore, dye calibration surgery was performed in P7–P13 infant rats by injecting Methylene blue, and sections were incubated in Nissl solutions. From the panoramic images of the brain sections, atlases were made. Our article has provided the appearance and measurements of P7–P13 Sprague–Dawley rat pups. Whereas the atlas contains a series of about 530 coronal brain section images from olfactory bulbs to the brainstem, a list of abbreviations of the main brain structures, and reliable stereotaxic coordinates, which were demonstrated by vertical and oblique injections with fluorescent dye DiI. The present findings demonstrated that our study of P7–P13 atlases has reasonable nucleus boundaries and accurate and good repeatability of stereotaxic coordinates, which can make up for the shortage of postnatal rat brain atlas currently in the field.
Collapse
Affiliation(s)
- Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xin Zheng
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xin-Xuan Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Ping Xie
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou, China
| | - Karen Spruyt
- NeuroDiderot – INSERM, Université de Paris, Paris, France
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
- *Correspondence: Yu-Feng Shao,
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
- Yi-Ping Hou,
| |
Collapse
|
34
|
Matti N, Javanshiri K, Haglund M, Saenz-Sardá X, Englund E. Locus Coeruleus Degeneration Differs Between Frontotemporal Lobar Degeneration Subtypes. J Alzheimers Dis 2022; 89:463-471. [PMID: 35871340 PMCID: PMC9535600 DOI: 10.3233/jad-220276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: There are few studies on the locus coeruleus (LC) in frontotemporal lobar degeneration (FTLD) and the potential differences in the LC related to the underlying proteinopathy. Objective: The aim of this study was to investigate the LC in FTLD subgroups. Methods: Neuropathological cases diagnosed with FTLD were included. The subgroups consisted of FTLD with tau, transactive response DNA-binding protein 43 (TDP) and fused in sarcoma (FUS). Micro- and macroscopical degeneration of the LC were assessed with respect to the number of neurons and the degree of depigmentation. A group of cognitively healthy subjects and a group with vascular cognitive impairment (VCI) served as comparison groups. Results: A total of 85 FTLD cases were included, of which 44 had FTLD-TDP, 38 had FTLD-tau, and three had FTLD-FUS. The groups were compared with 25 VCI cases and 41 cognitively healthy control cases (N = 151 for the entire study). All FTLD groups had a statistically higher microscopical degeneration of the LC compared to the controls, but the FTLD-tau group had greater micro- and macroscopical degeneration than the FTLD-TDP group. Age correlated positively with the LC score in the FTLD-tau group, but not in the FTLD-TDP group. Conclusion: A greater microscopical degeneration of the LC was observed in all FTLD cases compared to healthy controls and those with VCI. The LC degeneration was more severe in FTLD-tau than in FTLD-TDP. The macroscopically differential degeneration of the LC in FTLD subgroups may facilitate differential diagnostics, potentially with imaging.
Collapse
Affiliation(s)
- Nathalie Matti
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Keivan Javanshiri
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Mattias Haglund
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Xavier Saenz-Sardá
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| |
Collapse
|
35
|
Wang Z, Cao X, LaBella A, Zeng X, Biegon A, Franceschi D, Petersen E, Clayton N, Ulaner GA, Zhao W, Goldan AH. High-resolution and high-sensitivity PET for quantitative molecular imaging of the monoaminergic nuclei: A GATE simulation study. Med Phys 2022; 49:4430-4444. [PMID: 35390182 PMCID: PMC11025683 DOI: 10.1002/mp.15653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Quantitative in vivo molecular imaging of fine brain structures requires high-spatial resolution and high-sensitivity. Positron emission tomography (PET) is an attractive candidate to introduce molecular imaging into standard clinical care due to its highly targeted and versatile imaging capabilities based on the radiotracer being used. However, PET suffers from relatively poor spatial resolution compared to other clinical imaging modalities, which limits its ability to accurately quantify radiotracer uptake in brain regions and nuclei smaller than 3 mm in diameter. Here we introduce a new practical and cost-effective high-resolution and high-sensitivity brain-dedicated PET scanner, using our depth-encoding Prism-PET detector modules arranged in a conformal decagon geometry, to substantially reduce the partial volume effect and enable accurate radiotracer uptake quantification in small subcortical nuclei. METHODS Two Prism-PET brain scanner setups were proposed based on our 4-to-1 and 9-to-1 coupling of scintillators to readout pixels using1.5 × 1.5 × 20 $1.5 \times 1.5 \times 20$ mm3 and0.987 × 0.987 × 20 $0.987 \times 0.987 \times 20$ mm3 crystal columns, respectively. Monte Carlo simulations of our Prism-PET scanners, Siemens Biograph Vision, and United Imaging EXPLORER were performed using Geant4 application for tomographic emission (GATE). National Electrical Manufacturers Association (NEMA) standard was followed for the evaluation of spatial resolution, sensitivity, and count-rate performance. An ultra-micro hot spot phantom was simulated for assessing image quality. A modified Zubal brain phantom was utilized for radiotracer imaging simulations of 5-HT1A receptors, which are abundant in the raphe nuclei (RN), and norepinephrine transporters, which are highly concentrated in the bilateral locus coeruleus (LC). RESULTS The Prism-PET brain scanner with 1.5 mm crystals is superior to that with 1 mm crystals as the former offers better depth-of-interaction (DOI) resolution, which is key to realizing compact and conformal PET scanner geometries. We achieved uniform 1.3 mm full-width-at-half-maximum (FWHM) spatial resolutions across the entire transaxial field-of-view (FOV), a NEMA sensitivity of 52.1 kcps/MBq, and a peak noise equivalent count rate (NECR) of 957.8 kcps at 25.2 kBq/mL using 450-650 keV energy window. Hot spot phantom results demonstrate that our scanner can resolve regions as small as 1.35 mm in diameter at both center and 10 cm away from the center of the transaixal FOV. Both 5-HT1A receptor and norepinephrine transporter brain simulations prove that our Prism-PET scanner enables accurate quantification of radiotracer uptake in small brain regions, with a 1.8-fold and 2.6-fold improvement in the dorsal RN as well as a 3.2-fold and 4.4-fold improvement in the bilateral LC compared to the Biograph Vision and EXPLORER, respectively. CONCLUSIONS Based on our simulation results, the proposed high-resolution and high-sensitivity Prism-PET brain scanner is a promising cost-effective candidate to achieve quantitative molecular neuroimaging of small but important brain regions with PET clinically viable.
Collapse
Affiliation(s)
- Zipai Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andy LaBella
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Clayton
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gary A. Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
36
|
Dahl MJ, Mather M, Werkle-Bergner M, Kennedy BL, Guzman S, Hurth K, Miller CA, Qiao Y, Shi Y, Chui HC, Ringman JM. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer's disease. Neurobiol Aging 2022; 112:39-54. [PMID: 35045380 PMCID: PMC8976827 DOI: 10.1016/j.neurobiolaging.2021.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Abnormally phosphorylated tau, an indicator of Alzheimer's disease, accumulates in the first decades of life in the locus coeruleus (LC), the brain's main noradrenaline supply. However, technical challenges in in-vivo assessments have impeded research into the role of the LC in Alzheimer's disease. We studied participants with or known to be at-risk for mutations in genes causing autosomal-dominant Alzheimer's disease (ADAD) with early onset, providing a unique window into the pathogenesis of Alzheimer's largely disentangled from age-related factors. Using high-resolution MRI and tau PET, we found lower rostral LC integrity in symptomatic participants. LC integrity was associated with individual differences in tau burden and memory decline. Post-mortem analyses in a separate set of carriers of the same mutation confirmed substantial neuronal loss in the LC. Our findings link LC degeneration to tau burden and memory in Alzheimer's, and highlight a role of the noradrenergic system in this neurodegenerative disease.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Briana L Kennedy
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; School of Psychological Science, University of Western Australia, Perth, Australia
| | - Samuel Guzman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuchuan Qiao
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Giorgi FS, Martini N, Lombardo F, Galgani A, Bastiani L, Della Latta D, Hlavata H, Busceti CL, Biagioni F, Puglisi-Allegra S, Pavese N, Fornai F. Locus Coeruleus magnetic resonance imaging: a comparison between native-space and template-space approach. J Neural Transm (Vienna) 2022; 129:387-394. [PMID: 35306617 PMCID: PMC9007774 DOI: 10.1007/s00702-022-02486-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 10/27/2022]
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the brain, which is involved in many physiological functions including cognition; its impairment may be crucial in the neurobiology of a variety of brain diseases. Locus Coeruleus-Magnetic Resonance Imaging (LC-MRI) allows to identify in vivo LC in humans. Thus, a variety of research teams have been using LC-MRI to estimate LC integrity in normal aging and in patients affected by neurodegenerative disorders, where LC integrity my work as a biomarker. A number of variations between LC-MRI studies exist, concerning post-acquisition analysis and whether this had been performed within MRI native space or in ad hoc-built MRI template space. Moreover, the reproducibility and reliability of this tool is still to be explored. Therefore, in the present study, we analyzed a group of neurologically healthy, cognitively intact elderly subjects, using both a native space- and a template space-based LC-MRI analysis. We found a good inter-method agreement, particularly considering the LC Contrast Ratio. The template space-based approach provided a higher spatial resolution, lower operator-dependency, and allowed the analysis of LC topography. Our ad hoc-developed LC template showed LC morphological data that were in line with templates published very recently. Remarkably, present data significantly overlapped with a recently published LC "metaMask", that had been obtained by averaging the results of a variety of previous LC-MRI studies. Thus, such a template space-based approach may pave the way to a standardized LC-MRI analysis and to be used in future clinic-anatomical correlations.
Collapse
Affiliation(s)
- F S Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - N Martini
- Deep Health Unit, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | - F Lombardo
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | - A Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Bastiani
- Institute of Clinical Physiology of National Research Council, Pisa, Italy
| | - D Della Latta
- Deep Health Unit, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | - H Hlavata
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | | | | | | | - N Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK.,Institute of Clinical Medicine, PET Centre, Aarhus University, Aarhus, Denmark
| | - F Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
38
|
Gilvesy A, Husen E, Magloczky Z, Mihaly O, Hortobágyi T, Kanatani S, Heinsen H, Renier N, Hökfelt T, Mulder J, Uhlen M, Kovacs GG, Adori C. Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging. Acta Neuropathol 2022; 144:651-676. [PMID: 36040521 PMCID: PMC9468059 DOI: 10.1007/s00401-022-02477-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Abris Gilvesy
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- McGill University, Montreal, QC, H3A 0G4, Canada
| | - Evelina Husen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Zsofia Magloczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - Orsolya Mihaly
- Department of Pathology, St. Borbála Hospital, Tatabánya, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Helmut Heinsen
- Clinic of Psychiatry and Institute of Forensic Pathology, University of Würzburg, 97080, Würzburg, Germany
- LIM-44, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
39
|
Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci 2022; 26:38-52. [PMID: 34799252 PMCID: PMC8678372 DOI: 10.1016/j.tics.2021.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
During moments involving selective attention, the thalamus orchestrates the preferential processing of prioritized information by coordinating rhythmic neural activity within a distributed frontoparietal network. The timed release of neuromodulators from subcortical structures dynamically sculpts neural synchronization in thalamocortical networks to meet current attentional demands. In particular, noradrenaline modulates the balance of cortical excitation and inhibition, as reflected by thalamocortical alpha synchronization (~8-12 Hz). These neuromodulatory adjustments facilitate the selective processing of prioritized information. Thus, by disrupting effective rhythmic coordination in attention networks, age-related locus coeruleus (LC) degeneration can impair higher levels of neural processing. In sum, findings across different levels of analysis and modalities shed light on how the noradrenergic modulation of neural synchronization helps to shape selective attention.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
40
|
Dünnwald M, Ernst P, Düzel E, Tönnies K, Betts MJ, Oeltze-Jafra S. Fully automated deep learning-based localization and segmentation of the locus coeruleus in aging and Parkinson's disease using neuromelanin-sensitive MRI. Int J Comput Assist Radiol Surg 2021; 16:2129-2135. [PMID: 34797512 PMCID: PMC8616874 DOI: 10.1007/s11548-021-02528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Development and performance measurement of a fully automated pipeline that localizes and segments the locus coeruleus in so-called neuromelanin-sensitive magnetic resonance imaging data for the derivation of quantitative biomarkers of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. METHODS We propose a pipeline composed of several 3D-Unet-based convolutional neural networks for iterative multi-scale localization and multi-rater segmentation and non-deep learning-based components for automated biomarker extraction. We trained on the healthy aging cohort and did not carry out any adaption or fine-tuning prior to the application to Parkinson's disease subjects. RESULTS The localization and segmentation pipeline demonstrated sufficient performance as measured by Euclidean distance (on average around 1.3mm on healthy aging subjects and 2.2mm in Parkinson's disease subjects) and Dice similarity coefficient (overall around [Formula: see text] on healthy aging subjects and [Formula: see text] for subjects with Parkinson's disease) as well as promising agreement with respect to contrast ratios in terms of intraclass correlation coefficient of [Formula: see text] for healthy aging subjects compared to a manual segmentation procedure. Lower values ([Formula: see text]) for Parkinson's disease subjects indicate the need for further investigation and tests before the application to clinical samples. CONCLUSION These promising results suggest the usability of the proposed algorithm for data of healthy aging subjects and pave the way for further investigations using this approach on different clinical datasets to validate its practical usability more conclusively.
Collapse
Affiliation(s)
- Max Dünnwald
- Department of Neurology, Faculty of Medicine, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany. .,Faculty of Computer Science, OVGU, Magdeburg, Germany.
| | - Philipp Ernst
- Faculty of Computer Science, OVGU, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Faculty of Medicine, OVGU, Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, Great Britain, UK.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Klaus Tönnies
- Faculty of Computer Science, OVGU, Magdeburg, Germany
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Faculty of Medicine, OVGU, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Steffen Oeltze-Jafra
- Department of Neurology, Faculty of Medicine, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany.,Faculty of Computer Science, OVGU, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
41
|
Giorgi FS, Lombardo F, Galgani A, Hlavata H, Della Latta D, Martini N, Pavese N, Ghicopulos I, Baldacci F, Coi A, Scalese M, Bastiani L, Keilberg P, De Marchi D, Fornai F, Bonuccelli U. Locus Coeruleus magnetic resonance imaging in cognitively intact elderly subjects. Brain Imaging Behav 2021; 16:1077-1087. [PMID: 34741273 PMCID: PMC9107398 DOI: 10.1007/s11682-021-00562-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
The locus coeruleus is the main noradrenergic nucleus of the brain and is often affected in neurodegenerative diseases. Recently, magnetic resonance imaging with specific T1-weighted sequences for neuromelanin has been used to evaluate locus coeruleus integrity in patients with these conditions. In some of these studies, abnormalities in locus coeruleus signal have also been found in healthy controls and related to ageing. However, this would be at variance with recent post-mortem studies showing that the nucleus is not affected during normal ageing. The present study aimed at evaluating locus coeruleus features in a well-defined cohort of cognitively healthy subjects who remained cognitively intact on a one-year follow-up. An ad-hoc semiautomatic analysis of locus coeruleus magnetic resonance was applied. Sixty-two cognitively intact subjects aged 60-80 years, without significant comorbidities, underwent 3 T magnetic resonance with specific sequences for locus coeruleus. A semi-automatic tool was used to estimate the number of voxels belonging to locus coeruleus and its intensity was obtained for each subject. Each subject underwent extensive neuropsychological testing at baseline and 12 months after magnetic resonance scan. Based on neuropsychological testing 53 subjects were cognitively normal at baseline and follow up. No significant age-related differences in locus coeruleus parameters were found in this cohort. In line with recent post-mortem studies, our in vivo study confirms that locus coeruleus magnetic resonance features are not statistically significantly affected by age between 60 and 80 years, the age range usually evaluated in studies on neurodegenerative diseases. A significant alteration of locus coeruleus features in a cognitively intact elderly subject might be an early sign of pathology.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Francesco Lombardo
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | | | - Hana Hlavata
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | - Daniele Della Latta
- Deep Health Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Martini
- Deep Health Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
- Institute of clinical Medicine, PET Centre, Aarhus University, Aarhus, Denmark
| | | | | | - Alessio Coi
- Institute of Clinical Physiology of National Research Council, Pisa, Italy
| | - Marco Scalese
- Institute of Clinical Physiology of National Research Council, Pisa, Italy
| | - Luca Bastiani
- Institute of Clinical Physiology of National Research Council, Pisa, Italy
| | - Petra Keilberg
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | - Daniele De Marchi
- Cardiovascular and Neuroradiological Multimodal Imaging Unit, Fondazione "G. Monasterio", National Research Council/Tuscany Region, Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
42
|
Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain 2021; 144:2243-2256. [PMID: 33725122 PMCID: PMC8418349 DOI: 10.1093/brain/awab111] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/09/2023] Open
Abstract
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
43
|
Plini ERG, O’Hanlon E, Boyle R, Sibilia F, Rikhye G, Kenney J, Whelan R, Melnychuk MC, Robertson IH, Dockree PM. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer's Disease Neuroimaging Initiative. Cells 2021; 10:1829. [PMID: 34359997 PMCID: PMC8306442 DOI: 10.3390/cells10071829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Erik O’Hanlon
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychiatry, Royal College of Surgeons in Ireland, Hospital Rd, Beaumont, 9QRH+4F Dublin, Ireland
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Rory Boyle
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Francesca Sibilia
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Gaia Rikhye
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Joanne Kenney
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Robert Whelan
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Michael C. Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Ian H. Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Paul M. Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| |
Collapse
|
44
|
Huynh B, Fu Y, Kirik D, Shine JM, Halliday GM. Comparison of Locus Coeruleus Pathology with Nigral and Forebrain Pathology in Parkinson's Disease. Mov Disord 2021; 36:2085-2093. [PMID: 33899954 DOI: 10.1002/mds.28615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pathology in the noradrenergic A6 locus coeruleus has not been compared with more rostral dopaminergic A9 substantia nigra and A10 ventral tegmental area, and cholinergic Ch4 basal nucleus and Ch1/2 septal regions in the same cases of Parkinson's disease (PD). OBJECTIVE To determine whether there is a gradient of caudal to rostral cell loss in PD. METHODS Postmortem brains were collected from longitudinally followed donors with PD (n = 14) and aged-matched healthy donors (n = 13), six with restricted brainstem Lewy pathology (RLP), fixed in formalin and serial tissue slabs processed for cell and pathological quantitation. Noradrenergic A6 neurons were assessed and compared with previously published midbrain and basal forebrain data. From these data, regression estimates of pathological onset and progression were determined. RESULTS Restricted Lewy pathology (RLP) cases had high pathological variability but no significant reduction in neurons. Pathology containing A6 neuron loss started at PD diagnosis and progressed faster (2.4% p.a) than the loss of dopaminergic A9 neurons (2% loss p.a.). Cases with dementia had significantly more pathology in noradrenergic and cholinergic neurons, had greater noradrenergic A6 neuron loss (29% more, progressing at 3.2% p.a.), and a selective loss of lateral A10 nonmelanized dopamine-producing neurons (starting a decade following diagnosis). CONCLUSIONS These findings show that in the same Parkinson's disease cases cell loss in these neurotransmitter systems does not follow a strict caudal to rostral trajectory and suggests symptom onset may relate to substantial pathology in the noradrenergic A6 locus coeruleus neurons in people with reduced dopamine-producing A9 substantia nigra neurons. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benjamin Huynh
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuhong Fu
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Deniz Kirik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - James M Shine
- ForeFront Research Team, Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
45
|
Turker HB, Riley E, Luh WM, Colcombe SJ, Swallow KM. Estimates of locus coeruleus function with functional magnetic resonance imaging are influenced by localization approaches and the use of multi-echo data. Neuroimage 2021; 236:118047. [PMID: 33905860 PMCID: PMC8517932 DOI: 10.1016/j.neuroimage.2021.118047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/06/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus (LC) plays a central role in regulating human cognition, arousal, and autonomic states. Efforts to characterize the LC’s function in humans using functional magnetic resonance imaging have been hampered by its small size and location near a large source of noise, the fourth ventricle. We tested whether the ability to characterize LC function is improved by employing neuromelanin-T1 weighted images (nmT1) for LC localization and multi-echo functional magnetic resonance imaging (ME-fMRI) for estimating intrinsic functional connectivity (iFC). Analyses indicated that, relative to a probabilistic atlas, utilizing nmT1 images to individually localize the LC increases the specificity of seed time series and clusters in the iFC maps. When combined with independent components analysis (ME-ICA), ME-fMRI data provided significant improvements in the temporal signal to noise ratio and DVARS relative to denoised single echo data (1E-fMRI). The effects of acquiring nmT1 images and ME-fMRI data did not appear to only reflect increases in power: iFC maps for each approach overlapped only moderately. This is consistent with findings that ME-fMRI offers substantial advantages over 1E-fMRI acquisition and denoising. It also suggests that individually identifying LC with nmT1 scans is likely to reduce the influence of other nearby brainstem regions on estimates of LC function.
Collapse
Affiliation(s)
- Hamid B Turker
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY, USA.
| | - Elizabeth Riley
- Department of Human Development, Cornell University, 163 Human Ecology Building, Ithaca, NY, USA.
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, 3001 S Hanover St, Baltimore, MD 21225, USA.
| | - Stan J Colcombe
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd. Orangeburg, NY. 10962.
| | - Khena M Swallow
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY, USA.
| |
Collapse
|
46
|
Liu KY, Acosta-Cabronero J, Hong YT, Yi YJ, Hämmerer D, Howard R, for the Alzheimer’s Disease Neuroimaging Initiative. FDG-PET assessment of the locus coeruleus in Alzheimer's disease. NEUROIMAGE. REPORTS 2021; 1:100002. [PMID: 34396361 PMCID: PMC8262255 DOI: 10.1016/j.ynirp.2020.100002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Sensitive and reliable in vivo imaging of the locus coeruleus (LC) is important to develop and evaluate its potential as a biomarker in neurodegenerative diseases such as Alzheimer's disease (AD). It is not known whether AD-related alterations in LC integrity can be detected using 18F-labelled fluoro-2-deoxyglucose (FDG) positron emission tomography (PET). Mean FDG-PET images from AD patients (N = 193) and controls (N = 256) from the ADNI database were co-registered to a study-wise anatomical template. Regional LC median standardized uptake value ratio (SUVR) values were obtained using four previously published LC masks and normalized to values from pons and cerebellar vermis reference regions. To support the validity of our methods, other regions previously reported to be most and least affected metabolically in AD were also compared to controls. The LC did not show between-group differences in FDG-PET signal, whereas the mammillary bodies did, despite these regions having comparable volumes and SUVR ranges. Brain regions previously reported to be most and least affected metabolically in AD compared to controls showed medium-to-large and small effect sizes for SUVR differences respectively. The results do not support the current application of LC FDG-PET signal as an in vivo biomarker for AD. Methodological and demographic factors potentially contributing to these findings are discussed. Future research may investigate age-related differences in LC FDG-PET signal and higher resolution images to fully explore its biomarker potential.
Collapse
Affiliation(s)
- Kathy Y. Liu
- Division of Psychiatry, University College London, UK
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, UK
- Tenoke Ltd., Cambridge, UK
| | - Young T. Hong
- Wolfson Brain Imaging Centre, University of Cambridge, UK
| | - Yeo-Jin Yi
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, UK
| | | |
Collapse
|
47
|
Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review. J Alzheimers Dis 2021; 83:5-22. [PMID: 34219717 PMCID: PMC8461706 DOI: 10.3233/jad-210191] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC), a tiny nucleus in the brainstem and the principal site of noradrenaline synthesis, has a major role in regulating autonomic function, arousal, attention, and neuroinflammation. LC dysfunction has been linked to a range of disorders; however particular interest is given to the role it plays in Alzheimer's disease (AD). The LC undergoes significant neuronal loss in AD, thought to occur early in the disease process. While neuronal loss in the LC has also been suggested to occur in aging, this relationship is less clear as the findings have been contradictory. LC density has been suggested to be indicative of cognitive reserve and the evidence for these claims will be discussed. Recent imaging techniques allowing visualization of the LC in vivo using neuromelanin-sensitive MRI are developing our understanding of the role of LC in aging and AD. Tau pathology within the LC is evident at an early age in most individuals; however, the relationship between tau accumulation and neuronal loss and why some individuals then develop AD is not understood. Neuromelanin pigment accumulates within LC cells with age and is proposed to be toxic and inflammatory when released into the extracellular environment. This review will explore our current knowledge of the LC changes in both aging and AD from postmortem, imaging, and experimental studies. We will discuss the reasons behind the susceptibility of the LC to neuronal loss, with a focus on the role of extracellular neuromelanin and neuroinflammation caused by the dysfunction of the LC-noradrenaline pathway.
Collapse
Affiliation(s)
- Rebecca Beardmore
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
48
|
Bachman SL, Dahl MJ, Werkle-Bergner M, Düzel S, Forlim CG, Lindenberger U, Kühn S, Mather M. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol Aging 2020; 100:72-82. [PMID: 33508564 PMCID: PMC7920995 DOI: 10.1016/j.neurobiolaging.2020.12.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
There is growing evidence that neuronal integrity of the noradrenergic locus coeruleus (LC) is important for later-life cognition. Less understood is how LC integrity relates to brain correlates of cognition, such as brain structure. Here, we examined the relationship between cortical thickness and a measure reflecting LC integrity in older (n = 229) and younger adults (n = 67). Using a magnetic resonance imaging sequence which yields high signal intensity in the LC, we assessed the contrast between signal intensity of the LC and that of neighboring pontine reference tissue. The Freesurfer software suite was used to quantify cortical thickness. LC contrast was positively related to cortical thickness in older adults, and this association was prominent in parietal, frontal, and occipital regions. Brain regions where LC contrast was related to cortical thickness include portions of the frontoparietal network which have been implicated in noradrenergically modulated cognitive functions. These findings provide novel evidence for a link between LC structure and cortical brain structure in later adulthood.
Collapse
Affiliation(s)
- Shelby L Bachman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Caroline Garcia Forlim
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Galgani A, Lombardo F, Della Latta D, Martini N, Bonuccelli U, Fornai F, Giorgi FS. Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases. Curr Neurol Neurosci Rep 2020; 21:2. [PMID: 33313963 PMCID: PMC7732795 DOI: 10.1007/s11910-020-01087-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. RECENT FINDINGS LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.
Collapse
Affiliation(s)
| | - Francesco Lombardo
- U.O.C. "Risonanza Magnetica Specialistica e Neuroradiologia", Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Daniele Della Latta
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Martini
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
50
|
Ye R, Rua C, O'Callaghan C, Jones PS, Hezemans FH, Kaalund SS, Tsvetanov KA, Rodgers CT, Williams G, Passamonti L, Rowe JB. An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. Neuroimage 2020; 225:117487. [PMID: 33164875 PMCID: PMC7779564 DOI: 10.1016/j.neuroimage.2020.117487] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Early and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson's disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (0.4 × 0.4 × 0.5 mm). Magnetisation transfer images from 53 healthy older volunteers (52 - 84 years) clearly revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults. This atlas may be especially relevant for studying disorders associated with older age. To use the atlas does not require use of the same MT sequence of 7T MRI, provided good co-registration and normalisation is achieved. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance along the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset will be made available for non-commercial research, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK.
| | - Catarina Rua
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Guy Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|