1
|
Dyshlovoy SA, Mansour WY, Ramm NA, Hauschild J, Zhidkov ME, Kriegs M, Zielinski A, Hoffer K, Busenbender T, Glumakova KA, Spirin PV, Prassolov VS, Tilki D, Graefen M, Bokemeyer C, von Amsberg G. Synthesis and new DNA targeting activity of 6- and 7-tert-butylfascaplysins. Sci Rep 2024; 14:11788. [PMID: 38783016 PMCID: PMC11116464 DOI: 10.1038/s41598-024-62358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Wael Y Mansour
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Natalia A Ramm
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maxim E Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexandra Zielinski
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ksenia A Glumakova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Derya Tilki
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Urology, Koc University Hospital, 34010, Istanbul, Turkey
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
3
|
Tryapkin OA, Kantemirov AV, Dyshlovoy SA, Prassolov VS, Spirin PV, von Amsberg G, Sidorova MA, Zhidkov ME. A New Mild Method for Synthesis of Marine Alkaloid Fascaplysin and Its Therapeutically Promising Derivatives. Mar Drugs 2023; 21:424. [PMID: 37623705 PMCID: PMC10455802 DOI: 10.3390/md21080424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.
Collapse
Affiliation(s)
- Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Vladimir S. Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel V. Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| |
Collapse
|
4
|
Wang C, Wang S, Li H, Hou Y, Cao H, Hua H, Li D. Marine-Derived Lead Fascaplysin: Pharmacological Activity, Total Synthesis, and Structural Modification. Mar Drugs 2023; 21:md21040226. [PMID: 37103365 PMCID: PMC10142289 DOI: 10.3390/md21040226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.
Collapse
|
5
|
Nandi S, Dey R, Dey S, Samadder A, Saxena A. Naturally Sourced CDK Inhibitors and Current Trends in Structure-Based Synthetic Anticancer Drug Design by Crystallography. Anticancer Agents Med Chem 2021; 22:485-498. [PMID: 34503422 DOI: 10.2174/1871520621666210908101751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) are the chief regulators in cell proliferation; the kinase activities are largely regulated by their interactions with CDK inhibitors (CKIs) and Cyclins. The association of different CDKs with CDKIs and Cyclins at the cell-cycle checkpoints of different stages of mitotic cell cycle function act more likely as the molecular switches that regulate different transcriptional events required for progression through the cell cycle. A fine balance in response to extracellular and intracellular signals is highly maintained in the orchestrated function of CDKs along with Cyclins and CDKIs for normal cell proliferation. This fine-tuning in mitotic cell cycle progression sometimes gets lost due to dysregulation of CDKs. The aberrant functioning of the CDKIs is therefore studied for its contributions as a vital hallmark of cancers. It has attracted our focus to maneuver cancer therapy. Hence, several synthetic CDKIs and their crystallography-based drug design have been explained to understand their mode of action with CDKs. Since most of the synthetic drugs function by inhibiting the CDK4/6 kinases by competitively binding to their ATP binding cleft, these synthetic drugs are reported to attack the normal, healthy growing cells adjacent to the cancer cells leading to the decrease in the life span of the cancer patients. The quest for traditional natural medicines may have a great impact on the treatment of cancer. Therefore, in the present studies, a search for naturally sourced CDK inhibitors has been briefly focused. Additionally, some synthetic crystallography-based drug design has been explained to elucidate different avenues to develop better anticancer chemotherapeutics, converting natural scaffolds into inhibitors of the CDK mediated abnormal signal transduction with lesser side effects.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Rishita Dey
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Anil Saxena
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| |
Collapse
|
6
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
7
|
Dyshlovoy SA, Kaune M, Hauschild J, Kriegs M, Hoffer K, Busenbender T, Smirnova PA, Zhidkov ME, Poverennaya EV, Oh-Hohenhorst SJ, Spirin PV, Prassolov VS, Tilki D, Bokemeyer C, Graefen M, von Amsberg G. Efficacy and Mechanism of Action of Marine Alkaloid 3,10-Dibromofascaplysin in Drug-Resistant Prostate Cancer Cells. Mar Drugs 2020; 18:md18120609. [PMID: 33271756 PMCID: PMC7761490 DOI: 10.3390/md18120609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo str. 17, 690041 Vladivostok, Russian
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
- Correspondence:
| | - Moritz Kaune
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Polina A. Smirnova
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Maxim E. Zhidkov
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Ekaterina V. Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Pogodinskaya str. 10/8, 119121 Moscow, Russian;
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Pavel V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Derya Tilki
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Department of Urology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| |
Collapse
|
8
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
9
|
Lyakhova I, Piatkova M, Gulaia V, Romanishin A, Shmelev M, Bryukhovetskiy A, Sharma A, Sharma HS, Khotimchenko R, Bryukhovetskiy I. Alkaloids of fascaplysin are promising chemotherapeutic agents for the treatment of glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:299-324. [PMID: 32448613 DOI: 10.1016/bs.irn.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glioblastoma is one of the most aggressive human brain tumors. Even following all the modern protocols of complex treatment, the median patient survival typically does not exceed 15 months. This review analyzes the main reasons for glioblastoma resistance to therapy, as well as attempts at categorizing the main approaches to increasing chemotherapy efficiency. Special emphasis is placed on the specific group of compounds, known as marine alkaloids and their synthetic derivatives exerting a general antitumor effect on glioblastoma cells. The unique mechanisms of marine alkaloid influence on the tumor cells prompt considering them as a promising basis for creating new chemotherapeutic agents for glioblastoma treatment.
Collapse
Affiliation(s)
- Irina Lyakhova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mariia Piatkova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aleksandr Romanishin
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mikhail Shmelev
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Rodion Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
10
|
Autophagy represses fascaplysin-induced apoptosis and angiogenesis inhibition via ROS and p8 in vascular endothelia cells. Biomed Pharmacother 2019; 114:108866. [DOI: 10.1016/j.biopha.2019.108866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022] Open
|
11
|
Qiu H, Liang W, Zhang G, Lin M, Liu W, Gao Z, Wei W, Tang C, Jin H, Liang H, Yan X. Aerobic Oxidation of Methyl‐substituted
β
‐Carbolines Catalyzed by N‐Hydroxyphthalimide and Metal Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201803007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongda Qiu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Weida Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
- Present address: Department of ChemistryPurdue University West Lafayette, IN 47907 USA
| | - Gongjun Zhang
- Ningbo Institute of Industrial TechnologyChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
| | - Miaoman Lin
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wanmin Liu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Zhanghua Gao
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wenting Wei
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Chunlan Tang
- School of MedicineNingbo University, Ningbo Zhejiang 315211 P. R. Chinan
| | - Haixiao Jin
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Xiaojun Yan
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
12
|
Yu S, Yin Y, Wang Q, Wang L. Dual gene deficient models of Apc Min/+ mouse in assessing molecular mechanisms of intestinal carcinogenesis. Biomed Pharmacother 2018; 108:600-609. [PMID: 30243094 DOI: 10.1016/j.biopha.2018.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The ApcMin/+ mouse, carrying an inactivated allele of the adenomatous polyposis coli (Apc) gene, is a widely used animal model of human colorectal tumorigenesis. While crossed with other gene knockout or knock-in mice, these mice possess advantages in investigation of human intestinal tumorigenesis. Intestinal tumor pathogenesis involves multiple gene alterations; thus, various double gene deficiency models could provide novel insights into molecular mechanisms of tumor biology, as well as gene-gene interactions involved in intestinal tumor development and assessment of novel strategies for preventing and treating intestinal cancer. This review discusses approximately 100 double gene deficient mice and their associated intestinal tumor development and progression phenotypes. The dual gene knockouts based on the Apc mutation background consist of inflammation and immune-related, cell cycle-related, Wnt/β-catenin signaling-related, tumor growth factor (TGF)-signaling-related, drug metabolism-related, and transcription factor genes, as well as some oncogenes and tumor suppressors. Future studies should focus on conditional or inducible dual or multiple mouse gene knockout models to investigate the molecular mechanisms underlying intestinal tumor development, as well as potential drug targets.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Yanhui Yin
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qian Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Molecular Targets of Active Anticancer Compounds Derived from Marine Sources. Mar Drugs 2018; 16:md16050175. [PMID: 29786660 PMCID: PMC5983306 DOI: 10.3390/md16050175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a number of novel compounds, which are produced in the marine environment, have been found to exhibit the anticancer effects. This review focuses on molecular targets of marine-derived anticancer candidates in clinical and preclinical studies. They are kinases, transcription factors, histone deacetylase, the ubiquitin-proteasome system, and so on. Specific emphasis of this review paper is to provide information on the optimization of new target compounds for future research and development of anticancer drugs, based on the identification of structures of these target molecules and parallel compounds.
Collapse
|
14
|
Ku BM, Yi SY, Koh J, Bae YH, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. The CDK4/6 inhibitor LY2835219 has potent activity in combination with mTOR inhibitor in head and neck squamous cell carcinoma. Oncotarget 2018; 7:14803-13. [PMID: 26909611 PMCID: PMC4924753 DOI: 10.18632/oncotarget.7543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/23/2016] [Indexed: 01/07/2023] Open
Abstract
Deletion of CDKN2A (p16) or amplification of CCND1 (cyclin D1) occurs commonly in head and neck squamous cell carcinoma (HNSCC) and induces sustained cyclin-dependent kinase (CDK) 4/6 activation. Here, we report the antiproliferative activity of LY2835219, a selective CDK4/6 inhibitor through inhibition of CDK4/6-dependent Ser780 phosphorylation in retinoblastoma (RB) and induction of cell cycle arrest in HNSCC cells. In addition, we demonstrated the antitumor effects of HNSCC xenografts to LY2835219 in vivo. Given the limited effect in HNSCC as a single-agent treatment with LY2835219, a combinational strategy is required to enhance antitumor activity. At the molecular level, we found that LY2835219 inhibited activation of AKT and ERK, but not mTOR. The combination of LY2835219 with mTOR inhibitor was found to be more effective than either drug alone in vitro and in vivo. Taken together, our findings suggest that a combinational treatment with LY2835219 and mTOR inhibitor is a promising therapeutic approach for HNSCC.
Collapse
Affiliation(s)
- Bo Mi Ku
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Seong Yoon Yi
- Division of Hematology-Oncology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-do, Korea
| | - Jiae Koh
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Yeon-Hee Bae
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Oh TI, Lee JH, Kim S, Nam TJ, Kim YS, Kim BM, Yim WJ, Lim JH. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK. Molecules 2017; 23:molecules23010042. [PMID: 29295560 PMCID: PMC5943942 DOI: 10.3390/molecules23010042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB), also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK), which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX)-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.
Collapse
Affiliation(s)
- Taek-In Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Jun Ho Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Seongman Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Taek-Jin Nam
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Young-Seon Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Byeong Mo Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Woo Jong Yim
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Korea.
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
16
|
Chen S, Guan X, Wang LL, Li B, Sang XB, Liu Y, Zhao Y. Fascaplysin inhibit ovarian cancer cell proliferation and metastasis through inhibiting CDK4. Gene 2017; 635:3-8. [DOI: 10.1016/j.gene.2017.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
|
17
|
Varinska L, Kubatka P, Mojzis J, Zulli A, Gazdikova K, Zubor P, Büsselberg D, Caprnda M, Opatrilova R, Gasparova I, Klabusay M, Pec M, Fibach E, Adamek M, Kruzliak P. Angiomodulators in cancer therapy: New perspectives. Biomed Pharmacother 2017; 89:578-590. [PMID: 28258040 DOI: 10.1016/j.biopha.2017.02.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
The formation of new blood vessels plays a crucial for the development and progression of pathophysiological changes associated with a variety of disorders, including carcinogenesis. Angiogenesis inhibitors (anti-angiogenics) are an important part of treatment for some types of cancer. Some natural products isolated from marine invertebrates have revealed antiangiogenic activities, which are diverse in structure and mechanisms of action. Many preclinical studies have generated new models for further modification and optimization of anti-angiogenic substances, and new information for mechanistic studies and new anti-cancer drug candidates for clinical practice. Moreover, in the last decade it has become apparent that galectins are important regulators of tumor angiogenesis, as well as microRNA. MicroRNAs have been validated to modulate endothelial cell migration or endothelial tube organization. In the present review we summarize the current knowledge regarding the role of marine-derived natural products, galectins and microRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Lenka Varinska
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Anthony Zulli
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak Republic; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic.
| | - Pavol Zubor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, 612 42 Brno, Czechia
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Martin Klabusay
- Department of Haemato-Oncology and Department of Internal Medicine - Cardiology, Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, 612 42 Brno, Czechia.
| |
Collapse
|
18
|
Ampofo E, Später T, Müller I, Eichler H, Menger MD, Laschke MW. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs 2015; 13:6774-91. [PMID: 26569265 PMCID: PMC4663553 DOI: 10.3390/md13116774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background: The marine-derived kinase inhibitor fascaplysin down-regulates the PI3K pathway in cancer cells. Since this pathway also plays an essential role in platelet signaling, we herein investigated the effect of fascaplysin on thrombosis. Methods: Fascaplysin effects on platelet activation, platelet aggregation and platelet-leukocyte aggregates (PLA) formation were analyzed by flow cytometry. Mouse dorsal skinfold chambers were used to determine in vivo the effect of fascaplysin on photochemically induced thrombus formation and tail-vein bleeding time. Results: Pre-treatment of platelets with fascaplysin reduced the activation of glycoprotein (GP)IIb/IIIa after protease-activated receptor-1-activating peptide (PAR-1-AP), adenosine diphosphate (ADP) and phorbol-12-myristate-13-acetate (PMA) stimulation, but did not markedly affect the expression of P-selectin. This was associated with a decreased platelet aggregation. Fascaplysin also decreased PLA formation after PMA but not PAR-1-AP and ADP stimulation. This may be explained by an increased expression of CD11b on leukocytes in PAR-1-AP- and ADP-treated whole blood. In the dorsal skinfold chamber model of photochemically induced thrombus formation, fascaplysin-treated mice revealed a significantly extended complete vessel occlusion time when compared to controls. Furthermore, fascaplysin increased the tail-vein bleeding time. Conclusion: Fascaplysin exerts anti-thrombotic activity, which represents a novel mode of action in the pleiotropic activity spectrum of this compound.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Isabelle Müller
- Institute for Hemostasiology and Transfusion Medicine, Saarland University, 66421 Homburg/Saar, Germany.
| | - Hermann Eichler
- Institute for Hemostasiology and Transfusion Medicine, Saarland University, 66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
19
|
Kumar S, Guru SK, Pathania AS, Manda S, Kumar A, Bharate SB, Vishwakarma RA, Malik F, Bhushan S. Fascaplysin Induces Caspase Mediated Crosstalk Between Apoptosis and Autophagy Through the Inhibition of PI3K/AKT/mTOR Signaling Cascade in Human Leukemia HL‐60 Cells. J Cell Biochem 2015; 116:985-97. [DOI: 10.1002/jcb.25053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Santosh Kumar Guru
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Anup Singh Pathania
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Sudhakar Manda
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Medicinal Chemistry DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Ajay Kumar
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Sandip B. Bharate
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Ram A. Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Fayaz Malik
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Shashi Bhushan
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| |
Collapse
|
20
|
Cytotoxic effects of fascaplysin against small cell lung cancer cell lines. Mar Drugs 2014; 12:1377-89. [PMID: 24608973 PMCID: PMC3967216 DOI: 10.3390/md12031377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/17/2014] [Accepted: 02/27/2014] [Indexed: 12/27/2022] Open
Abstract
Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.
Collapse
|
21
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
22
|
A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013; 18:3641-73. [PMID: 23529027 PMCID: PMC6270579 DOI: 10.3390/molecules18043641] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Cancer continues to be a major public health problem despite the efforts that have been made in the search for novel drugs and treatments. The current sources sought for the discovery of new molecules are plants, animals and minerals. During the past decade, the search for anticancer agents of marine origin to fight chemo-resistance has increased greatly. Each year, several novel anticancer molecules are isolated from marine organisms and represent a renewed hope for cancer therapy. The study of structure-function relationships has allowed synthesis of analogues with increased efficacy and less toxicity. In this report, we aim to review 42 compounds of marine origin and their derivatives that were published in 2011 as promising anticancer compounds.
Collapse
|
23
|
Wang YQ, Miao ZH. Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs 2013; 11:903-33. [PMID: 23502698 PMCID: PMC3705379 DOI: 10.3390/md11030903] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.
Collapse
Affiliation(s)
- Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | | |
Collapse
|
24
|
Feussner KD, Ragini K, Kumar R, Soapi KM, Aalbersberg WG, Harper MK, Carte B, Ireland CM. Investigations of the marine flora and fauna of the Fiji Islands. Nat Prod Rep 2012; 29:1424-62. [DOI: 10.1039/c2np20055d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lu Z, Ding Y, Li XC, Djigbenou DR, Grimberg BT, Ferreira D, Ireland CM, Van Wagoner RM. 3-bromohomofascaplysin A, a fascaplysin analogue from a Fijian Didemnum sp. ascidian. Bioorg Med Chem 2011; 19:6604-7. [PMID: 21696970 PMCID: PMC3205246 DOI: 10.1016/j.bmc.2011.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/29/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022]
Abstract
A new fascaplysin analogue, 3-bromohomofascaplysin A (1), along with two known analogues, homofascaplysin A (2) and fascaplysin (3), were isolated from a Fijian Didemnum sp. ascidian. The absolute configurations of 3-bromohomofascaplysin A (1) and homofascaplysin A (2) were determined via experimental and theoretically calculated ECD spectra. The differential activities of 1-3 against different blood-borne life stages of the malaria pathogen Plasmodium falciparum were assessed. Homofascaplysin A (2) displayed an IC(50) of 0.55±0.11 nM against ring stage parasites and 105±38 nM against all live parasites. Given the stronger resistance of ring stage parasites against most current antimalarials relative to the other blood stages, homofascaplysin A (2) represents a promising agent for treatment of drug resistant malaria.
Collapse
Affiliation(s)
- Zhenyu Lu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuanqing Ding
- Department of Pharmacognosy and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Xing-Cong Li
- Department of Pharmacognosy and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Daignon R. Djigbenou
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brian T. Grimberg
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daneel Ferreira
- Department of Pharmacognosy and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Chris M. Ireland
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M. Van Wagoner
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Skropeta D, Pastro N, Zivanovic A. Kinase inhibitors from marine sponges. Mar Drugs 2011; 9:2131-2154. [PMID: 22073013 PMCID: PMC3210622 DOI: 10.3390/md9102131] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/01/2011] [Accepted: 10/14/2011] [Indexed: 01/08/2023] Open
Abstract
Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included.
Collapse
Affiliation(s)
- Danielle Skropeta
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia; E-Mails: (N.P.); (A.Z.)
- Centre for Medicinal Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-42214360; Fax: +61-2-42214287
| | - Natalie Pastro
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia; E-Mails: (N.P.); (A.Z.)
| | - Ana Zivanovic
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia; E-Mails: (N.P.); (A.Z.)
| |
Collapse
|
27
|
|
28
|
Yan X, Chen H, Lu X, Wang F, Xu W, Jin H, Zhu P. Fascaplysin exert anti-tumor effects through apoptotic and anti-angiogenesis pathways in sarcoma mice model. Eur J Pharm Sci 2011; 43:251-9. [PMID: 21569843 DOI: 10.1016/j.ejps.2011.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/17/2011] [Accepted: 04/24/2011] [Indexed: 11/17/2022]
Abstract
Previous studies indicated that fascaplysin derived from marine sponge can induce tumor cell death by apoptosis and possesses anti-angiogenesis activity. In order to verify these two effects in animal model and to identify action mechanisms, we established a sarcoma mice model, and treated mice with fascaplysin for 10 days. The tumor tissues were examined morphologically and immunohistochemically. The differential gene expression was also investigated by mRNA array. Fascaplysin treatment resulted in a significant suppression of tumor growth. Typical apoptotic phenomena were observed by transmission electron microscope and histological detection. Tissue sections were stained with monoclonal antibody directed to proliferating cell nuclear antigen (PCNA) and CD31. The decreased PCNA and CD31 antigen staining indicate the reduction of tumor cell proliferation and tumor vasculature property of fascaplysin in vivo. Microarrays were used to examine the gene expression profiles of tumors on CapitalBio mouse genome oligo array. The regulated genes analyzed from the expression level showed overlapping gene ontology (GO) categories and pathway mapping. Our findings indicate that cell cycle arrest, apoptosis, regulation of actin cytoskeleton, and cell adhesion all play important roles in the onset of fascaplysin. Detailed analysis by real time PCR of key genes confirmed the experimental results of microarrays. From these findings, it can be considered that fascaplysin can inhibit the growth of S180 cell implanted tumor, and the action mechanisms may involve in apoptosis, anti-angiogenesis, or cell cycle arrest.
Collapse
Affiliation(s)
- Xiaojun Yan
- Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals (Basel) 2010; 3:482-513. [PMID: 27713265 PMCID: PMC4033966 DOI: 10.3390/ph3030482] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 12/15/2022] Open
Abstract
Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists.The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.
Collapse
|
30
|
Ren YJ, Yang L, Zhai ZH. Clinical value of inhibition of vascular endothelial growth factor in primary hepatocellular carcinoma after transcatheter arterial chemoembolization. Shijie Huaren Xiaohua Zazhi 2010; 18:1582. [DOI: 10.11569/wcjd.v18.i15.1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Waldmann H, Eberhardt L, Wittstein K, Kumar K. Silver catalyzed cascade synthesis of alkaloid ring systems: concise total synthesis of fascaplysin, homofascaplysin C and analogues. Chem Commun (Camb) 2010; 46:4622-4. [PMID: 20386812 DOI: 10.1039/c001350a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Herbert Waldmann
- Max Planck Institut für molekulare Physiologie, Otto-Hahn Strasse 11, 44227-Dortmund, Germany.
| | | | | | | |
Collapse
|
32
|
Zheng YL, Lu XL, Lin J, Chen HM, Yan XJ, Wang F, Xu WF. Direct effects of fascaplysin on human umbilical vein endothelial cells attributing the anti-angiogenesis activity. Biomed Pharmacother 2009; 64:527-33. [PMID: 19932581 DOI: 10.1016/j.biopha.2009.04.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022] Open
Abstract
Novel anti-angiogenesis activity of fascaplysin via VEGF blockage was recently revealed by our previous study in addition to the reported cyclin-dependent kinase 4 (CDK4) selective inhibition. To uncover more details of this pharmacologically prospective property, this study further investigated whether fascaplysin had direct anti-proliferation effects on human umbilical vein endothelial cells (HUVEC), which might be contributing to anti-angiogenesis. The results showed that G1 cell cycle arrest was induced by 2.6 μM fascaplysin in a time-dependent manner, and exhibited more sensitive than hepatocarcinoma cells BeL-7402 and Hela cells. Approximately 56.09 ± 2.63% of the cells were arrested at the G1 phase after 24h, and 64.94 ± 2.07% after 36 h, comparing to the 22.82 ± 1.2% in methanol treated cells. Apoptosis of HUVEC cells was induced by 1.3 μM fascaplysin and indicated by the sub-G1, Hoechst staining, terminal deoxynucleotidyl transferase dUTP-mediated nicked end labeling (TUNEL) assay, and annexin-V and propidium (PI) label. This apoptosis response was further confirmed by the detection of active caspase-3 and by western blotting using antibodies against Bax, Bcl-2, procaspase-8, and Bid, indicating that apoptosis in HUVEC cells may involve a mitochondria pathway, by the demonstration of an increase in the Bax/Bcl-2 ratio. Together, our results suggest that the anti-angiogenesis activity of fascaplysin is through the direct effects of cell cycle arrest and apoptosis on HUVEC.
Collapse
Affiliation(s)
- Y L Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P R China
| | | | | | | | | | | | | |
Collapse
|
33
|
Huang G, Chen L. Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 2009; 23:661-7. [PMID: 18986217 DOI: 10.1089/cbr.2008.0492] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor antiangiogenesis therapy has been in application for more than 30 years; however, its mechanism remains obscure. An intriguing hypothesis, which has recently gained acceptance, explores the possibility that antiangiogenesis therapy may transiently normalize tumor vasculature and its microenvironment, thus enhancing chemoradiotherapy efficacy. As the equilibrium between proangiogenesis and antiangiogenesis factors is perturbed in the tumor and tips to the former, tumor vasculature tends to exhibit abnormal structure and function. Abnormal vasculature is tightly associated with an uncharacteristic microenvironment, including uneven perfusion, hypoxia, and increased interstitial fluid pressure: This malignant microenvironment hinders the delivery of chemotherapeutics to tumor cells and desensitizes the malignant cells to radiation. Antiangiogenesis therapy can reverse the imbalance and transiently normalize this microenvironment and gives a new perspective for combining antiangiogenesis therapy and traditional chemoradiotherapy.
Collapse
Affiliation(s)
- Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | | |
Collapse
|
34
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 413] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
35
|
Freemantle SJ, Liu X, Feng Q, Galimberti F, Blumen S, Sekula D, Kitareewan S, Dragnev KH, Dmitrovsky E. Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem 2008; 102:869-77. [PMID: 17868090 DOI: 10.1002/jcb.21519] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer is characterized by uncontrolled cell division resulting from multiple mutagenic events. Cancer chemoprevention strategies aim to inhibit or reverse these events using natural or synthetic pharmacologic agents. Ideally, this restores normal growth control mechanisms. Diverse classes of compounds have been identified with chemopreventive activity. What unites many of them is an ability to inhibit the cell cycle by specifically modulating key components. This delays division long enough for cells to respond to mutagenic damage. In some cases, damage is repaired and in others cellular damage is sufficient to trigger apoptosis. It is now known that pathways responsible for targeting G1 cyclins for proteasomal degradation can be engaged pharmacologically. Emergence of induced cyclin degradation as a target for cancer therapy and chemoprevention in pre-clinical models is discussed in this article. Evidence for cyclin D1 as a molecular pharmacologic target and biological marker for clinical response is based on experience of proof of principle trials.
Collapse
Affiliation(s)
- Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|