1
|
Utpal BK, Dehbia Z, Zidan BMRM, Sweilam SH, Singh LP, Arunkumar MS, Sona M, Panigrahy UP, Keerthana R, Mandadi SR, Rab SO, Alshehri MA, Koula D, Suliman M, Nafady MH, Emran TB. Carotenoids as modulators of the PI3K/Akt/mTOR pathway: innovative strategies in cancer therapy. Med Oncol 2024; 42:4. [PMID: 39549201 DOI: 10.1007/s12032-024-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Cancer progression is primarily driven by the uncontrolled activation of cellular signaling pathways, with the PI3K/Akt/mTOR (PAMT) pathway playing a central role. This pathway significantly contributes to the proliferation and survival of cancer cells, and its hyperactivity is a major challenge in managing several types of malignancies. This article delves into the promising potential of carotenoids, natural pigments found in abundance in fruits and vegetables, as a novel therapeutic strategy for cancer treatment. By specifically targeting and inhibiting the PAMT pathway, carotenoids may effectively disrupt the growth and survival of cancer cells. The article examines the complex mechanisms underlying these interactions and highlights the obstacles faced in cancer treatment. It proposes a compelling approach to developing therapies that leverage natural products to target this critical pathway, offering a fresh perspective on cancer treatment. Further research is essential to enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - B M Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram (Rohtas) Bihar, Jamuhar, 821305, India
| | - M S Arunkumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - M Sona
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, India
| | - R Keerthana
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sandhya Rani Mandadi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Tuljaraopet, Telangana , 502313, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doukani Koula
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt.
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
2
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Garattini SK, Basile D, De Re V, Brisotto G, Miolo G, Canzonieri V, Aprile G, Corvaja C, Buriolla S, Garattini E, Puglisi F. The potential of retinoic acid receptors as prognostic biomarkers and therapeutic targets in gastric cancer. Front Oncol 2024; 14:1453934. [PMID: 39323992 PMCID: PMC11422079 DOI: 10.3389/fonc.2024.1453934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Background Gastric cancer is a heterogeneous collection of tumors characterized by low survival rates. All-trans retinoic acid (retinoic-acid) is a clinically useful therapeutic agent belonging to the chemical family of retinoids, which consists of both natural and synthetic derivatives of vitamin-A. Retinoids are essential components of the normal diet and they regulate different physiological processes. From a therapeutic point of view, retinoic-acid is the first example of clinically useful differentiating agent. Indeed, the differentiating properties of this compound have promoted the use of retinoic-acid as a standard of care in Acute-Promyelocytic-Leukemia, a rare form of acute myeloid leukemia. In this study, we determine the RNA expression of the six isoforms of Retinoic-Acid-Receptors (RARα/RARβ/RARγ/RXRα/RXRβ/RXRγ) in view of their potential use as gastric cancer progression markers and/or therapeutic targets. In addition, we evaluate associations between the expression of these receptors and a simplified molecular classification of stomach tumors as well as the clinical characteristics of the cohort of patients analyzed. Finally, we define the prognostic value of the various Retinoic-Acid-Receptors in gastric cancer. Methods In this single institution and retrospective RAR-GASTRIC study, we consider 55 consecutive gastric cancer patients. We extract total RNA from the pathological specimens and we perform a NanoString Assay using a customized panel of genes. This allows us to determine the expression levels of the RAR and RXR mRNAs as well as other transcripts of interest. Results Our data demonstrate ubiquitous expression of the RAR and RXR mRNAs in gastric cancers. High levels of RARα, RARβ, RXRα and RXRβ show a significant association with stage IV tumors, "de novo" metastatic disease, microsatellite-stable-status, epithelial-to-mesenchymal-transition, as well as PIK3CA and TP53 expression. Finally, we observe a worse overall-survival in gastric cancer patients characterized by high RARα/RARβ/RARγ/RXRβ mRNA levels. Conclusions In gastric cancer, high expression levels of RARα/RARβ/RARγ/RXRβ transcripts are associated with poor clinical and molecular characteristics as well as with reduced overall-survival. Our data are consistent with the idea that RARα, RARβ, RARγ and RXRβ represent potential prognostic markers and therapeutic targets of gastric cancer.
Collapse
Affiliation(s)
| | - Debora Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - Valli' De Re
- Immunopathology and Cancer Biomarkers/Bio-Proteomics Facility, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers/Bio-Proteomics Facility, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - Gianmaria Miolo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO National Cancer Institute, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General Hospital, Udine, Italy
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology (IEO) IRCCS, Milano, Italy
| | - Silvia Buriolla
- Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Departiment of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
4
|
Biomarkers Regulated by Lipid-Soluble Vitamins in Glioblastoma. Nutrients 2022; 14:nu14142873. [PMID: 35889829 PMCID: PMC9322598 DOI: 10.3390/nu14142873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), a highly lethal form of adult malignant gliomas with little clinical advancement, raises the need for alternative therapeutic approaches. Lipid-soluble vitamins have gained attention in malignant brain tumors owing to their pleiotropic properties and their anti-cancer potential have been reported in a number of human GBM cell lines. The aim of this paper is to systematically review and describe the roles of various biomarkers regulated by lipid-soluble vitamins, such as vitamins A, D, E, and K, in the pathophysiology of GBM. Briefly, research articles published between 2005 and 2021 were systematically searched and selected from five databases (Scopus, PubMed, Ovid MEDLINE, EMBASE via Ovid, and Web of Science) based on the study’s inclusion and exclusion criteria. In addition, a number of hand-searched research articles identified from Google Scholar were also included for the analysis. A total of 40 differentially expressed biomarkers were identified from the 19 eligible studies. The results from the analysis suggest that retinoids activate cell differentiation and suppress the biomarkers responsible for stemness in human GBM cells. Vitamin D appears to preferentially modulate several cell cycle biomarkers, while vitamin E derivatives seem to predominantly modulate biomarkers related to apoptosis. However, vitamin K1 did not appear to induce any significant changes to the Raf/MEK/ERK signaling or apoptotic pathways in human GBM cell lines. From the systematic analysis, 12 biomarkers were identified that may be of interest for further studies, as these were modulated by one or two of these lipid-soluble vitamins.
Collapse
|
5
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
6
|
ÖZ A, ÇELİK Ö, ÖVEY İS. Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.37212/jcnos.330858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Bo L, Wei B, Li C, Wang Z, Gao Z, Miao Z. Identification of potential key genes associated with glioblastoma based on the gene expression profile. Oncol Lett 2017; 14:2045-2052. [PMID: 28789435 PMCID: PMC5530036 DOI: 10.3892/ol.2017.6460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/03/2017] [Indexed: 01/10/2023] Open
Abstract
Gliomas are serious primary brain tumors. The aim of the present study was to identify potential key genes associated with the progression of gliomas. The GSE31262 gene expression profile data, which included 9 glioblastoma stem cells (GSCs) samples and 5 neural stem cell samples from adult humans, were downloaded from Gene Expression Omnibus (GEO) database. limma package was used to identify differentially expressed genes (DEGs). Based on STRING database and Pearson Correlation Coefficient (PCC), a co-expression network was constructed to comprehensively understand the interactions between DEGs, and function analysis of genes in the network was conducted. Furthermore, the DEGs that were associated with prognosis were analyzed. A total of 431 DEGs were identified, including 98 upregulated DEGs and 333 downregulated DEGs. Genes including PDZ binding kinase, topoisomerase (DNA) II α (TOP2A), cyclin dependent kinase (CDK) 1, cell division cycle 6 and NIMA related kinase 2 had a relatively high degree in the co-expression network. A set of genes including cyclin D1, CDK1 and CDK2 were significantly enriched in the cell cycle and p53 signaling pathway. Additionally, 69 DEGs were identified as genes involved in glioblastoma prognosis, such as CDK2 and TOP2A. The genes that had a higher degree and were associated with cell cycle and p53 signaling pathway may play pivotal roles in the progress of glioblastoma.
Collapse
Affiliation(s)
- Lijuan Bo
- Department of Infections, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zheng Gao
- Department of Neurosurgery, First Hospital of Dandong, Dandong, Liaoning 118015, P.R. China
| | - Zhuang Miao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
8
|
Podmirseg SR, Jäkel H, Ranches GD, Kullmann MK, Sohm B, Villunger A, Lindner H, Hengst L. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene 2016; 35:4580-90. [PMID: 26829051 PMCID: PMC4854979 DOI: 10.1038/onc.2015.524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
In addition to their role in programmed cell death, caspases exert non-lethal functions in diverse developmental processes including cell differentiation or tissue remodeling. Terminal cell cycle exit and differentiation can be promoted by increased level of the CDK inhibitor p27Kip1. Activated caspases cause proteolytic processing of p27, and we identified a novel caspase cleavage site in human p27 that removes a C-terminal fragment of 22 amino acids from the CDK inhibitor, including a phosphodegron. Thereby, caspases protect the inhibitor from SCF-Skp2-mediated degradation in S, G2 and M phases of the cell cycle. As a consequence, p27 becomes stabilized and remains an efficient nuclear inhibitor of cell cycle progression. Besides controlling cyclin/CDK kinase activity, p27 also regulates cytoskeletal dynamics, cell motility and cell invasion. Following processing by caspases, p27 fails to bind to RhoA and to inhibit its activation, and thereby abolishes the ability of p27 to stimulate cell migration and invasion. We propose that the stabilization of the CDK inhibitor and elimination of RhoA-induced cytoskeletal remodeling upon caspase processing could contribute to cell cycle exit and cytoskeletal remodeling during non-lethal caspase controlled differentiation processes.
Collapse
Affiliation(s)
- S R Podmirseg
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - H Jäkel
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - G D Ranches
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - M K Kullmann
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - B Sohm
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Université de Lorraine, Metz, France.,CNRS, LIEC, UMR 7360, Metz, France
| | - A Villunger
- Division of Developmental Immunology; Biocenter; Innsbruck Medical University; Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - H Lindner
- Division of Clinical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - L Hengst
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| |
Collapse
|
9
|
Applegate CC, Lane MA. Role of retinoids in the prevention and treatment of colorectal cancer. World J Gastrointest Oncol 2015; 7:184-203. [PMID: 26483874 PMCID: PMC4606174 DOI: 10.4251/wjgo.v7.i10.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/10/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Vitamin A and its derivatives, retinoids, have been widely studied for their use as cancer chemotherapeutic agents. With respect to colorectal cancer (CRC), several critical mutations dysregulate pathways implicated in progression and metastasis, resulting in aberrant Wnt/β-catenin signaling, gain-of-function mutations in K-ras and phosphatidylinositol-3-kinase/Akt, cyclooxygenase-2 over-expression, reduction of peroxisome proliferator-activated receptor γ activation, and loss of p53 function. Dysregulation leads to increased cellular proliferation and invasion and decreased cell-cell interaction and differentiation. Retinoids affect these pathways by various mechanisms, many involving retinoic acid receptors (RAR). RAR bind to all-trans-retinoic acid (ATRA) to induce the transcription of genes responsible for cellular differentiation. Although most research concerning the chemotherapeutic efficacy of retinoids focuses on the ability of ATRA to decrease cancer cell proliferation, increase differentiation, or promote apoptosis; as CRC progresses, RAR expression is often lost, rendering treatment of CRCs with ATRA ineffective. Our laboratory focuses on the ability of dietary vitamin A to decrease CRC cell proliferation and invasion via RAR-independent pathways. This review discusses our research and others concerning the ability of retinoids to ameliorate the defective signaling pathways listed above and decrease tumor cell proliferation and invasion through both RAR-dependent and RAR-independent mechanisms.
Collapse
|
10
|
Tan W, Gu Z, Shen B, Jiang J, Meng Y, Da Z, Liu H, Tao T, Cheng C. PTEN/Akt-p27kip1Signaling Promote the BM-MSCs Senescence and Apoptosis in SLE Patients. J Cell Biochem 2015; 116:1583-94. [PMID: 25649549 DOI: 10.1002/jcb.25112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 01/23/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Tan
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
- Department of Emergency; The Yangzhou First People's Hospital; Yangzhou 225001 China
| | - Zhifeng Gu
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Biyu Shen
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Jinxia Jiang
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Yan Meng
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Zhanyun Da
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Hong Liu
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Tao Tao
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Chun Cheng
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Medical College; Nantong University; Nantong 226001 China
| |
Collapse
|
11
|
Liang C, Yang L, Guo S. All- trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol Lett 2015; 9:2833-2838. [PMID: 26137156 DOI: 10.3892/ol.2015.3120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a derivative of vitamin A that can induce differentiation and apoptosis, as well as inhibit proliferation, in glioma cells. However, the effect of ATRA on the migration and invasiveness of glioma remains poorly understood. In addition, although it is universally accepted that ATRA can induce apoptosis and inhibit proliferation in glioma cells, the association between the concentration and effects of ATRA remain unclear. Therefore, the present study investigated the effects of ATRA treatment on the migration, invasion, apoptosis and proliferation of glioma cells. The U87 and SHG44 glioma cell lines were treated with various concentrations of ATRA, consisting of 0, 5, 10, 20 and 40 µmol/l. A scratch wound healing assay and a Matrigel invasion assay were used to investigate cell migration and invasion, respectively. Flow cytometry was performed to investigate apoptosis and cell cycle distribution. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression of matrix metalloproteinase (MMP)-2 and -9 in each cell treatment group. Following treatment with ATRA, the migration, invasion and proliferation of the glioma cells were significantly inhibited, and the apoptosis rate was significantly increased compared with that of the blank control group. Furthermore, a dose-effect association was identified between each effects and ATRA treatment. The mRNA and protein expression of MMP-2 in U87 glioma cells was not significantly affected following treatment with low concentrations of ATRA, consisting of 5 and 10 µmol/l ATRA, compared with the expression in the control group (P>0.05). However, treatment with high concentrations of ATRA, consisting of 20 and 40 µmol/l ATRA, significantly downregulated the expression levels of MMP-2 in U87 cells. In contrast to U87 cells, the administration of ATRA treatment to SHG44 glioma cells resulted in a significant and dose-dependent downregulation in MMP-2 mRNA and protein expression (P<0.01). In addition, significant downregulation of MMP-9 expression was identified in the two glioma cell lines (P<0.01). The results of the present study indicate that treatment with ATRA may inhibit migration, invasion and proliferation, and promote apoptosis in glioma cells. Furthermore, the current study indicates that the inhibition of glioma cell invasion by ATRA may be partially associated with its effect ability to downregulate MMP expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
13
|
Modulation of urokinase plasminogen activator system by poly(ADP-ribose)polymerase-1 inhibition. Cytotechnology 2014; 68:783-94. [PMID: 25471275 DOI: 10.1007/s10616-014-9829-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022] Open
Abstract
The urokinase plasminogen activator (uPA) system is a complex regulator of extracellular proteolysis which is involved in various physiological and pathological processes. The major components of this system are the serine protease uPA, two inhibitors PAI-1 and PAI-2, and the receptor uPAR. It has been previously shown by several groups that the uPA system has an important role in cancer progression and therefore its possible prognostic and therapeutic value has been evaluated. The aim of this study is to tackle the role of poly(ADP-ribosyl)ation in the induction of uPA activity in a glioblastoma cell line, A1235. This cell line is sensitive to alkylation damage and is a model for drug treatment. The components of the uPA system and the level of DNA damage were analyzed after alkylation agent treatment in combination with poly(ADP-ribose)polymerase-1 (PARP-1) inhibition. Here we show that the increase in uPA activity results from the net balance change between uPA and its inhibitor at mRNA level. Further, PARP-1 inhibition exerts its influence on uPA activity through DNA damage increase. Involvement of several signaling pathways, as well as cell specific regulation influencing the uPA system are discussed.
Collapse
|
14
|
Choschzick I, Hirseland E, Cramer H, Schultz S, Leppert J, Tronnier V, Zechel C. Responsiveness of stem-like human glioma cells to all-trans retinoic acid and requirement of retinoic acid receptor isotypes α, β and γ. Neuroscience 2014; 279:44-64. [PMID: 25171789 DOI: 10.1016/j.neuroscience.2014.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) is required for development and homeostasis of the normal mammalian brain and may play a role in the initiation and progression of malignant brain tumors, such as the glioblastoma multiforme (GBM) and the gliosarcoma (Gsarc). The subpopulation of stem-like glioma cells (SLGCs) was shown to resist standard glioma radio-/chemotherapy and to propagate tumor regrowth. We used phenotypically distinct, self-renewing SLGC lines from six human GBMs, two Gsarcs, and two subcloned SLGC derivatives in order to investigate their responsiveness to all-trans retinoic acid (atRA) and to identify the RA-receptor (RAR) isotypes involved. In general, atRA exerted a pro-proliferative and pro-survival effect on SLGCs, though the efficacy was distinct. By means of RAR isotype-selective retinoids we disclosed that these effects were mediated by RARα and RARγ, except for one SLGC line, in which the pro-proliferative signal was induced by the RARβ-selective retinoid. Only one GBM-derived cell line (T1338) and a subpopulation of another (T1389) displayed neural differentiation in response to atRA. Differentiation of T1338 was induced by RARα and RARγ isotype-selective retinoids, associated with down-regulation of Sox2, and the failure to induce orthotopic tumors in the brains of SCID mice. The differential responsiveness of the SLGC lines appeared unrelated to the expression of RARβ, as (i) atRA augmented RAR isotype mRNA expression and particularly rarβ mRNA in all SLGC lines, (ii) rarβ promoter hypomethylation in the SLGC lines was not related to differentiation and (iii) the induction of T1338 differentiation was by RARα- and RARγ-selective ligands.
Collapse
Affiliation(s)
- I Choschzick
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - E Hirseland
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - H Cramer
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - S Schultz
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - J Leppert
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - V Tronnier
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - C Zechel
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany.
| |
Collapse
|
15
|
Tocotrienol-rich fraction, [6]-gingerol and epigallocatechin gallate inhibit proliferation and induce apoptosis of glioma cancer cells. Molecules 2014; 19:14528-41. [PMID: 25221872 PMCID: PMC6271025 DOI: 10.3390/molecules190914528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/28/2022] Open
Abstract
Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.
Collapse
|
16
|
Liang C, Guo S, Yang L. Effects of all‑trans retinoic acid on VEGF and HIF‑1α expression in glioma cells under normoxia and hypoxia and its anti‑angiogenic effect in an intracerebral glioma model. Mol Med Rep 2014; 10:2713-9. [PMID: 25201493 DOI: 10.3892/mmr.2014.2543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 05/21/2014] [Indexed: 11/06/2022] Open
Abstract
All‑trans retinoic acid (ATRA) is one of the most potent inducers of differentiation and is capable of inducing differentiation and apoptosis in glioma cells. However, the effect of ATRA on glioma angiogenesis is yet to be elucidated. The present study investigated the effects of ATRA on the expression of vascular endothelial growth factor (VEGF) and hypoxia‑inducible factor‑1α (HIF‑1α) in various glioma cell lines under normoxia and hypoxia. The effect of ATRA on angiogenesis in a rat intracerebral glioma model was also investigated, with the aim of revealing the effect of ATRA on glioma angiogenesis. In the present study, U‑87 MG and SHG44 glioma cells were treated with ATRA at various concentrations (0, 5, 10, 20 and 40 µmol/l) under normoxia or hypoxia. Quantitative polymerase chain reaction and western blot analysis were used to investigate VEGF and HIF‑1α mRNA and protein expression, respectively. An intracerebral glioma model was generated using intracerebral implantation of C6 glioma cells into rats. Tumor‑bearing rats were treated with ATRA at different doses (0, 5 and 10 mg/kg/day) for two weeks, and immunohistochemical assays were performed to detect the cluster of differentiation 34‑positive cells in order to evaluate the microvessel density (MVD) in each group. Following ATRA treatment, the expression of VEGF and HIF‑1α was found to vary among the different concentration groups. In the glioma cells in the lower concentration groups (5 and 10 µmol/l ATRA), a significant increase in VEGF and HIF‑1α expression was observed. Conversely, a significant decrease in VEGF and HIF‑1α expression was found in the glioma cells in the high ATRA concentration group (40 µmol/l), compared with that in the cells in the control group. Furthermore, in the rat intracerebral glioma model, ATRA decreased glioma MVD, particularly in the high‑dose group (10 mg/kg/day), compared with the control group. These results suggest that ATRA may exhibit a dose‑dependent effect on glioma angiogenesis and may inhibit glioma angiogenesis in vivo.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
17
|
Abdul Rahman A, A Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ. Gamma-tocotrienol and hydroxy-chavicol synergistically inhibits growth and induces apoptosis of human glioma cells. Altern Ther Health Med 2014; 14:213. [PMID: 24980711 PMCID: PMC4087240 DOI: 10.1186/1472-6882-14-213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022]
Abstract
Background Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment. Methods In this study, we investigated the interaction of GTT and HC and its mode of cell death on glioma cell lines. GTT or HC alone and in combination were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) by [3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)- 2H- tetrazolium, inner salt] MTS assay. The interactions of each combination were evaluated by using the combination index (CI) obtained from an isobologram. Results Individually, GTT or HC displayed mild growth inhibitory effects against glioma cancer cell lines at concentration values ranging from 42–100 μg/ml and 75–119 μg/ml respectively. However, the combination of sub-lethal doses of GTT + HC dramatically enhanced the inhibition of glioma cancer cell proliferation and exhibited a strong synergistic effect on 1321N1 with CI of 0.55, and CI = 0.54 for SW1783. While in LN18 cells, moderate synergistic interaction of GTT + HC was observed with CI value of 0.73. Exposure of grade II, III and IV cells to combined treatments for 24 hours led to increased apoptosis as determined by annexin-V FITC/PI staining and caspase-3 apoptosis assay, showing caspase-3 activation of 27%, 7.1% and 79% respectively. Conclusion In conclusion, combined treatments with sub-effective doses of GTT and HC resulted in synergistic inhibition of cell proliferation through the induction of apoptosis of human glioma cells in vitro.
Collapse
|
18
|
GSK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin. Toxicol Lett 2013; 222:212-23. [DOI: 10.1016/j.toxlet.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
|
19
|
Friedman MD, Jeevan DS, Tobias M, Murali R, Jhanwar-Uniyal M. Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Oncol Rep 2013; 30:1645-50. [PMID: 23877261 DOI: 10.3892/or.2013.2625] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/21/2013] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, portends a poor prognosis despite current treatment modalities. Recurrence of tumor growth is attributed to the presence of treatment-resistant cancer stem cells (CSCs). The targeting of these CSCs is therefore essential in the treatment of this disease. Mechanistic target of rapamycin (mTOR) forms two multiprotein complexes, mTORC1 and mTORC2, which regulate proliferation and migration, respectively. Aberrant function of mTOR has been shown to be present in GBM CSCs. All-trans retinoic acid (ATRA), a derivative of retinol, causes differentiation of CSCs as well as normal neural progenitor cells. The purpose of this investigation was to delineate the role of mTOR in CSC maintenance, and to establish the mechanism of targeting GBM CSCs using differentiating agents along with inhibitors of the mTOR pathways. The results demonstrated that ATRA caused differentiation of CSCs, as demonstrated by the loss of the stem cell marker Nestin. These observations were confirmed by western blotting, which demonstrated a time-dependent decrease in Nestin expression following ATRA treatment. This effect occurred despite combination with mTOR (rapamycin), PI3K (LY294002) and MEK1/2 (U0126) inhibitors. Expression of activated extracellular signal-regulated kinase 1/2 (pERK1/2) was enhanced following treatment with ATRA, independent of mTOR pathway inhibitors. Proliferation of CSCs, determined by neurosphere diameter, was decreased following treatment with ATRA alone and in combination with rapamycin. The motility of GBM cells was mitigated by treatment with ATRA, rapamycin and LY29002 alone. However, combination treatment augmented the inhibitory effect on migration suggesting synergism. These findings indicate that ATRA-induced differentiation is mediated via the ERK1/2 pathway, and underscores the significance of including differentiating agents along with inhibitors of mTOR pathways in the treatment of GBM.
Collapse
Affiliation(s)
- Marissa D Friedman
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
20
|
Kyritsis AP, Bondy ML, Levin VA. Modulation of glioma risk and progression by dietary nutrients and antiinflammatory agents. Nutr Cancer 2011; 63:174-84. [PMID: 21302177 PMCID: PMC3047463 DOI: 10.1080/01635581.2011.523807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gliomas are tumors of glial origin formed in the central nervous system and exhibit profound morphological and genetic heterogeneity. The etiology of this heterogeneity involves an interaction between genetic alterations and environmental risk factors. Scientific evidence suggests that certain natural dietary components, such as phytoestrogens, flavonoids, polyunsaturated fatty acids, and vitamins, may exert a protective effect against gliomas by changing the nature of the interaction between genetics and environment. Similarly, certain antiinflammatory drugs and dietary modifications, such as methionine restriction and the adoption of low-calorie or ketogenic diets, may take advantage of glioma and normal glial cells' differential requirements for glucose, methionine, and ketone bodies and may, therefore, be effective as part of preventive or treatment strategies for gliomas. Treatment trials of glioma patients and chemoprevention trials of individuals with a known genetic predisposition to glioma using the most promising of these agents, such as the antiinflammatory drugs curcumin and gamma-linolenic acid, are needed to validate or refute these agents' putative role in gliomas.
Collapse
|
21
|
Yan KH, Yao CJ, Chang HY, Lai GM, Cheng AL, Chuang SE. The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol Carcinog 2010; 49:235-46. [PMID: 19908241 DOI: 10.1002/mc.20593] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Troglitazone (TGZ) is a synthetic thiazolidinedione drug belonging to a group of potent peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists known to inhibit proliferation, alter cell cycle regulation, and induce apoptosis in various cancer cell types. TGZ is an oral anti-type II diabetes drug that can reverse insulin resistance. For more then 100 yr, aspirin, a nonselective cyclooxygenase (COX) inhibitor, has been successfully used as an anti-inflammatory drug. Recently, Aspirin (ASA) and some other nonsteroidal anti-inflammatory drugs (NSAIDs) have drawn much attention for their protective effects against colon cancer and cardiovascular disease; it has been observed that ASA's anti-tumor effect can be attributed to inhibition of cell cycle progression, induction of apoptosis, and inhibition of angiogenesis. In this report we demonstrate for the first time that, when administered in combination, TGZ and ASA can produce a strong synergistic effect in growth inhibition and G(1) arrest in lung cancer CL1-0 and A549 cells. Examination by colony formation assay revealed an even more profound synergy. In Western blot, combined TGZ and ASA also could downregulate Cdk2, E2F-1, cyclin B1, cyclin D3 protein, and the ratio of phospho-Rb/Rb. Importantly, apoptosis was synergistically induced by the combination treatment, as evidenced by caspase-3 activation and PARP cleavage. The involvement of PI3K/Akt inhibition and p27 upregulation, as well as hypophosphorylation of Rac1 at ser71, were demonstrated. Taken together, these results suggest that clinically achievable concentrations of TGZ and ASA used in combination may produce a strong anticancer synergy that warrants further investigation for its clinical applications.
Collapse
Affiliation(s)
- Kun-Huang Yan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
22
|
Yawata T, Nakai E, Park KC, Chihara T, Kumazawa A, Toyonaga S, Masahira T, Nakabayashi H, Kaji T, Shimizu K. Enhanced expression of cancer testis antigen genes in glioma stem cells. Mol Carcinog 2010; 49:532-44. [DOI: 10.1002/mc.20614] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27. Exp Cell Res 2009; 315:2974-81. [DOI: 10.1016/j.yexcr.2009.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
|
24
|
Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, Wadhwa R. Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 2009; 100:1740-7. [PMID: 19575749 PMCID: PMC11159946 DOI: 10.1111/j.1349-7006.2009.01236.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 01/26/2023] Open
Abstract
Ashwagandha (Withania somnifera) is widely used in the Indian traditional system of medicine, Ayurveda. Although it is claimed to have a large variety of health-promoting effects, including therapeutic effects on stress and disease, the mechanisms of action have not yet been determined. In the present study, we aimed to investigate the growth inhibition and differentiation potential of the alcoholic extract of Ashwagandha leaves (i-Extract), its different constituents (Withaferin A, Withanone, Withanolide A) and their combinations on glioma (C6 and YKG1) cell lines. Withaferin A, Withanone, Withanolide A and i-Extract markedly inhibited the proliferation of glioma cells in a dose-dependent manner and changed their morphology toward the astrocytic type. Molecular analysis revealed that the i-Extract and some of its components caused enhanced expression of glial fibrillary acidic protein, change in the immunostaining pattern of mortalin from perinuclear to pancytoplasmic, delay in cell migration, and increased expression of neuronal cell adhesion molecules. The data suggest that the i-Extract and its components have the potential to induce senescence-like growth arrest and differentiation in glioma cells. These assays led us to formulate a unique combination formula of i-Extract components that caused enhanced differentiation of glial cells.
Collapse
Affiliation(s)
- Navjot Shah
- National Institute of Advanced Industrial Science and Technology, University if Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|