1
|
Liu Q, Zhou Y, Tan L, Chen Y, Zhou X, Liu J. Autophagy Attenuates Oxidative Stress-Induced Collagen Degradation in Vaginal Fibroblasts: Implications for Pelvic Organ Prolapse. Int Urogynecol J 2025; 36:663-676. [PMID: 39847069 DOI: 10.1007/s00192-024-06031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
INTRODUCTION AND HYPOTHESIS The relationship between autophagy and pelvic organ prolapse (POP) remains unknown. The aim of this novel experimental study, utilizing tissue samples derived from women undergoing gynecological surgery, is to investigate the role of autophagy in mitigating collagen degradation in human vaginal fibroblasts induced by oxidative stress, with particular emphasis on its implications in the pathogenesis of POP. Exploring the role of autophagy in protecting against collagen degradation and cellular senescence in human vaginal fibroblasts under oxidative stress may offer new insights into therapeutic strategies for conditions such as POP. METHODS This study consists of laboratory-based experimental research that utilizes tissue samples collected from female patients undergoing gynecological surgery to analyze the role of autophagy in collagen degradation induced by oxidative stress. By treating with different concentrations of hydrogen peroxide (H2O2) and using rapamycin (RAPA) and 3-methyladenine (3-MA) as autophagy activators and inhibitors respectively, the effects on human vaginal fibroblasts (HVFs) were evaluated. Cell viability was determined using the Cell Counting Kit-8 test. Cellular senescence was determined with senescence-associated-β-galactosidase labeling and western blotting to identify the expression of p21 and p53. Reactive oxygen species (ROS) were determined with 2,7-dichlorofluorescin diacetate. Additionally, western blotting was used to establish collagen I, collagen III, microtubule-associated protein 1A/1B-light chain 3 (LC3), Beclin-1, and p62 and reverse transcription-quantitative polymerase chain reaction was used to determine the mRNA levels of COL3A1, COL1A1, TIMP1, MMP9, LC3, and Beclin-1 to investigate collagen metabolism and autophagic activity. RESULTS The results showed that high-dose H2O2 significantly increased ROS levels, cell senescence, and collagen degradation in HVFs. The combined use of RAPA significantly reduced ROS levels, collagen degradation, and cell senescence, but this protective effect disappeared when 3-MA was added. Nevertheless, co-treatment of HVFs with RAPA, H2O2, and 3-MA abolished the positive impact of RAPA via boosting autophagy resistance. CONCLUSIONS Autophagy inhibits collagen degeneration and cellular senescence caused by oxidative stress.
Collapse
Affiliation(s)
- Qihuang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - YouJun Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Liping Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Xingnan Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Dauplais M, Romero S, Lazard M. Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells. Biol Trace Elem Res 2025; 203:1453-1464. [PMID: 38777874 DOI: 10.1007/s12011-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Stephane Romero
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France.
| |
Collapse
|
3
|
Fan TWM, Winnike J, Al-Attar A, Belshoff AC, Lorkiewicz PK, Tan JL, Wu M, Higashi RM, Lane AN. Differential Inhibition of Anaplerotic Pyruvate Carboxylation and Glutaminolysis-Fueled Anabolism Underlies Distinct Toxicity of Selenium Agents in Human Lung Cancer. Metabolites 2023; 13:774. [PMID: 37512481 PMCID: PMC10383978 DOI: 10.3390/metabo13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.
Collapse
Affiliation(s)
- Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Jason Winnike
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Alexander C. Belshoff
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Pawel K. Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Jin Lian Tan
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Min Wu
- Seahorse Bioscience, Billerica, MA 01862, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| |
Collapse
|
4
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
5
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
6
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
7
|
Muñoz VA, Dimarco Palencia FCD, Sancho MI, Miskoski S, García NA, Ferrari GV, Montaña MP. Experimental and Theoretical Study of the Stability of the Complex Fisetin-Cu(II) and A Comparative Study of Free Ligand and Complex Interaction with Molecular Singlet Oxygen. Photochem Photobiol 2020; 96:815-825. [PMID: 31912514 DOI: 10.1111/php.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
In this work, the flavonol fisetin was selected in order to study its reactivity against Cu(II), a metal ion of interest in biological media and industry. The stoichiometry and apparent formation constant of the complex in ethanolic medium at 25°C were evaluated using spectrophotometric techniques. The resulting stoichiometry was a 1:1 ligand:metal complex, and a log K = 5.17 ± 0.12 was determined. Since two possible chelation sites can be proposed for the complex formation, quantum chemistry calculations were performed on these structures. Calculations suggest that the hydroxyl-keto site is more stable for the complex formation than the catechol site. Flavonoids could exert protection against oxidative damage caused by reactive oxygen species, and this biological activity could be affected by chelation with metal ions. This led us to perform a study on the interaction of both, free flavonoid and complex, with reactive oxygen species. Our results showed both compounds quench molecular singlet oxygen photogenerated with visible light, mainly in a physical fashion. In order to analyze a possible protective effect of flavonoid and its complex against oxidative damage in biological environments, the amino acid tryptophan was selected as a model oxidation system. Free flavonoid does not have a marked protective effect, whereas its complex showed a relevant protective effect.
Collapse
Affiliation(s)
- Vanesa A Muñoz
- Facultad de Química, Bioquímica y Farmacia, Área de Química Física, Instituto de Química de San Luis INQUISAL (CONICET-UNSL), San Luis, Argentina
| | - Frida C D Dimarco Palencia
- Facultad de Química, Bioquímica y Farmacia, Área de Química Física, Instituto de Química de San Luis INQUISAL (CONICET-UNSL), San Luis, Argentina
| | - Matias I Sancho
- Facultad de Química, Bioquímica y Farmacia, Área de Química Física, Instituto Multidisciplinario de Investigaciones Biológicas San Luis IMIBIO-SL (CONICET-UNSL), San Luis, Argentina
| | - Sandra Miskoski
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Norman A García
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Gabriela V Ferrari
- Facultad de Química, Bioquímica y Farmacia, Área de Química Física, Instituto de Química de San Luis INQUISAL (CONICET-UNSL), San Luis, Argentina
| | - María Paulina Montaña
- Facultad de Química, Bioquímica y Farmacia, Área de Química Física, Instituto de Química de San Luis INQUISAL (CONICET-UNSL), San Luis, Argentina
| |
Collapse
|
8
|
Guo C, Wang L, Zhao Y, Jiang B, Luo J, Shi D. BOS-93, a novel bromophenol derivative, induces apoptosis and autophagy in human A549 lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathway. Exp Ther Med 2019; 17:3848-3858. [PMID: 30988770 PMCID: PMC6447907 DOI: 10.3892/etm.2019.7402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
The novel bromophenol derivative, 3-(3-bromo-5-methoxy-4-(3-(piperidin-1-yl)propoxy)benzylidene)-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide (BOS-93), was synthesized in the CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (Qingdao, China). Experimental studies have demonstrated that it could induce apoptosis and autophagy in human A549 lung cancer cells, and it could also inhibit tumor growth in human A549 lung cancer xenograft models. In the present study, the molecular pathways underlying these effects were identified. The results demonstrated that BOS-93 could inhibit cell proliferation in A549 cells and block A549 cells at the G0/G1 phase. Furthermore, BOS-93 could induce apoptosis, activate caspase-3 and poly ADP ribose polymerase, and increase the B cell lymphoma (Bcl)-2 associated X protein/Bcl-2 ratio. Notably, BOS-93 could also induce autophagy in A549 cells. BOS-93-induced autophagy was confirmed by detecting light chain 3 (LC3)-I/LC3-II conversion and increasing expression of beclin1 and autophagy-related gene 14. Notably, BOS-93-induced autophagy could be inhibited by the autophagy inhibitor 3-MA. Flow cytometry, transmission electron microscopy (TEM) and western blot analysis indicated that BOS-93 induced apoptosis and autophagy activities by deactivating phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin and activating the mitogen-activated protein kinase signaling pathway. The present findings indicated that BOS-93 might be a novel anti-cancer agent for treatment of human lung cancer.
Collapse
Affiliation(s)
- Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Yue Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Bo Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Jiao Luo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
9
|
Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 2018; 8:metabo8030040. [PMID: 29996515 PMCID: PMC6161115 DOI: 10.3390/metabo8030040] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O2, nutrients, and treatment agents. More importantly, 2D cultures lack cell–cell and cell–extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies. Magnetic 3D bioprinting (M3DB) can circumvent these issues by utilizing nanoparticles that enable spheroid formation and growth via magnetizing cells. M3DB spheroids have been shown to emulate tissue and tumor microenvironments while exhibiting higher resistance to toxic agents than their 2D counterparts. It is, however, unclear if and how such 3D systems impact cellular metabolic networks, which may determine altered toxic responses in cells. We employed a Stable Isotope-Resolved Metabolomics (SIRM) approach with 13C6-glucose as tracer to map central metabolic networks both in 2D cells and M3DB spheroids formed from lung (A549) and pancreatic (PANC1) adenocarcinoma cells without or with an anti-cancer agent (sodium selenite). We found that the extent of 13C-label incorporation into metabolites of glycolysis, the Krebs cycle, the pentose phosphate pathway, and purine/pyrimidine nucleotide synthesis was largely comparable between 2D and M3DB culture systems for both cell lines. The exceptions were the reduced capacity for de novo synthesis of pyrimidine and sugar nucleotides in M3DB than 2D cultures of A549 and PANC1 cells as well as the presence of gluconeogenic activity in M3DB spheroids of PANC1 cells but not in the 2D counterpart. More strikingly, selenite induced much less perturbation of these pathways in the spheroids relative to the 2D counterparts in both cell lines, which is consistent with the corresponding lesser effects on morphology and growth. Thus, the increased resistance of cancer cell spheroids to selenite may be linked to the reduced capacity of selenite to perturb these metabolic pathways necessary for growth and survival.
Collapse
|
10
|
Garnica P, Encío I, Plano D, Palop JA, Sanmartín C. Combined Acylselenourea-Diselenide Structures: New Potent and Selective Antitumoral Agents as Autophagy Activators. ACS Med Chem Lett 2018; 9:306-311. [PMID: 29670691 DOI: 10.1021/acsmedchemlett.7b00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
A series of 16 new diselenide-acylselenourea conjugates have been designed following the fragment-based drug strategy. Compound in vitro cytotoxic potential was evaluated against six human cancer cell lines and two nonmalignant derived cell lines with the aim of determining their potency and selectivity. Nine derivatives exhibited GI50 values under 10 μM in at least four cancer cell lines. A clear gap situated phenyl substitution over heterocyclic moieties in terms of selectivity. Among carbocyclic compounds, derivatives 2 and 7 significantly inhibited cell growth of breast adenocarcinoma cells with GI50 values of 1.30 and 0.15 nM, respectively, with selectivity indexes 12 and 121 times higher than those obtained for doxorubicin. Preliminary mechanistic studies indicated that compounds 2 and 7 induce cell cycle arrest and autophagy-dependent cell death evidenced by the blockage of cell death with pretreatment with wortmannin or chloroquine and confirmed by the upregulation of the markers Beclin1 and LC3B in MCF-7 cells.
Collapse
Affiliation(s)
- Pablo Garnica
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Daniel Plano
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Juan A. Palop
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, Faculty of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
12
|
Cheng SH, Tseng YM, Wu SH, Tsai SM, Tsai LY. Whey Protein Concentrate Renders MDA-MB-231 Cells Sensitive to Rapamycin by Altering Cellular Redox State and Activating GSK3β/mTOR Signaling. Sci Rep 2017; 7:15976. [PMID: 29162840 PMCID: PMC5698404 DOI: 10.1038/s41598-017-14159-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Whey protein concentrate (WPC) is an amino acid-rich supplement that has been shown to increase cellular antioxidant capacity. Mammalian target of rapamycin (mTOR) is a crucial regulator of signaling in mammalian cells, and serves as a therapeutic target for triple-negative breast cancer (TNBC). This study was designed to investigate the effect of combining WPC with rapamycin on MDA-MB-231 human breast cancer cells. These cells were found to be insensitive to rapamycin and exhibited higher glutathione (GSH) and reactive oxygen species levels than non-tumorigenic MCF-10A cells. However, for MDA-MB-231 cells, the half maximal inhibitory concentration of rapamycin was lower when this drug was administered in combination with WPC than when used alone. Furthermore, combining WPC with rapamycin depleted GSH levels and reduced Nrf2 nuclear accumulation. In addition, WPC activated GSK3β/mTOR signaling, and GSK3β appeared to be involved in the WPC-mediated Nrf2 reduction and mTOR activation. In conclusion, WPC induced rapamycin sensitivity in MDA-MB-231 cells by altering their redox state and activating GSK3β/mTOR signaling. These results not only suggest a novel therapeutic approach for breast cancer treatment, but also provide insight into the critical pathways affecting the resistance to mTOR inhibition observed in a subgroup of TNBC patients.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung, 80702, Taiwan
| | - Yang-Ming Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, No. 386, Ta-chung 1 Rd., Kaohsiung, 81346, Taiwan
| | - Szu-Hsien Wu
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei, 11221, Taiwan.,Department of Surgery, School of Medicine, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei, 11221, Taiwan
| | - Shih-Meng Tsai
- Department of Environmental and Public Healthy, School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung, 80702, Taiwan.
| | - Li-Yu Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung, 80702, Taiwan.
| |
Collapse
|
13
|
Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638431 PMCID: PMC5468563 DOI: 10.1155/2017/5653643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (γ-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte.
Collapse
|
14
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
15
|
Cui Z, Li C, Li X, Zhang Q, Zhang Y, Shao J, Zhou K. Sodium selenite (Na2SeO3) induces apoptosis through the mitochondrial pathway in CNE-2 nasopharyngeal carcinoma cells. Int J Oncol 2015; 46:2506-14. [PMID: 25891011 DOI: 10.3892/ijo.2015.2968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effect of sodium selenite (Na2SeO3) on proliferation, cell cycle, apoptosis as well as the underlying mechanism in CNE-2 nasopharyngeal carcinoma (NPC) cells. The CNE-2 cell line was treated with different concentrations of Na2SeO3, and the effects of Na2SeO3 on cell viability and proliferation were evaluated using Cell Counting kit-8 (CCK-8) assay. Cellular apoptosis and cell cycle were evaluated by flow cytometry following Annexin V‑FITC/PI double staining and PI single staining respectively; nuclei morphology stained with DAPI and Hoechst 333258 was observed under a fluorescence microscope, while DNA fragmentation was detected by agarose gel electrophoresis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed using fluorescent staining assays. Expression of Bcl-XL, Bax, Bak, and caspase-3 activation were examined by western blotting. The results showed that Na2SeO3 inhibited proliferation and induced apoptosis of CNE-2 cells in a dose- and time-dependent manner. Na2SeO3 at low concentrations induced cell cycle arrest at S phase, while high concentrations of Na2SeO3 induced cell cycle arrest at G0/G1 phase. Furthermore, Na2SeO3 increased ROS level and decreased MMP, upregulated caspase-3 activity and the expression of Bak and Bax but simultaneously downregulated Bcl-XL. In conclusion, our studies demonstrated that Na2SeO3 had significant anti-proliferative and apoptosis-inducing effects via arresting cell cycle and regulating mitochondria-mediated intrinsic caspase pathway in CNE-2 NPC cells, suggesting that Na2SeO3 might have therapeutic potentials in the treatment of NPC.
Collapse
Affiliation(s)
- Zhongyi Cui
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Qunzhou Zhang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Yuefei Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Jingjing Shao
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Keyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
16
|
Su X, Wang P, Yang S, Zhang K, Liu Q, Wang X. Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS. Int J Biochem Cell Biol 2015; 60:82-92. [PMID: 25578562 DOI: 10.1016/j.biocel.2014.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/15/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
Abstract
Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuang Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Kim E, Yoon SY, Shin YJ. Oxidative Stress in Cornea. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-1935-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Zimmerman MT, Bayse CA, Ramoutar RR, Brumaghim JL. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding. J Inorg Biochem 2014; 145:30-40. [PMID: 25600984 DOI: 10.1016/j.jinorgbio.2014.12.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants.
Collapse
Affiliation(s)
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, VA 23529, USA
| | - Ria R Ramoutar
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA
| | - Julia L Brumaghim
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
19
|
Wallenberg M, Misra S, Björnstedt M. Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol 2014; 114:377-86. [PMID: 24529300 DOI: 10.1111/bcpt.12207] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/21/2013] [Indexed: 01/05/2023]
Abstract
Selenium is an essential trace element with growth-modulating properties. Decades of research clearly demonstrate that selenium compounds inhibit the growth of malignant cells in diverse experimental model systems. However, the growth-modulating and cytotoxic mechanisms are diverse and far from clear. Lately, a remarkable tumour selective cytotoxicity of selenium compounds has been shown, indicating the potential of selenium in the treatment of cancer. Of particular interest are the redox-active selenium compounds exhibiting cytotoxic potential to tumour cells. These selenium compounds elicit complex patterns of pharmacodynamics and pharmacokinetics, leading to cell death pathways that differ among compounds. Modern oncology often focuses on targeted ligand-based therapeutic strategies that are specific to their molecular targets. These drugs are initially efficient, but the tumour cells often rapidly develop resistance against these drugs. In contrast, certain redox-active selenium compounds induce complex cascades of pro-death signalling at pharmacological concentrations with superior tumour specificity. The target molecules are often the ones that are important for the survival of cancer cells and often implicated in drug resistance. Therefore, the chemotherapeutic applications of selenium offer great possibilities of multi-target attacks on tumour cells. This MiniReview focuses on the tumour-specific cytotoxic effects of selenium, with special emphasis on cascades of cellular events induced by the major groups of pharmacologically active selenium compounds. Furthermore, the great pharmacological potential of selenium in the treatment of resistant cancers is discussed.
Collapse
Affiliation(s)
- Marita Wallenberg
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Yang YH, Hsieh TJ, Tsai ML, Chen CH, Lin HT, Wu SJ. Neuroprotective effects of Hu-Yi-Neng, a diet supplement, on SH-SY5Y human neuroblastoma cells. J Nutr Health Aging 2014; 18:184-90. [PMID: 24522472 DOI: 10.1007/s12603-013-0382-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Oxidative stress is considered the potential risk to the development of dementia. Some medicines, vitamins, and diet supplements have been suggested to have possible benefits via the antioxidative effects to slow the decline of cognitive function in demented and non-demented individuals. However, few studies were conducted to examine their functions, especially in composite diet supplements. Hu-Yi-Neng is a composite diet supplement, including ginkgo biloba, extract of pine bark, phosphatidyl serine, docosahexaenoic acid, and folic acid, used extensively in Taiwan. Therefore, our aim is to investigate the potential protective effects of Hu-Yi-Neng on human neuron cells. MATERALS AND METHODS: H2O2-induced neuronal toxicity was characterized in SH-SY5Y human neuroblastoma cells by the decrease of cell viability using PrestoBlue™ assay and by the increase of intracellular reactive oxygen species (ROS) level using DCFH-DA (2', 7'-dichlorodihydrofluorescin diacetate) assays. HO-1 mRNA expression was detected by real-time PCR. Akt and Erk 1/2 proteins were detected by western blotting. RESULTS Pretreatment with Hu-Yi-Neng significantly reversed the decrease in cell viability induced by H2O2 in SH-SY5Y cells. Furthermore, Hu-Yi-Neng dose-dependently suppressed the elevation of intracellular reactive oxygen species (ROS) level. Hu-Yi-Neng protected SH-SY5Y cells from oxidative stress may via the increase in mRNA expression of heme oxygenase-1 (HO-1), an antioxidant enzyme. In addition, Hu-Yi-Neng inhibited H2O2-induced phosphorylation of Akt kinase but further increased the phosphorylation of Erk 1/2. CONCLUSION Our results suggest that Hu-Yi-Neng has protective effect against oxidative stress-induced neuron cell loss and it could be an ideal composite diet supplement for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Y-H Yang
- Dr. Shyh-Jong Wu, Ph.D. No 100, Tzyou 1 Rd, Kaohsiung Medical University, Kaohsiung City, Taiwan. Phone: +886 7 3121101 ext. 2354, Fax: +886 7 3113449, E-mail:
| | | | | | | | | | | |
Collapse
|
21
|
Hazane-Puch F, Champelovier P, Arnaud J, Garrel C, Ballester B, Faure P, Laporte F. Long-term selenium supplementation in HaCaT cells: importance of chemical form for antagonist (protective versus toxic) activities. Biol Trace Elem Res 2013; 154:288-98. [PMID: 23771685 DOI: 10.1007/s12011-013-9709-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
The beneficial effect of selenium (Se) on cancer is known to depend on the chemical form, the dose and the duration of the supplementation. The aim of this work was to explore long term antagonist (antioxidant versus toxic) effects of an inorganic (sodium selenite, Na2SeO3) and an organic (seleno-L-methionine, SeMet) forms in human immortalized keratinocytes HaCaT cells. HaCaT cells were supplemented with Na2SeO3 or SeMet at micromolar concentrations for 144 h, followed or not by UVA radiation. Se absorption, effects of UVA radiation, cell morphology, antioxidant profile, cell cycle processing, DNA fragmentation, cell death triggered and caspase-3 activity were determined. At non-toxic doses (10 μM SeMet and 1 μM Na2SeO3), SeMet was better absorbed than Na2SeO3. The protection of HaCaT from UVA-induced cell death was observed only with SeMet despite both forms increased glutathione peroxidase-1 (GPX1) activities and selenoprotein-1 (SEPW1) transcript expression. After UVA irradiation, malondialdehyde (MDA) and SH groups were not modulated whatever Se chemical form. At toxic doses (100 μM SeMet and 5 μM Na2SeO3), Na2SeO3 and SeMet inhibited cell proliferation associated with S-G2 blockage and DNA fragmentation leading to apoptosis caspase-3 dependant. SeMet only led to hydrogen peroxide production and to a decrease in mitochondrial transmembrane potential. Our study of the effects of selenium on HaCaT cells reaffirm the necessity to take into account the chemical form in experimental and intervention studies.
Collapse
Affiliation(s)
- Florence Hazane-Puch
- Unité de Biochimie Hormonale et Nutritionnelle, Département de Biochimie, Toxicologie et Pharmacologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire de Grenoble, CS10217, 38043 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 2013; 42:8870-94. [DOI: 10.1039/c3cs60272a] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Seng HL, Tiekink ERT. Anti-cancer potential of selenium- and tellurium-containing species: opportunities abound! Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hoi-Ling Seng
- Department of Chemistry; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
24
|
Zhou X, Zhang Y, Li Y, Hao X, Liu X, Wang Y. Azithromycin synergistically enhances anti-proliferative activity of vincristine in cervical and gastric cancer cells. Cancers (Basel) 2012; 4:1318-32. [PMID: 24213508 PMCID: PMC3712727 DOI: 10.3390/cancers4041318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 01/04/2023] Open
Abstract
In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC50) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yuyan Zhang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yong Li
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiujing Hao
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
- Authors to whom correspondence should be addressed; E-Mails: (X.L.); (Y.W.); Tel.: +86-951-206-2033 (Y.W.); Fax: +86-951-206-2699 (Y.W.)
| | - Yujiong Wang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia, China; E-Mails: (X.Z.); (Y.Z.); (Y.L.); (X.H.)
- College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
- Authors to whom correspondence should be addressed; E-Mails: (X.L.); (Y.W.); Tel.: +86-951-206-2033 (Y.W.); Fax: +86-951-206-2699 (Y.W.)
| |
Collapse
|
25
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|
26
|
Park SH, Kim JH, Chi GY, Kim GY, Chang YC, Moon SK, Nam SW, Kim WJ, Yoo YH, Choi YH. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol Lett 2012; 212:252-61. [DOI: 10.1016/j.toxlet.2012.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 01/21/2023]
|
27
|
Shin YJ, Cho DY, Chung TY, Han SB, Hyon JY, Wee WR. Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells. Curr Eye Res 2011; 36:1116-22. [PMID: 21999191 DOI: 10.3109/02713683.2011.614372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the protective effect of rapamycin on oxidative stress-induced cell death of human corneal endothelial cells (HCECs). METHODS HCECs were cultured according to previously published methods. With treatment of 0 mM or 5 mM of tert-butyl hydroperoxide (tBHP) with various concentrations (0, 25 and 50 nM) of rapamycin, reactive oxygen species (ROS) production was measured using an oxidation-sensitive fluorescent probe, 2'7'-dichlorofluorescin diacetate (DCFH-DA, USA) methods. Cell viability was assayed by the method of Cell Counting Kit-8 (CCK-8, Wako). The levels of cellular glutathione were also assessed enzymatically with glutathione reductase by using a commercial glutathione (GSH) assay kit (Cayman Chemical, USA). RESULTS Rapamycin reduced 2'7'-dihydrodichlorofluorescein oxidation and increased GSH in HCECs. Rapamycin significantly inhibited tBHP-induced ROS production. Cells treated with rapamycin showed higher viability compared to control at 5 mM tBHP. Rapamycin effectively protected HCECs from ROS-induced cell death through increasing intracellular GSH. CONCLUSION Our data suggest that rapamycin protects HCECs from oxidative injury-mediated cell death via inhibition of ROS production and enhancement of GSH.
Collapse
Affiliation(s)
- Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|