1
|
Liu Y, Li S, Wang K, Wang Y, Wang Y, Zhang C, Wu H, Wang G, Qin F, Song Z, Tao Y. Unveiling the HSP90 inhibitor mediated effects on endoplasmic reticulum stress and redox signaling:from a cancer inhibitor to retinal degeneration catalyst. Free Radic Biol Med 2025:S0891-5849(25)00697-5. [PMID: 40414464 DOI: 10.1016/j.freeradbiomed.2025.05.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Retinal degeneration (RD) is a class of polygenic blind eye disease characterized by photoreceptors loss and dysfunction of retinal pigment epithelium. Thus far, there is no effective treatment to save the declining vision in RD patients. Animal models are highly precious tools for studying the pathological mechanisms of RD, and for screening potential therapeutics. AUY922 is a heat shock protein 90 inhibitor that exhibits potent anti-cancer effects. However, it causes adverse ocular reactions such as reduced visual acuity and night blindness. This study intends to explore the pathological mechanism underlying the AUY922 induced RD. In vitro study, AUY922 induced cytotoxic effects on the 661W cells, which are ascribed to endoplasmic reticulum (ER) stress and oxidative damages. ER stress inhibitor 4-PBA alleviated 661W cells apoptosis and oxidative stress. Subsequently, AUY922 was delivered into the vitreous cavity of mouse and induced selective photoreceptor death and visual impairments. Overactivation of neuroglial and retinal remodeling occurred during the degenerative process. Moreover, enhanced CHOP expression was tied to profound disturbances in redox homeostasis, which readied photoreceptors for apoptosis. The underlying mechanism should be attributed to the activation of the PERK-eIF2α-ATF4-CHOP pathway. AUY922 can compensate for the high toxicity and instability of traditional inducers in RD modeling. These results not only enrich our understanding of the toxicology of AUY922 but also provide clues for establishing reliable RD models.
Collapse
Affiliation(s)
- Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yiwen Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Chenxu Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Hao Wu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Gang Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
2
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
3
|
Carlson DL, Kowalewski M, Bodoor K, Lietzan AD, Hughes PF, Gooden D, Loiselle DR, Alcorta D, Dingman Z, Mueller EA, Irnov I, Modla S, Chaya T, Caplan J, Embers M, Miller JC, Jacobs-Wagner C, Redinbo MR, Spector N, Haystead TAJ. Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development. Cell Chem Biol 2024; 31:465-476.e12. [PMID: 37918401 DOI: 10.1016/j.chembiol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.
Collapse
Affiliation(s)
- Dave L Carlson
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Mark Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Gooden
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Alcorta
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Zoey Dingman
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Shannon Modla
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Tim Chaya
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jeffrey Caplan
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Monica Embers
- Department of Microbiology and Immunology, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, P.O. Box 14346 7020 Kit Creek Road, Ste 130, Research Triangle Park, Raliegh, NC 27709, USA
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Biology Department, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290, USA.
| | - Neil Spector
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA.
| |
Collapse
|
4
|
Munezero D, Aliff H, Salido E, Saravanan T, Sanzhaeva U, Guan T, Ramamurthy V. HSP90α is needed for the survival of rod photoreceptors and regulates the expression of rod PDE6 subunits. J Biol Chem 2023; 299:104809. [PMID: 37172722 PMCID: PMC10250166 DOI: 10.1016/j.jbc.2023.104809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90β. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging. In this article, we assessed the role of HSP90α in the retina using a novel HSP90α murine knockout model. Our findings show that HSP90α is essential for rod photoreceptor function but was dispensable in cone photoreceptors. In the absence of HSP90α, photoreceptors developed normally. We observed rod dysfunction in HSP90α knockout at 2 months with the accumulation of vacuolar structures, apoptotic nuclei, and abnormalities in the outer segments. The decline in rod function was accompanied by progressive degeneration of rod photoreceptors that was complete at 6 months. The deterioration in cone function and health was a "bystander effect" that followed the degeneration of rods. Tandem mass tag proteomics showed that HSP90α regulates the expression levels of <1% of the retinal proteome. More importantly, HSP90α was vital in maintaining rod PDE6 and AIPL1 cochaperone levels in rod photoreceptor cells. Interestingly, cone PDE6 levels were unaffected. The robust expression of HSP90β paralog in cones likely compensates for the loss of HSP90α. Overall, our study demonstrated the critical need for HSP90α chaperone in the maintenance of rod photoreceptors and showed potential substrates regulated by HSP90α in the retina.
Collapse
Affiliation(s)
- Daniella Munezero
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter Aliff
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Ezequiel Salido
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Thamaraiselvi Saravanan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Urikhan Sanzhaeva
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Tongju Guan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Visvanathan Ramamurthy
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
5
|
Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharmacol 2023; 211:115505. [PMID: 36931349 PMCID: PMC10134075 DOI: 10.1016/j.bcp.2023.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmud Aghaei
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
6
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
7
|
Dayyani F, Macarulla T, Johnson A, Wainberg ZA. Second-line treatment options for patients with metastatic pancreatic ductal adenocarcinoma: A systematic literature review. Cancer Treat Rev 2023; 113:102502. [PMID: 36641880 DOI: 10.1016/j.ctrv.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The aim of this review was to characterize the second- and later-line (≥2L) treatment landscape for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS This systematic literature review (PROSPERO: CRD42021279753) involved searches of MEDLINE® and Embase to identify results from prospective studies of ≥2L treatment options for metastatic pancreatic cancer published from 2016 to 2021. Publications were screened according to predetermined eligibility criteria; population-level data were extracted using standardized data fields. Publication quality was assessed according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). The data were analyzed descriptively, grouped by drug class. RESULTS Sixty publications were identified, including 23 relating to comparative trials. GRADE assessment found that, of these 23 trials, 83% reported high or moderate-quality evidence. Of the publications relating to comparative trials, nine (three trials) reported favorable results: the pivotal phase 3 NAPOLI-1 trial for liposomal irinotecan; a phase 3 trial of non-liposomal irinotecan within the FOLFIRINOX regimen; and a phase 2 trial of eryaspase plus chemotherapy. CONCLUSIONS The level of unmet need for ≥2L treatment options for mPDAC remains high. Irinotecan-based regimens currently offer the greatest promise. Investigations into paradigm-changing agents and combination approaches continue.
Collapse
Affiliation(s)
| | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
8
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
9
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Feng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Wattenberg MM, Reiss KA. Determinants of Homologous Recombination Deficiency in Pancreatic Cancer. Cancers (Basel) 2021; 13:4716. [PMID: 34572943 PMCID: PMC8466888 DOI: 10.3390/cancers13184716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is a treatment-resistant malignancy associated with high mortality. However, defective homologous recombination (HR), a DNA repair mechanism required for high-fidelity repair of double-strand DNA breaks, is a therapeutic vulnerability. Consistent with this, a subset of patients with pancreatic cancer show unique tumor responsiveness to HR-dependent DNA damage triggered by certain treatments (platinum chemotherapy and PARP inhibitors). While pathogenic mutations in HR genes are a major driver of this sensitivity, another layer of diverse tumor intrinsic and extrinsic factors regulate the HR deficiency (HRD) phenotype. Defining the mechanisms that drive HRD may guide the development of novel strategies and therapeutics to induce treatment sensitivity in non-HRD tumors. Here, we discuss the complexity underlying HRD in pancreatic cancer and highlight implications for identifying and treating this distinct subset of patients.
Collapse
Affiliation(s)
- Max M. Wattenberg
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A. Reiss
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Abstract
Background Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. Methods The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)‑based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. Results Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. Conclusions Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00751-5.
Collapse
|
12
|
Epp-Ducharme B, Dunne M, Fan L, Evans JC, Ahmed L, Bannigan P, Allen C. Heat-activated nanomedicine formulation improves the anticancer potential of the HSP90 inhibitor luminespib in vitro. Sci Rep 2021; 11:11103. [PMID: 34045581 PMCID: PMC8160139 DOI: 10.1038/s41598-021-90585-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 01/06/2023] Open
Abstract
The heat shock protein 90 inhibitor, luminespib, has demonstrated potent preclinical activity against numerous cancers. However, clinical translation has been impeded by dose-limiting toxicities that have necessitated dosing schedules which have reduced therapeutic efficacy. As such, luminespib is a prime candidate for reformulation using advanced drug delivery strategies that improve tumor delivery efficiency and limit off-target side effects. Specifically, thermosensitive liposomes are proposed as a drug delivery strategy capable of delivering high concentrations of drug to the tumor in combination with other chemotherapeutic molecules. Indeed, this work establishes that luminespib exhibits synergistic activity in lung cancer in combination with standard of care drugs such as cisplatin and vinorelbine. While our research team has previously developed thermosensitive liposomes containing cisplatin or vinorelbine, this work presents the first liposomal formulation of luminespib. The physico-chemical properties and heat-triggered release of the formulation were characterized. Cytotoxicity assays were used to determine the optimal drug ratios for treatment of luminespib in combination with cisplatin or vinorelbine in non-small cell lung cancer cells. The formulation and drug combination work presented in this paper offer the potential for resuscitation of the clinical prospects of a promising anticancer agent.
Collapse
Affiliation(s)
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Linyu Fan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
13
|
Marcyk PT, LeBlanc EV, Kuntz DA, Xue A, Ortiz F, Trilles R, Bengtson S, Kenney TM, Huang DS, Robbins N, Williams NS, Krysan DJ, Privé GG, Whitesell L, Cowen LE, Brown LE. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J Med Chem 2021; 64:1139-1169. [PMID: 33444025 PMCID: PMC8493596 DOI: 10.1021/acs.jmedchem.0c01777] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.
Collapse
Affiliation(s)
- Paul T. Marcyk
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Stephen Bengtson
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Tristan M.G. Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Dutta Gupta S, Pan CH. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int J Biol Macromol 2020; 161:1086-1098. [DOI: 10.1016/j.ijbiomac.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
15
|
Huang DS, LeBlanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro J, Whitesell L, Cowen LE, Brown LE. Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. J Med Chem 2020; 63:2139-2180. [PMID: 31513387 PMCID: PMC7069776 DOI: 10.1021/acs.jmedchem.9b00826] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular chaperone Hsp90, essential in all eukaryotes, plays a multifaceted role in promoting survival, virulence, and drug resistance across diverse pathogenic fungal species. The chaperone is also critically important, however, to the pathogen's human host, preventing the use of known clinical Hsp90 inhibitors in antifungal applications due to concomitant host toxicity issues. With the goal of developing Hsp90 inhibitors with acceptable therapeutic indices for the treatment of invasive fungal infections, we initiated a program to design and synthesize potent inhibitors with selective activity against fungal Hsp90 isoforms over their human counterparts. Building on our previously reported derivatization of resorcylate natural products to produce fungal-selective compounds, we have developed a series of synthetic aminopyrazole-substituted resorcylate amides with broad, potent, and fungal-selective Hsp90 inhibitory activity. Herein we describe the synthesis of this series, as well as biochemical structure-activity relationships driving selectivity for the Hsp90 isoforms expressed by Cryptococcus neoformans and Candida albicans, two pathogenic fungi of major clinical importance.
Collapse
Affiliation(s)
- David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Migita K, Matsumoto T, Terada K, Ono K, Hara S. Effects of geldanamycin on neurite outgrowth-related proteins and kinases in nerve growth factor-differentiated pheochromocytoma 12 cells. J Pharmacol Sci 2019; 140:255-262. [PMID: 31402210 DOI: 10.1016/j.jphs.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Heat shock protein 90 (HSP90) antagonists are currently being evaluated as potential anticancer drugs. However, adverse effects related to these drugs, such as fatigue and pain, suggest that they affect neurons. Therefore, to understand the influence of HSP90 inhibitors on neurons, we investigated the effects of geldanamycin, an HSP90 antagonist, on nerve growth factor (NGF)-differentiated pheochromocytoma 12 (PC12) cells, particularly, on the expression and phosphorylation of proteins and kinases in the NGF pathway. Geldanamycin significantly inhibited NGF-induced neurite outgrowth and phosphorylation of Akt and extracellular signal-related kinase 1/2 in PC12 cells. Furthermore, geldanamycin inhibited the phosphorylation of collapsin response mediator protein 2 and the expression of cyclin-dependent kinase 5 in the presence of NGF, but did not significantly affect the expression of glycogen synthase kinase 3β. These results suggest that geldanamycin influences microtubule-binding proteins and kinases relating to neurite outgrowth, thereby inducing neuronal impairment.
Collapse
Affiliation(s)
- Keisuke Migita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Taichi Matsumoto
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhiko Ono
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shuji Hara
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
17
|
Park S, Park JA, Jeon JH, Lee Y. Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage. Biomol Ther (Seoul) 2019; 27:423-434. [PMID: 31113013 PMCID: PMC6720532 DOI: 10.4062/biomolther.2019.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hyung Jeon
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
18
|
Shevtsov M, Multhoff G. Therapeutic Implications of Heat Shock Proteins in Cancer. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-02254-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Shelton LB, Koren J, Blair LJ. Imbalances in the Hsp90 Chaperone Machinery: Implications for Tauopathies. Front Neurosci 2017; 11:724. [PMID: 29311797 PMCID: PMC5744016 DOI: 10.3389/fnins.2017.00724] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
The ATP-dependent 90 kDa heat shock protein, Hsp90, is a major regulator of protein triage, from assisting in nascent protein folding to refolding or degrading aberrant proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer's disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds to and regulates tau fate in coordination with a diverse group of co-chaperones. Imbalances in chaperone levels and activity, as found in the aging brain, can contribute to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates tau to restore microtubule-binding function, is repressed with aging and activity is further repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels of Aha1 are not significantly altered with aging, increased levels have been found in AD brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-chaperones is still under investigation, it is clear that imbalances in these proteins with aging can contribute to disease onset and progression. This review highlights the current understanding of how the Hsp90 family of molecular chaperones regulates tau or other misfolded proteins in neurodegenerative diseases with a particular emphasis on the impact of aging.
Collapse
Affiliation(s)
- Lindsey B Shelton
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - John Koren
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
20
|
Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death. Sci Rep 2017; 7:15278. [PMID: 29127384 PMCID: PMC5681687 DOI: 10.1038/s41598-017-15492-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Dasatinib and radotinib are oral BCR-ABL tyrosine kinase inhibitors that were developed as drugs for the treatment of chronic myeloid leukemia. We report here that the c-KIT (CD117) targeting with dasatinib and radotinib promotes acute myeloid leukemia (AML) cell death, and c-KIT endocytosis is essential for triggering c-KIT-positive AML cell death by dasatinib and radotinib during the early stages. In addition, dasatinib and radotinib reduce heat shock protein 90β (HSP90β) expression and release Apaf-1 in c-KIT-positive AML cells. Finally, this activates a caspase-dependent apoptotic pathway in c-KIT-positive AML cells. Moreover, the inhibition of c-KIT endocytosis by dynamin inhibitor (DY) reversed cell viability and c-KIT expression by dasatinib and radotinib. HSP90β expression was recovered by DY in c-KIT-positive AML cells as well. Furthermore, the effect of radotinib on c-KIT and HSP90β showed the same pattern in a xenograft animal model using HEL92.1.7 cells. Therefore, dasatinib and radotinib promote AML cell death by targeting c-KIT. Taken together, these results indicate that dasatinib and radotinib treatment have a potential role in anti-leukemic therapy on c-KIT-positive AML cells.
Collapse
|
21
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|