1
|
Zhang Y, Wang H, Zhan Z, Gan L, Bai O. Mechanisms of HDACs in cancer development. Front Immunol 2025; 16:1529239. [PMID: 40260239 PMCID: PMC12009879 DOI: 10.3389/fimmu.2025.1529239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Haotian Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhumei Zhan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Out Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Leclair NK, Choudury A, Chen WC, Magill ST, McCortney K, Horbinski CM, Chen Z, Goldschmidt E, Eaton CD, Bulsara KR, Bi WL, Patel AJ, Sahm F, Raleigh D, Anczukow O. RNA splicing as a biomarker and phenotypic driver of meningioma DNA-methylation groups. Neuro Oncol 2024; 26:2222-2236. [PMID: 39093629 PMCID: PMC11630566 DOI: 10.1093/neuonc/noae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA-methylation signatures have on meningioma biology. METHODS This study utilizes RNA-sequencing data from 486 meningioma samples corresponding to 3 meningioma DNA-methylation groups (merlin-intact, immune-enriched, and hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS We identify alterations in RNA splicing between meningioma DNA-methylation groups including individual splicing events that correlate with hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA-methylation classification based on RNA-seq data. Furthermore, we validate these events using reverse transcription polymerase chain reaction (RT-PCR) in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA-binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice-switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Nathan K Leclair
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Abrar Choudury
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - William C Chen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Zhenhong Chen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
| | - Charlotte D Eaton
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Ketan R Bulsara
- Division of Neurosurgery, Department of Surgery, UConn Health, Farmington, CT, USA
| | - Wenya Linda Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Akash J Patel
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Felix Sahm
- CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Raleigh
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Olga Anczukow
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Na J, Shaji S, Hanemann CO. Targeting histone deacetylase 6 (HDAC6) to enhance radiation therapy in meningiomas in a 2D and 3D in vitro study. EBioMedicine 2024; 105:105211. [PMID: 38917510 PMCID: PMC11255518 DOI: 10.1016/j.ebiom.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND External radiation therapy (RT) is often a primary treatment for inoperable meningiomas in the absence of established chemotherapy. Histone deacetylase 6 (HDAC6) overexpression, commonly found in cancer, is acknowledged as a driver of cellular growth, and inhibiting HDACs holds promise in improving radiotherapeutic efficacy. Downregulation of HDAC6 facilitates the degradation of β-catenin. This protein is a key element in the Wnt/β-catenin signalling pathway, contributing to the progression of meningiomas. METHODS In order to elucidate the associations and therapeutic potential of HDAC6 inhibitors (HDAC6i) in conjunction with RT, we administered Cay10603, HDAC6i, to both immortalised and patient-derived meningioma cells prior to RT in this study. FINDINGS Our findings reveal an increase in HDAC6 expression following exposure to RT, which is effectively mitigated with pre-treated Cay10603. The combination of Cay10603 with RT resulted in a synergistic augmentation of cytotoxic effects, as demonstrated through a range of functional assays conducted in both 2D as well as 3D settings; the latter containing syngeneic tumour microenvironment (TME). Radiation-induced DNA damage was augmented by pre-treatment with Cay10603, concomitant with the inhibition of β-catenin and minichromosome maintenance complex component 2 (MCM2) accumulation within the nucleus. This subsequently inhibited c-myc oncogene expression. INTERPRETATION Our findings demonstrate the therapeutic potential of Cay10603 to improve the radiosensitisation and provide rationale for combining HDAC6i with RT for the treatment of meningioma. FUNDING This work was funded by Brain Tumour Research Centre of Excellence award to C Oliver Hanemann.
Collapse
Affiliation(s)
- Juri Na
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom
| | - Shahana Shaji
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom
| | - C Oliver Hanemann
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom.
| |
Collapse
|
5
|
Guo S, Zheng X, Chen W, Raza U, Zeng A, Akter F, Huang Q, Yao S. From bench to bedside: Advancing towards therapeutic treatment of vestibular schwannomas. Neurooncol Adv 2024; 6:vdae107. [PMID: 39022647 PMCID: PMC11252569 DOI: 10.1093/noajnl/vdae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Vestibular schwannomas are rare intracranial tumors originating from Schwann cells of the vestibular nerve. Despite their benign nature, these tumors can exert significant mass effects and debilitating symptoms, including gradual hearing loss, vertigo, facial nerve dysfunction, and headaches. Current clinical management options encompass wait-and-scan, surgery, radiation therapy, and off-label medication. However, each approach exhibits its own challenges and harbors limitations that underscore the urgent need for therapeutic treatments. Over the past 2 decades, extensive elucidation of the molecular underpinnings of vestibular schwannomas has unraveled genetic anomalies, dysregulated signaling pathways, downstream of receptor tyrosine kinases, disrupted extracellular matrix, inflammatory tumor microenvironment, and altered cerebrospinal fluid composition as integral factors in driving the development and progression of the disease. Armed with this knowledge, novel therapeutic interventions tailored to the unique molecular characteristics of those conditions are actively being pursued. This review underscores the urgency of addressing the dearth of Food and Drug Administration-approved drugs for vestibular schwannoma, highlighting the key molecular discoveries and their potential translation into therapeutics. It provides an in-depth exploration of the evolving landscape of therapeutic development, which is currently advancing from bench to bedside. These ongoing efforts hold the promise of significantly transforming the lives of vestibular schwannoma patients in the future.
Collapse
Affiliation(s)
- Shaolei Guo
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zheng
- Department of Neurosurgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenli Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Umar Raza
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ailiang Zeng
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Quan Huang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Scarano N, Di Palma F, Origlia N, Musumeci F, Schenone S, Spinelli S, Passalacqua M, Zocchi E, Sturla L, Cichero E, Cavalli A. New Insights into the LANCL2- ABA Binding Mode towards the Evaluation of New LANCL Agonists. Pharmaceutics 2023; 15:2754. [PMID: 38140095 PMCID: PMC10747503 DOI: 10.3390/pharmaceutics15122754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesco Di Palma
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
| | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, 56124 Pisa, Italy;
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Andrea Cavalli
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
7
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Ghalavand MA, Asghari A, Farhadi M, Taghizadeh-Hesary F, Garshasbi M, Falah M. The genetic landscape and possible therapeutics of neurofibromatosis type 2. Cancer Cell Int 2023; 23:99. [PMID: 37217995 PMCID: PMC10204202 DOI: 10.1186/s12935-023-02940-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Welling DB. Targeted Therapies in the Treatment of Vestibular Schwannomas: Current State and New Horizons. Otolaryngol Clin North Am 2023; 56:543-556. [PMID: 37024334 DOI: 10.1016/j.otc.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Vestibular schwannomas continue to cause hearing loss, facial nerve paralysis, imbalance, and tinnitus. These symptoms are compounded by germline neurofibromatosis type 2 (NF2) gene loss and multiple intracranial and spinal cord tumors associated with NF2-related schwannomatosis. The current treatments of observation, microsurgical resection, or stereotactic radiation may prevent catastrophic brainstem compression but are all associated with the loss of cranial nerve function, particularly hearing loss. Novel targeted treatment options to stop tumor progression include small molecule inhibitors, immunotherapy, anti-inflammatory drugs, radio-sensitizing and sclerosing agents, and gene therapy.
Collapse
Affiliation(s)
- D Bradley Welling
- Harvard Department of Otolaryngology Head & Neck Surgery, 243 Charles Street, Boston, MA, USA; Massachusetts Eye and Ear Infirmary and Massachusetts General Hospital.
| |
Collapse
|
11
|
Advances in Targeted Therapy for Neurofibromatosis Type 2 (NF2)-Associated Vestibular Schwannomas. Curr Oncol Rep 2023; 25:531-537. [PMID: 36933171 DOI: 10.1007/s11912-023-01388-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW Neurofibromatosis 2 (NF2) is an autosomal-dominant genetic disorder characterized by bilateral vestibular schwannomas (VS), meningiomas, ependymomas, spinal and peripheral schwannomas, optic gliomas, and juvenile cataracts. Ongoing studies provide new insight into the role of the NF2 gene and merlin in VS tumorigenesis. RECENT FINDINGS As NF2 tumor biology becomes increasingly understood, therapeutics targeting specific molecular pathways have been developed and evaluated in preclinical and clinical studies. NF2-associated VS are a source of significant morbidity with current treatments including surgery, radiation, and observation. Currently, there are no FDA-approved medical therapies for VS, and the development of selective therapeutics is a high priority. This manuscript reviews NF2 tumor biology and current therapeutics undergoing investigation for treatment of patients with VS.
Collapse
|
12
|
Lin ZZ, Hu MCT, Hsu C, Wu YM, Lu YS, Ho JAA, Yeh SH, Chen PJ, Cheng AL. Synergistic efficacy of telomerase-specific oncolytic adenoviral therapy and histone deacetylase inhibition in human hepatocellular carcinoma. Cancer Lett 2023; 556:216063. [PMID: 36669725 DOI: 10.1016/j.canlet.2023.216063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
The telomerase-specific oncolytic adenovirus Telomelysin and the histone deacetylase inhibitor AR42 have demonstrated anticancer effects in preclinical models of human hepatocellular carcinoma (HCC). However, the clinical development of Telomelysin may be hindered by human antiviral immunity and tumor resistance. Combining oncolytic and epigenetic therapies is a viable approach for treating various cancers. This study investigated the potential synergism of Telomelysin and AR42 and the relevant underlying mechanisms. Telomelysin and AR42 exhibited synergistic antiproliferative effects in human HCC models in vitro and in vivo. Apoptosis induced by Telomelysin was significantly enhanced by AR42 in both PLC5 and Hep3B HCC cells. AR42 treatment unexpectedly attenuated the expression of the coxsackievirus and adenovirus receptor and the mRNA levels of human telomerase reverse transcriptase, which may be positively associated with the cytotoxicity of Telomelysin. Meanwhile, the cellular antiviral interferon response was not altered by AR42 treatment. Further, we found that Telomelysin enhanced Akt phosphorylation in HCC cells. AR42 reduced Telomelysin-induced phospho-Akt activation and enhanced Telomelysin-induced apoptosis. The correlation of Akt phosphorylation with drug-induced apoptosis was validated in HCC cells with upregulated or downregulated Akt signaling. Combination therapy with Telomelysin and AR42 demonstrated synergistic anti-HCC efficacy. Clinical trials investigating this new combination regimen are warranted.
Collapse
Affiliation(s)
- Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Shen Lu
- Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Rico-Llanos G, Porras-Perales Ó, Escalante S, Vázquez-Calero DB, Valiente L, Castillo MI, Pérez-Tejeiro JM, Baglietto-Vargas D, Becerra J, Reguera JM, Duran I, Csukasi F. Cellular stress modulates severity of the inflammatory response in lungs via cell surface BiP. Front Immunol 2022; 13:1054962. [DOI: 10.3389/fimmu.2022.1054962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.
Collapse
|
15
|
Imura T, Shimizu K, Mitsuhara T. Distinctive microRNA profiles in serum of patients with neurofibromatosis type 2: A bioinformatic exploratory study. World Neurosurg 2022; 164:e127-e133. [DOI: 10.1016/j.wneu.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
|
16
|
Roman Souza G, Abdalla A, Mahadevan D. Clinical Trials Targeting Neurofibromatoses-associated Tumors: A Systematic Review. Neurooncol Adv 2022; 4:vdac005. [PMID: 35291225 PMCID: PMC8919406 DOI: 10.1093/noajnl/vdac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background There is a paucity of literature that comprehensively analyzes previous and current clinical trials targeting neurofibromatoses-related tumors. This article aims to provide readers with drug development efforts targeting these tumors by analyzing translational and clinical findings. Methods This systematic review was written according to the PRISMA guidelines. Inclusion criteria were clinical trials involving patients with neurofibromatosis type 1, type 2, or schwannomatosis that were treated with therapies targeting neurofibromatoses-associated tumors and that were registered on clinicaltrials.gov. In addition, a search was performed in PubMed, Web of Science, Google Scholar, and Embase European for articles fully describing these clinical trials. Results A total of 265 clinical trials were registered and screened for eligibility. Ninety-two were included in this systematic review involving approximately 4636 participants. The number of therapies analyzed was more than 50. Drugs under investigation mainly act on the MAPK/ERK and PI3K/AKT/mTOR pathways, tumor microenvironment, or aberrantly over-expressed cell surface receptors. Selumetinib was the most effective medication for treating a neurofibromatosis type 1-associated tumor with approximately 68%–71% partial response for inoperable or progressive plexiform neurofibromas in children 2 years of age and older and bevacizumab for a neurofibromatosis type 2-related tumor with approximately 36%–41% partial response for vestibular schwannomas in patients 12 years of age and older. Conclusions This systematic review presents the results of previous clinical investigations and those under development for neurofibromatoses-associated tumors. Clinicians may use this information to strategize patients to appropriate clinical trials.
Collapse
Affiliation(s)
- Gabriel Roman Souza
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Ahmed Abdalla
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Daruka Mahadevan
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| |
Collapse
|
17
|
Liva S, Chen M, Mortazavi A, Walker A, Wang J, Dittmar K, Hofmeister C, Coss CC, Phelps MA. Population Pharmacokinetic Analysis from First-in-Human Data for HDAC Inhibitor, REC-2282 (AR-42), in Patients with Solid Tumors and Hematologic Malignancies: A Case Study for Evaluating Flat vs. Body Size Normalized Dosing. Eur J Drug Metab Pharmacokinet 2021; 46:807-816. [PMID: 34618345 PMCID: PMC8599380 DOI: 10.1007/s13318-021-00722-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/26/2022]
Abstract
Background and Objectives REC-2282 is a novel histone deacetylase inhibitor that has shown antitumor activity in in vitro and in vivo models of malignancy. The aims of this study were to characterize the population pharmacokinetics of REC-2282 (AR-42) from the first-in-human (NCT01129193) and phase I acute myeloid leukemia trials (NCT01798901) and to evaluate potential sources of variability. Additionally, we sought to understand alternate body size descriptors as sources of inter-individual variability (IIV), which was significant for dose-normalized maximum observed concentration and area under the concentration-time curve (AUC). Methods Datasets from two clinical trials were combined, and population pharmacokinetic analysis was performed using NONMEM and R softwares; patient demographics were tested as covariates. Results A successful population pharmacokinetic model was constructed. The pharmacokinetics of REC-2282 were best described by a two-compartment model with one transit compartment for absorption, first-order elimination and a proportional error model. Fat-free mass (FFM) was retained as a single covariate on clearance (CL), though it explained < 3% of the observed variability on CL. Tumor type and formulation were retained as covariates on lag time, and a majority of variability, attributed to absorption, remained unexplained. Computed tomography (CT)-derived lean body weight estimates were lower than estimated lean body weight and fat-free mass measures in most patients. Analysis of dose-normalized AUC vs. body size descriptors suggests flat dosing is most appropriate for REC-2282. Conclusions FFM was identified as a significant covariate on CL; however, it explained only a very small portion of the IIV; major factors contributing significantly to REC-2282 pharmacokinetic variability remain unidentified. Supplementary Information The online version contains supplementary material available at 10.1007/s13318-021-00722-z.
Collapse
Affiliation(s)
- Sophia Liva
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alison Walker
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jiang Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kristin Dittmar
- Department of Radiology, Wexner Medical Center, Columbus, OH, USA
| | - Craig Hofmeister
- Division of Hematology, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Welling DB, Collier KA, Burns SS, Oblinger JL, Shu E, Miles‐Markley BA, Hofmeister CC, Makary MS, Slone HW, Blakeley JO, Mansouri SA, Neff BA, Jackler RK, Mortazavi A, Chang L. Early phase clinical studies of AR-42, a histone deacetylase inhibitor, for neurofibromatosis type 2-associated vestibular schwannomas and meningiomas. Laryngoscope Investig Otolaryngol 2021; 6:1008-1019. [PMID: 34667843 PMCID: PMC8513424 DOI: 10.1002/lio2.643] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Two pilot studies of AR-42, a pan-histone deacetylase inhibitor, in human neurofibromatosis type 2 (NF2), vestibular schwannomas (VS), and meningiomas are presented. Primary endpoints included safety, and intra-tumoral pharmacokinetics (PK) and pharmacodynamics (PD). METHODS Pilot 1 is a subset analysis of a phase 1 study of AR-42 in solid tumors, which included NF2 or sporadic meningiomas. Tumor volumes and treatment-related adverse events (TRAEs) are reported (NCT01129193).Pilot 2 is a phase 0 surgical study of AR-42 assessing intra-tumoral PK and PD. AR-42 was administered for 3 weeks pre-operatively. Plasma and tumor drug concentrations and p-AKT expression were measured (NCT02282917). RESULTS Pilot 1: Five patients with NF2 and two with sporadic meningiomas experienced a similar incidence of TRAEs to the overall phase I trial. The six evaluable patients had 15 tumors (8 VS, 7 meningiomas). On AR-42, tumor volume increased in six, remained stable in eight, and decreased in one tumor. The annual percent growth rate decreased in eight, remained stable in three, and increased in four tumors. Pilot 2: Four patients with sporadic VS and one patient with meningioma experienced no grade 3/4 toxicities. Expression of p-AKT decreased in three of four VS. All tumors had higher AR-42 concentrations than plasma. CONCLUSIONS AR-42 is safe. Tumor volumes showed a mixed response, but most slowed growth. On a 40-mg regimen, drug concentrated in tumors and growth pathways were suppressed in most tumors, suggesting this may be a well-tolerated and effective dose. A phase 2 study of AR-42 for NF2-associated tumors appears warranted. LEVEL OF EVIDENCE 1b, 4.
Collapse
Affiliation(s)
- D. Bradley Welling
- Department of Otolaryngology Head and Neck SurgeryHarvard Medical School, Massachusetts Eye and Ear Infirmary, Massachusetts General HospitalBostonMassachusettsUSA
| | - Katharine A. Collier
- Division of Medical Oncology, Department of Internal MedicineThe Ohio State University College of Medicine and the Comprehensive Cancer CenterColumbusOhioUSA
| | - Sarah S. Burns
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Janet L. Oblinger
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Edina Shu
- Department of Otolaryngology Head and Neck SurgeryHarvard Medical School, Massachusetts Eye and Ear Infirmary, Massachusetts General HospitalBostonMassachusettsUSA
| | - Beth A. Miles‐Markley
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State University College of MedicineColumbusOhioUSA
| | - Craig C. Hofmeister
- Department of Hematology & OncologyWinship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Mina S. Makary
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - H. Wayne Slone
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - Jaishri O. Blakeley
- Departments of Neurology, Neurosurgery, & OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - S. Alireza Mansouri
- Departments of Neurology, Neurosurgery, & OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Brian A. Neff
- Department of Otolaryngology Head and Neck SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Robert K. Jackler
- Department of Otolaryngology Head and Neck SurgeryStanford UniversityPalo AltoCaliforniaUSA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal MedicineThe Ohio State University College of Medicine and the Comprehensive Cancer CenterColumbusOhioUSA
| | - Long‐Sheng Chang
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|