1
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
2
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
What's the role of thymus in diabetes mellitus? Int Immunopharmacol 2023; 116:109765. [PMID: 36702074 DOI: 10.1016/j.intimp.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Diabetes mellitus is considered as an autoimmune inflammatory and age-related disease. As an important immune organ, the thymus is involved in the immune response and inflammatory response process. Therefore, there may be a link between changes in thymus function and diabetes. Based on previous studies, we hypothesized that thymus dysfunction due to aging and other reasons leads to changes in the generation of various inflammatory-immune cells and inflammatory cytokines that regulate insulin resistance, and then participates in the development of diabetes and its complications. Therefore, thymus may be a key factor in diabetes and complications, and it may be a promising therapeutic strategy to improve the thymus function for patients with diabetes. The purpose of this review is to summarize and discuss recent advances in the influence of thymus function on diabetes, especially its potential mechanisms.
Collapse
|
4
|
Van de Walle I, Lambrechts N, Derveeuw A, Lavaert M, Roels J, Taghon T. Identification and Purification of Human T Cell Precursors. Methods Mol Biol 2023; 2580:315-333. [PMID: 36374467 DOI: 10.1007/978-1-0716-2740-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers, and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse (Taghon et al., Curr Top Microbiol Immunol 360:75-97, 2021; Haddad et al., Immunity 24:217-230, 2006; Hao et al., Blood 111:1318-1326, 2008; Taghon and Rothenberg, Semin Immunopathol 30:383-398, 2008). In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.
Collapse
Affiliation(s)
- Inge Van de Walle
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nina Lambrechts
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Anaïs Derveeuw
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Marieke Lavaert
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Juliette Roels
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
5
|
Bremer SJ, Glau L, Gehbauer C, Boxnick A, Biermann D, Sachweh JS, Tolosa E, Gieras A. OMIP 073: Analysis of human thymocyte development with a 14-color flow cytometry panel. Cytometry A 2021; 99:875-879. [PMID: 33655672 DOI: 10.1002/cyto.a.24326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
This panel was designed for the identification and detailed characterization of the different developmental steps of human thymocytes. We optimized the panel for fresh tissue in order to provide an unbiased analysis of T cell development. Accurate selection of antibodies and precise gating allow us to phenotype 14 major stages of human thymocyte development and illustrate the trajectories of T cell development from early thymic progenitors (ETP) to mature T cells that are ready to populate the periphery. The panel identifies ETPs, T-lineage-committed cells (TC), CD34-positive immature single-positive CD4 cells (ISP4 CD34+), CD34-negative immature single-positive CD4 cells (ISP4 CD34-), CD45-low early double-positive cells (EDP CD45low), CD45-high early double-positive cells (EDP CD45high), late double-positive cells (LDP), single-positive CD4 cells (SP4), single-positive CD8 cells (SP8), ready-to-egress single-positive CD4 cells (rSP4), ready-to-egress single-positive CD8 cells (rSP8), T γδ cells (Tγδ), T regulatory cells (Treg), and ready-to-egress T regulatory cells (rTreg). To highlight important checkpoints during T cell development, we added antibodies relevant for specific developmental steps to the panel. These include CD1a to define TCs, CD28 as a marker for ß-selection and CD69 in combination with CD45RA to determine the maturation stage of thymocytes shortly before they become ready to egress the thymus and colonize the periphery. Moreover, Annexin V, as a marker for apoptosis, provides valuable extra information concerning the apoptotic death of thymocytes. Currently, we use this panel to identify aberrations in T cell development in health and disease.
Collapse
Affiliation(s)
- Sarah-Jolan Bremer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Gehbauer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Boxnick
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Biermann
- Surgery for Congenital Heart Disease, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Siegmar Sachweh
- Surgery for Congenital Heart Disease, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Abstract
Single cell RNA sequencing of human thymic cells is dependent on isolation of highly pure and viable cell populations. This protocol describes the isolation of CD34+ progenitor and more differentiated CD34– fractions from post-natal thymic tissue to study thymopoiesis. CD34+ cells represent <1% of thymic cells, so this protocol uses magnetic- followed by fluorescence-activated cell separation to isolate highly enriched CD34+ cells. For complete details on the use and execution of this protocol, please refer to Le et al. (2020). Protocol for processing of human thymus for single cell RNA-seq Thymus dissection and density gradient centrifugation isolate mononuclear cells Magnetic-activated cell separation isolates CD34+/CD34– cells Fluorescence-activated cell separation isolates populations for RNA-seq
Collapse
Affiliation(s)
- Justin Le
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vi Luan Ha
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
7
|
Le J, Park JE, Ha VL, Luong A, Branciamore S, Rodin AS, Gogoshin G, Li F, Loh YHE, Camacho V, Patel SB, Welner RS, Parekh C. Single-Cell RNA-Seq Mapping of Human Thymopoiesis Reveals Lineage Specification Trajectories and a Commitment Spectrum in T Cell Development. Immunity 2020; 52:1105-1118.e9. [PMID: 32553173 PMCID: PMC7388724 DOI: 10.1016/j.immuni.2020.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The challenges in recapitulating in vivo human T cell development in laboratory models have posed a barrier to understanding human thymopoiesis. Here, we used single-cell RNA sequencing (sRNA-seq) to interrogate the rare CD34+ progenitor and the more differentiated CD34- fractions in the human postnatal thymus. CD34+ thymic progenitors were comprised of a spectrum of specification and commitment states characterized by multilineage priming followed by gradual T cell commitment. The earliest progenitors in the differentiation trajectory were CD7- and expressed a stem-cell-like transcriptional profile, but had also initiated T cell priming. Clustering analysis identified a CD34+ subpopulation primed for the plasmacytoid dendritic lineage, suggesting an intrathymic dendritic specification pathway. CD2 expression defined T cell commitment stages where loss of B cell potential preceded that of myeloid potential. These datasets delineate gene expression profiles spanning key differentiation events in human thymopoiesis and provide a resource for the further study of human T cell development.
Collapse
Affiliation(s)
- Justin Le
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jeong Eun Park
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Vi Luan Ha
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Fan Li
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Virginia Camacho
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sweta B Patel
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 2018; 42:3-12. [PMID: 29620247 PMCID: PMC5979885 DOI: 10.3892/ijmm.2018.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jiamei Wang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingyi Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiyuan Su
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
9
|
Dai X, Zhang D, Wang C, Wu Z, Liang C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int J Med Sci 2018; 15:1555-1563. [PMID: 30443178 PMCID: PMC6216065 DOI: 10.7150/ijms.27238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte ontogenesis has an important role in optimizing immune system function throughout the life, and dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this review is to summarize and discuss the recent advances about the impact of thymus function on atherosclerosis by the data from animal or human studies and the potential mechanisms.
Collapse
Affiliation(s)
- Xianliang Dai
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu province 214041, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chaoqun Wang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
10
|
Ha VL, Luong A, Li F, Casero D, Malvar J, Kim YM, Bhatia R, Crooks GM, Parekh C. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation. Leukemia 2017; 31:2503-2514. [PMID: 28232744 PMCID: PMC5599326 DOI: 10.1038/leu.2017.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.
Collapse
Affiliation(s)
- VL Ha
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - A Luong
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - F Li
- MiNGS Core Laboratory, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - D Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, USA
| | - J Malvar
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - YM Kim
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - GM Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - C Parekh
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Reyna-Villasmil E, Mejia-Montilla J, J.-Santos-Bolívar, Torres-Cepeda D, Suárez-Torres I, Navarro-Briceño Y, Reyna-Villasmil N. Diámetro transversal del timo fetal en el segundo trimestre del embarazo en mujeres que posteriormente desarrollan preeclampsia. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2017. [DOI: 10.1016/j.gine.2015.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Constitutive expression of genes encoding notch receptors and ligands in developing lymphocytes, nTreg cells and dendritic cells in the human thymus. RESULTS IN IMMUNOLOGY 2016; 6:15-20. [PMID: 27504259 PMCID: PMC4969261 DOI: 10.1016/j.rinim.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022]
Abstract
The thymus is the site of T cell maturation. Notch receptors (Notch1-4) and ligands (DLL1-3 and Jagged1-2) constitute one of several pathways involved in this process. Our data revealed differential constitutive expression of Notch genes and ligands in T lymphocytes and thymic dendritic cells (tDCs), suggesting their participation in human thymocyte maturation. nTreg analyses indicated that the Notch components function in parallel to promote maturation in the thymus.
Collapse
|
13
|
Rueda CM, Presicce P, Jackson CM, Miller LA, Kallapur SG, Jobe AH, Chougnet CA. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. THE JOURNAL OF IMMUNOLOGY 2016; 196:3706-15. [PMID: 27036917 DOI: 10.4049/jimmunol.1502613] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
Chorioamnionitis is associated with preterm labor and fetal inflammatory response syndrome (FIRS), causing fetal organ injury and morbidity, particularly in extremely premature infants. However, the effects of inflammation on the fetal immune system remain poorly understood, due to the difficulty of studying immune development in infants. Therefore, we used the model of intra-amniotic LPS administered at ∼80% gestation in rhesus monkeys to cause chorioamnionitis and FIRS that is similar in human pathology. Importantly, the frequency of IL-17(+) and IL-22(+) CD4(+) T cells increased in the spleen of LPS-exposed fetuses, whereas regulatory T cell (Treg) frequency decreased. These changes persisted for at least 48 h. Notably, Th17 cytokines were predominantly expressed by FOXP3(+)CD4(+) T cells and not by their FOXP3(-) counterparts. Bifunctional IL-17(+)FOXP3(+) exhibited a phenotype of inflammatory Tregs (RORc(High/+), Helios(Low/-), IL-2(+), IFN-γ(+), and IL-8(+)) compared with typical FOXP3(+) cells. Diminished splenic Treg frequency in LPS-exposed fetuses was associated with inadequate Treg generation in the thymus. Mechanistically, the emergence of inflammatory Tregs was largely dependent on IL-1 signaling. However, blockage of IL-1R signaling did not abolish the deleterious effects of LPS on Treg frequency in the thymus or spleen. Collectively, we demonstrate that a prenatal inflammatory environment leads to inadequate Treg generation in the thymus with a switch of splenic Tregs toward an inflammatory phenotype. Both processes likely contribute to the pathogenesis of chorioamnionitis. Approaches to manipulate Treg numbers and function could thus be useful therapeutically to alleviate FIRS in preterm infants.
Collapse
Affiliation(s)
- Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Pietro Presicce
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH 45229
| | - Courtney M Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Lisa A Miller
- California National Primate Research Center, University of California Davis, Davis, CA 95616; Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Suhas G Kallapur
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH 45229
| | - Alan H Jobe
- Division of Perinatal Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH 45229
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229;
| |
Collapse
|
14
|
Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, de Wit TD, Eichinger S, Fibbe W, Green T, de Haas F, Iolascon A, Jaffredo T, Rodeghiero F, Salles G, Schuringa JJ. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016; 101:115-208. [PMID: 26819058 PMCID: PMC4938336 DOI: 10.3324/haematol.2015.136739] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/28/2023] Open
Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Collapse
Affiliation(s)
| | | | - Anneke Brand
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | | | | | | | | | | | - Willem Fibbe
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | - Tony Green
- Cambridge Institute for Medical Research, United Kingdom
| | - Fleur de Haas
- European Hematology Association, The Hague, the Netherlands
| | | | | | | | - Gilles Salles
- Hospices Civils de Lyon/Université de Lyon, Pierre-Bénite, France
| | | |
Collapse
|
15
|
Van de Walle I, Davids K, Taghon T. Characterization and Isolation of Human T Cell Progenitors. Methods Mol Biol 2016; 1323:221-237. [PMID: 26294412 DOI: 10.1007/978-1-4939-2809-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse [1-4]. In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.
Collapse
Affiliation(s)
- Inge Van de Walle
- The Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, De Pintelaan 185 Blok A-4, 9000, Ghent, Belgium
| | | | | |
Collapse
|
16
|
Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nat Immunol 2015; 16:1282-91. [PMID: 26502406 PMCID: PMC4653072 DOI: 10.1038/ni.3299] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022]
Abstract
To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus.
Collapse
|
17
|
Huang J, Li X, Coelho-dos-Reis JGA, Zhang M, Mitchell R, Nogueira RT, Tsao T, Noe AR, Ayala R, Sahi V, Gutierrez GM, Nussenzweig V, Wilson JM, Nardin EH, Nussenzweig RS, Tsuji M. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria. J Immunol Methods 2015; 427:42-50. [PMID: 26410104 DOI: 10.1016/j.jim.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
Abstract
In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.
Collapse
Affiliation(s)
- Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | | | - Min Zhang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Robert Mitchell
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Raquel Tayar Nogueira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | | | | | - Vincent Sahi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | | | - Victor Nussenzweig
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth H Nardin
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ruth S Nussenzweig
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Conserved and divergent aspects of human T-cell development and migration in humanized mice. Immunol Cell Biol 2015; 93:716-26. [PMID: 25744551 PMCID: PMC4575952 DOI: 10.1038/icb.2015.38] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Humanized mice represent an important model to study the development and function of the human immune system. While it is known that mouse thymic stromal cells can support human T-cell development, the extent of interspecies cross-talk and the degree to which these systems recapitulate normal human T-cell development remain unclear. To address these questions, we compared conventional and non-conventional T-cell development in a neonatal chimera humanized mouse model with that seen in human fetal and neonatal thymus samples, and also examined the impact of a human HLA-A2 transgene expressed by the mouse stroma. Given that dynamic migration and cell–cell interactions are essential for T-cell differentiation, we also studied the intrathymic migration pattern of human thymocytes developing in a murine thymic environment. We found that both conventional T-cell development and intra-thymic migration patterns in humanized mice closely resemble human thymopoiesis. Additionally, we show that developing human thymocytes engage in short, serial interactions with other human hematopoietic-derived cells. However, non-conventional T-cell differentiation in humanized mice differed from both fetal and neonatal human thymopoiesis, including a marked deficiency of Foxp3+ T-cell development. These data suggest that although the murine thymic microenvironment can support a number of aspects of human T-cell development, important differences remain, and additional human-specific factors may be required.
Collapse
|
19
|
Halkias J, Melichar HJ, Taylor KT, Robey EA. Tracking migration during human T cell development. Cell Mol Life Sci 2014; 71:3101-17. [PMID: 24682469 PMCID: PMC11113765 DOI: 10.1007/s00018-014-1607-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/21/2014] [Accepted: 03/11/2014] [Indexed: 01/06/2023]
Abstract
Specialized microenvironments within the thymus are comprised of unique cell types with distinct roles in directing the development of a diverse, functional, and self-tolerant T cell repertoire. As they differentiate, thymocytes transit through a number of developmental intermediates that are associated with unique localization and migration patterns. For example, during one particular developmental transition, immature thymocytes more than double in speed as they become mature T cells that are among the fastest cells in the body. This transition is associated with dramatic changes in the expression of chemokine receptors and their antagonists, cell adhesion molecules, and cytoskeletal components to direct the maturing thymocyte population from the cortex to medulla. Here we discuss the dynamic changes in behavior that occur throughout thymocyte development, and provide an overview of the cell-intrinsic and extrinsic mechanisms that regulate human thymocyte migration.
Collapse
Affiliation(s)
- Joanna Halkias
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, #3200, Berkeley, CA, 94720-3200, USA,
| | | | | | | |
Collapse
|
20
|
Parekh C, Crooks GM. Critical differences in hematopoiesis and lymphoid development between humans and mice. J Clin Immunol 2013; 33:711-5. [PMID: 23274800 PMCID: PMC3633618 DOI: 10.1007/s10875-012-9844-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 12/21/2022]
Abstract
During the last five decades, elegant mouse models of hematopoiesis have yielded most of the seminal insights into this complex biological system of self-renewal and lineage commitment. More recent advances in assays to measure human stem and progenitor cells as well as high resolution RNA profiling have revealed that although the basic roadmap of blood development is generally conserved across mammals, evolutionary pressures have generated many differences between the species that have important biological and translational implications. To enhance the utility of the mouse as a model organism, it is more important than ever that research data are presented with regard to how they might be influenced by the species of origin as well as the developmental source of the hematopoietic tissue.
Collapse
Affiliation(s)
- Chintan Parekh
- Division of Pediatric Hematology/Oncology, Children’s Hospital Los Angeles
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, Geffen School of Medicine, University of California Los Angeles (UCLA)
- Jonsson Comprehensive Cancer Center, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA
| |
Collapse
|
21
|
Halkias J, Melichar HJ, Taylor KT, Ross JO, Yen B, Cooper SB, Winoto A, Robey EA. Opposing chemokine gradients control human thymocyte migration in situ. J Clin Invest 2013; 123:2131-42. [PMID: 23585474 DOI: 10.1172/jci67175] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/15/2013] [Indexed: 12/23/2022] Open
Abstract
The ordered migration of thymocytes from the cortex to the medulla is critical for the appropriate selection of the mature T cell repertoire. Most studies of thymocyte migration rely on mouse models, but we know relatively little about how human thymocytes find their appropriate anatomical niches within the thymus. Moreover, the signals that retain CD4+CD8+ double-positive (DP) thymocytes in the cortex and prevent them from entering the medulla prior to positive selection have not been identified in mice or humans. Here, we examined the intrathymic migration of human thymocytes in both mouse and human thymic stroma and found that human thymocyte subsets localized appropriately to the cortex on mouse thymic stroma and that MHC-dependent interactions between human thymocytes and mouse stroma could maintain the activation and motility of DP cells. We also showed that CXCR4 was required to retain human DP thymocytes in the cortex, whereas CCR7 promoted migration of mature human thymocytes to the medulla. Thus, 2 opposing chemokine gradients control the migration of thymocytes from the cortex to the medulla. These findings point to significant interspecies conservation in thymocyte-stroma interactions and provide the first evidence that chemokines not only attract mature thymocytes to the medulla, but also play an active role in retaining DP thymocytes in the cortex prior to positive selection.
Collapse
Affiliation(s)
- Joanna Halkias
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Van de Walle I, Waegemans E, De Medts J, De Smet G, De Smedt M, Snauwaert S, Vandekerckhove B, Kerre T, Leclercq G, Plum J, Gridley T, Wang T, Koch U, Radtke F, Taghon T. Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. ACTA ACUST UNITED AC 2013; 210:683-97. [PMID: 23530123 PMCID: PMC3620353 DOI: 10.1084/jem.20121798] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Jagged2 preferentially signals through Notch3 to promote γδ T cell development. In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αβ-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor–ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αβ and -γδ development, Jagged1 induces mainly αβ-lineage differentiation. In contrast, Jagged2-mediated Notch activation primarily results in γδ T cell development and represses αβ-lineage differentiation by inhibiting TCR-β formation. Consistently, TCR-αβ T cell development is rescued through transduction of a TCR-β transgene. Jagged2 induces the strongest Notch signal through interactions with both Notch1 and Notch3, whereas Delta-like 4 primarily binds Notch1. In agreement, Notch3 is a stronger Notch activator and only supports γδ T cell development, whereas Notch1 is a weaker activator supporting both TCR-αβ and -γδ development. Fetal thymus organ cultures in JAG2-deficient thymic lobes or with Notch3-blocking antibodies confirm the importance of Jagged2/Notch3 signaling in human TCR-γδ differentiation. Our findings reveal that differential Notch receptor–ligand interactions mediate human TCR-αβ and -γδ T cell differentiation and provide a mechanistic insight into the high Notch dependency of human γδ T cell development.
Collapse
Affiliation(s)
- Inge Van de Walle
- The Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Systemic Human T Cell Developmental Processes in Humanized Mice Cotransplanted With Human Fetal Thymus/Liver Tissue and Hematopoietic Stem Cells. Transplantation 2012; 94:1095-102. [DOI: 10.1097/tp.0b013e318270f392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Patel ES, Chang LJ. Synergistic effects of interleukin-7 and pre-T cell receptor signaling in human T cell development. J Biol Chem 2012; 287:33826-35. [PMID: 22859301 DOI: 10.1074/jbc.m112.380113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of IL-7 in pre-T cell receptor (TCR) signaling during human T cell development is poorly understood. To study this, we engineered Molt3, a T cell progenitor T-acute lymphoblastic leukemia cell line, using lentiviral IL-7 receptor α (IL-7Rα) to serve as a model system. IL-7 promoted pre-TCR activation in IL-7Rα(hi) Molt3 as illustrated by CD25 up-regulation after anti-CD3 stimulation. Anti-CD3 treatment activated Akt and Erk1/2 signaling pathways as proven using specific inhibitors, and IL-7 further enhanced both signaling pathways. The close association of IL-7Rα with CD3ζ in the pre-TCR complex was illustrated through live imaging confocal fluorescence microscopy. These results demonstrate a direct and cooperative role of IL-7 in pre-TCR signaling.
Collapse
Affiliation(s)
- Ekta S Patel
- Department of Molecular Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
25
|
Abstract
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse.
Collapse
|
26
|
A Notch stairway to thymus? Blood 2010; 115:155-6. [DOI: 10.1182/blood-2009-11-250662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Adult AIDS-like disease in a novel inducible human immunodeficiency virus type 1 Nef transgenic mouse model: CD4+ T-cell activation is Nef dependent and can occur in the absence of lymphophenia. J Virol 2009; 83:11830-46. [PMID: 19740990 DOI: 10.1128/jvi.01466-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CD4C/HIV(nef) transgenic (Tg) mice express Nef in CD4+ T cells and in the cells of the macrophage/monocyte/dendritic lineage, and they develop an AIDS-like disease similar to human AIDS. In these mice, Nef is constitutively expressed throughout life. To rule out the contribution of any developmental defects caused by early expression of Nef, we generated inducible human immunodeficiency virus type 1 (HIV-1) Nef Tg mice by using the tetracycline-inducible system. Faithful expression of the Nef transgene was induced in (CD4C/rtTA x TRE/HIV(Nef)) or (CD4C/rtTA2S-M2 x TRE/HIV(Nef)) double-Tg mice upon doxycycline (DOX) treatment in drinking water. Long-term treatment of these mice with DOX also led to loss, apoptosis, and activation of CD4+ T cells, this latter phenotype being observed even with low levels of Nef. These phenotypes could be transferred by bone marrow (BM) transplantation, indicating a hematopoietic cell autonomous effect. In addition, in mixed Tg:non-Tg BM chimeras, only Tg and not non-Tg CD4+ T cells exhibited an effector/memory phenotype in the absence of lymphopenia. Finally, the DOX-induced double-Tg mice developed nonlymphoid organ diseases similar to those of CD4C/HIV(Nef) Tg mice and of humans infected with HIV-1. These results show for the first time that adult mice are susceptible to the detrimental action of Nef and that Nef-mediated T-cell activation can be independent of lymphopenia. These Tg mice represent a unique model which is likely to be instrumental for understanding the cellular and molecular pathways of Nef action as well as the main characteristics of immune reconstitution following DOX withdrawal.
Collapse
|