1
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
2
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
3
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 PMCID: PMC12087260 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W. Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Awoniyi O. Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L. Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
4
|
Wang Y, Lv Q, Li J, Hu M, Li H, Zhang M, Shen D, Wang X. The protective mechanism of human umbilical cord mesenchymal stem cell-derived exosomes against neutrophil extracellular trap-induced placental damage. Placenta 2024; 153:59-74. [PMID: 38823320 DOI: 10.1016/j.placenta.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy-specific complication. Its etiology and pathogenesis remain unclear. Previous studies have shown that neutrophil extracellular traps (NETs) cause placental dysfunction and lead to PE. Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) have been widely used to treat different diseases. We investigated whether hUCMSC-EXOs can protect against NET-induced placental damage. METHODS NETs were detected in the placenta by immunofluorescence. The impact of NETs on cellular function and the effect of hUCMSC-EXOs on NET-induced placental damage were evaluated by 5-ethynyl-20-deoxyuridine (EdU) cell proliferation, lactate dehydrogenase (LDH), reactive oxygen species (ROS), and cell migration, invasion and tube formation assays; flow cytometry; and Western blotting. RESULTS The number of placental NETs was increased in PE patients compared with control individuals. NETs impaired the function of endothelial cells and trophoblasts. These effects were partially reversed after N-acetyl-L-cysteine (NAC; ROS inhibitor) or DNase I (NET lysing agent) pretreatment. HUCMSC-EXOs ameliorated NET-induced functional impairment of endothelial cells and trophoblasts in vitro, partially reversed NET-induced inhibition of endothelial cell and trophoblast proliferation, and partially restored trophoblast migration and invasion and endothelial cell tube formation. Exosomes inhibited ROS production in these two cell types, suppressed p38 mitogen-activated protein kinase (p38 MAPK) signaling activation, activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, and modulated the Bax, Bim, Bcl-2 and cleaved caspase-3 levels to inhibit apoptosis. DISCUSSION HUCMSC-EXOs can reverse NET-induced placental endothelial cell and trophoblast damage, possibly constituting a theoretical basis for the treatment of PE with exosomes.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China
| | - Jing Li
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, China
| | - Min Hu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Meihua Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Di Shen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
5
|
Chen Z, Zhou X, Qu H, Zhang X, Kwak-Kim J, Wang W. Characteristics and functions of memory regulatory T cells in normal pregnancy cycle and pregnancy complications. J Reprod Immunol 2024; 163:104235. [PMID: 38574576 DOI: 10.1016/j.jri.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Regulatory T cells (Tregs) are activated and expanded after exposure to fetal-specific (paternal) antigens. A proportion of Tregs differentiate into memory Tregs (mTregs), exhibiting immune memory function and exerting more potent immunosuppression than naive Tregs (nTregs). However, it is unclear how mTregs are regulated during normal and pathological pregnancies (e.g., gestational diabetes mellitus (GDM) and preeclampsia (PE)). In this study, PD-1, HLA-G, and HLA-DR expressions on memory CD4+ T cells, naive CD4+ T cells, Tregs, mTregs, and nTregs in healthy non-pregnant women (n=20), healthy first (n=20), second (n=20), and third-trimester women (n=20), postpartum women (n=20), GDM (n=20), and PE patients (n=20) were analyzed. The proportion of mTregs out of Tregs was increased (P<0.05) in the first trimester compared with that in non-pregnancy and reduced in the second and third trimesters. The proportions of PD-1+ Tregs and mTregs were significantly increased during the first trimester compared to those of non-pregnancy (P<0.01), reached their maximum in the second trimester. Moreover, the proportions of HLA-G+ memory CD4+ T cells, Tregs, and mTregs were increased in the first and second trimesters (P<0.01), reached their maximum in the third trimester. GDM patients were characterized by significantly lower percentages of PD-1+ and HLA-G+ mTregs (P<0.01), while PE patients were characterized by significantly lower percentages of HLA-G+ mTregs (P<0.01), compared with the healthy third-trimester women. In general, as demonstrated by this study, mTregs increase in number and enhance maternal-fetal immunoregulation during pregnancy, and their dysfunction can result in pregnancy complications such as GMD or PE.
Collapse
Affiliation(s)
- Zeyang Chen
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China; School of Medicine, Qingdao University, Qingdao 266000, PR China
| | - Xiaojiao Zhou
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Hongmei Qu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Hanna M, Wabnitz A, Grewal P. Sex and stroke risk factors: A review of differences and impact. J Stroke Cerebrovasc Dis 2024; 33:107624. [PMID: 38316283 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107624] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVES There is an increase in stroke incidence risk over the lifetime of women, given their longer life expectancy. However, an alarming trend for sex disparities, particularly in certain stroke risk factors, shows a concerning need for focus on sex differences in stroke prevention and treatment for women. In this article, we are addressing sex differences in both traditional and sex-specific stroke risk factors. METHODS We searched PubMed from inception to December 2022 for articles related to sex differences and risk factors for stroke. We reviewed full-text articles for relevance and ultimately included 152 articles for this focused review. RESULTS Women are at increased risk for stroke from both traditional and non-traditional stroke risk factors. As women age, they have a higher disease burden of atrial fibrillation, increased risk of stroke related to diabetes, worsening lipid profiles, and higher prevalence of hypertension and obesity compared to men. Further, women carry sex hormone-specific risk factors for stroke, including the age of menarche, menopause, pregnancy, and its complications, as well as hormonal therapy. Men have a higher prevalence of tobacco use and atrial fibrillation, as well as an increased risk for stroke related to hyperlipidemia. Additionally, men have sex-specific risks related to low testosterone levels. CONCLUSIONS By identifying biological sex-specific risk factors for stroke, developing robust collaborations, researching, and applying the knowledge for risk reduction strategies, we can begin to tailor prevention and reduce the global burden of stroke morbidity and mortality.
Collapse
Affiliation(s)
- Mckay Hanna
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Ashley Wabnitz
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Parneet Grewal
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
7
|
Zhou W, Chen Y, Zheng Y, Bai Y, Yin J, Wu XX, Hong M, Liang L, Zhang J, Gao Y, Sun N, Li J, Zhang Y, Wu L, Jin X, Niu J. Characterizing immune variation and diagnostic indicators of preeclampsia by single-cell RNA sequencing and machine learning. Commun Biol 2024; 7:32. [PMID: 38182876 PMCID: PMC10770323 DOI: 10.1038/s42003-023-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Preeclampsia is a multifactorial and heterogeneous complication of pregnancy. Here, we utilize single-cell RNA sequencing to dissect the involvement of circulating immune cells in preeclampsia. Our findings reveal downregulation of immune response in lymphocyte subsets in preeclampsia, such as reduction in natural killer cells and cytotoxic genes expression, and expansion of regulatory T cells. But the activation of naïve T cell and monocyte subsets, as well as increased MHC-II-mediated pathway in antigen-presenting cells were still observed in preeclampsia. Notably, we identified key monocyte subsets in preeclampsia, with significantly increased expression of angiogenesis pathways and pro-inflammatory S100 family genes in VCAN+ monocytes and IFN+ non-classical monocytes. Furthermore, four cell-type-specific machine-learning models have been developed to identify potential diagnostic indicators of preeclampsia. Collectively, our study demonstrates transcriptomic alternations of circulating immune cells and identifies immune components that could be involved in pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Wenwen Zhou
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Yuhui Zheng
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Bai
- BGI Research, Shenzhen, 518103, China
| | | | - Xiao-Xia Wu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Ya Gao
- BGI Research, Shenzhen, 518103, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | | | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Linlin Wu
- Department of Obstetrics, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Xin Jin
- BGI Research, Shenzhen, 518103, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China.
| |
Collapse
|
8
|
Dutsch-Wicherek MM, Bączkowska M, Knafel A, Sadowski P, Gałązka K, Lew-Starowicz M. An analysis of placental chorionic villous and decidual basalis tissue immunoreactivity in patients after cesarean section due to a placenta accreta spectrum disorder and elective cesarean section followed by the depressed mood. J Obstet Gynaecol Res 2024; 50:55-64. [PMID: 37909688 DOI: 10.1111/jog.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
An analysis of placental chorionic villous and decidual basalis tissue immunoreactivity in patients after cesarean section due to a placenta accreta spectrum disorder and elective cesarean section followed by a depressed mood. RESEARCH BACKGROUND Over the past few years, interest in investigating immune dysfunction in patients with psychiatric disorders has increased. B7-H4 is a molecule with immunosuppressive properties that seems to play a key role in establishing maternal tolerance against fetal antigens. The aim of this study was to compare the B7-H4 immunoreactivity levels in patients after cesarean section. METHODS Placental and decidual tissue samples were obtained from 49 women who delivered at Bielański Hospital in Warsaw between 2009 and 2015. Fifteen of the patients developed postpartum depression and 14 had a diagnosis of placenta accreta spectrum. The control group consisted of 20 healthy patients on whom cesarean section was performed due to breech presentation at term. RESULTS The highest levels of B7-H4 immunoreactivity were found in the placental chorionic villous and decidual basalis tissue samples of the patients who later developed postpartum depression, while the lowest levels were found in the samples of those patients with a placenta accreta spectrum disorder. The difference between the B7-H4 immunoreactivity levels of these two groups was statistically significant. The B7-H4 expression levels were statistically significantly higher in the women in the postpartum depression group than in the control group. CONCLUSION Postpartum depression follows a disturbance of the suppressive milieu responsible for rebalancing the maternal immune system after the initial cytotoxic activation during labor.
Collapse
Affiliation(s)
| | - Monika Bączkowska
- 2nd Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Knafel
- 2nd Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Sadowski
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Krystyna Gałązka
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Lew-Starowicz
- Department of Psychiatry, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
9
|
Lackner AI, Pollheimer J, Latos P, Knöfler M, Haider S. Gene-network based analysis of human placental trophoblast subtypes identifies critical genes as potential targets of therapeutic drugs. J Integr Bioinform 2023; 20:jib-2023-0011. [PMID: 38127662 PMCID: PMC10777358 DOI: 10.1515/jib-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
During early pregnancy, extravillous trophoblasts (EVTs) play a crucial role in modifying the maternal uterine environment. Failures in EVT lineage formation and differentiation can lead to pregnancy complications such as preeclampsia, fetal growth restriction, and pregnancy loss. Despite recent advances, our knowledge on molecular and external factors that control and affect EVT development remains incomplete. Using trophoblast organoid in vitro models, we recently discovered that coordinated manipulation of the transforming growth factor beta (TGFβ) signaling is essential for EVT development. To further investigate gene networks involved in EVT function and development, we performed weighted gene co-expression network analysis (WGCNA) on our RNA-Seq data. We identified 10 modules with a median module membership of over 0.8 and sizes ranging from 1005 (M1) to 72 (M27) network genes associated with TGFβ activation status or in vitro culturing, the latter being indicative for yet undiscovered factors that shape the EVT phenotypes. Lastly, we hypothesized that certain therapeutic drugs might unintentionally interfere with placentation by affecting EVT-specific gene expression. We used the STRING database to map correlations and the Drug-Gene Interaction database to identify drug targets. Our comprehensive dataset of drug-gene interactions provides insights into potential risks associated with certain drugs in early gestation.
Collapse
Affiliation(s)
- Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Maternal-Fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Maternal-Fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Paulina Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Morgaan HA, Sallam MY, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Preeclamptic programming unevenly perturbs inflammatory and renal vasodilatory outcomes of endotoxemia in rat offspring: modulation by losartan and pioglitazone. Front Pharmacol 2023; 14:1140020. [PMID: 37180728 PMCID: PMC10166818 DOI: 10.3389/fphar.2023.1140020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Preeclampsia (PE) enhances the vulnerability of adult offspring to serious illnesses. The current study investigated whether preeclamptic fetal programming impacts hemodynamic and renal vasodilatory disturbances in endotoxic adult offspring and whether these interactions are influenced by antenatal therapy with pioglitazone and/or losartan. Methods: PE was induced by oral administration of L-NAME (50 mg/kg/day) for the last 7 days of pregnancy. Adult offspring was treated with lipopolysaccharides (LPS, 5 mg/kg) followed 4-h later by hemodynamic and renovascular studies. Results: Tail-cuff measurements showed that LPS decreased systolic blood pressure (SBP) in male, but not female, offspring of PE dams. Moreover, PE or LPS reduced vasodilations elicited by acetylcholine (ACh, 0.01-7.29 nmol) or N-ethylcarboxamidoadenosine (NECA, 1.6-100 nmol) in perfused kidneys of male rats only. The latter effects disappeared in LPS/PE preparations, suggesting a postconditioning action for LPS against renal manifestation of PE. Likewise, elevations caused by LPS in serum creatinine and inflammatory cytokines (TNFα and IL-1β) as well as in renal protein expression of monocyte chemoattractant protein-1 (MCP-1) and AT1 receptors were attenuated by the dual PE/LPS challenge. Gestational pioglitazone or losartan reversed the attenuated ACh/NECA vasodilations in male rats but failed to modify LPS hypotension or inflammation. The combined gestational pioglitazone/losartan therapy improved ACh/NECA vasodilations and eliminated the rises in serum IL-1β and renal MCP-1 and AT1 receptor expressions. Conclusion: Preeclamptic fetal programming of endotoxic hemodynamic and renal manifestations in adult offspring depends on animal sex and specific biological activity and are reprogrammed by antenatal pioglitazone/losartan therapy.
Collapse
Affiliation(s)
- Hagar A. Morgaan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa Y. Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
11
|
Wang X, Wu Y, Sun Q, Jiang Z, Che G, Tao Y, Tian J. Ultrasound and microbubble-mediated delivery of miR-424-5p has a therapeutic effect in preeclampsia. Biol Proced Online 2023; 25:3. [PMID: 36788514 PMCID: PMC9930350 DOI: 10.1186/s12575-023-00191-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE To determine the influence of ultrasound/microbubble-mediated miR-424-5p delivery on trophoblast cells and the underlying mechanism. METHODS Blood pressure and 24-h proteinuria of patients with preeclampsia (PE) were measured as well as the levels of miR-424-5p and amine oxidase copper containing 1 (AOC1) in placental tissues. HTR-8/Svneo and TEV-1 cells were subjected to cell transfection or ultrasonic microbubble transfection for determination of the expression of miR-424-5p, AOC1, β-catenin and c-Myc as well as cell proliferation, apoptosis, migration and invasiveness. The concentrations of placental growth factor (PLGF), human chorionic gonadotropin (β-hCG) and tumor necrosis factor-α (TNF-α) were measured in HTR-8/Svneo and TEV-1 cells. RNA immunoprecipitation (RIP) and dual luciferase reporter assay detected the binding of miR-424-5p to AOC1. A PE mouse model was induced by subcutaneous injection of L-NAME, where the influence of ultrasound/microbubble-mediated miR-424-5p delivery was evaluated. RESULTS miR-424-5p was downregulated while AOC1 was upregulated in the placental tissues from PE patients. Overexpression of miR-424-5p activated Wnt/β-catenin signaling pathway and promoted the proliferation of HTR-8/Svneo and TEV-1 cells as well as enhanced the migratory and invasive behaviors. AOC1 overexpression partly eliminated the effects of miR-424-5p on HTR-8/Svneo and TEV-1 cells. Ultrasound and microbubble mediated gene delivery enhanced the transfection efficiency of miR-424-5p and further promoted the effects of miR-424-5p in trophoblast cells. Ultrasound/microbubble-mediated miR-424-5p delivery alleviated experimental PE in mice. CONCLUSION Ultrasound and microbubble-mediated miR-424-5p delivery targets AOC1 and activates Wnt/β-catenin signaling pathway, thus promoting the aggressive phenotype of trophoblast cells, which indicating that miR-424-5p/AOC1 axis might be involved with PE pathogenesis.
Collapse
Affiliation(s)
- Xudong Wang
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Yan Wu
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Qinliang Sun
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Zhonghui Jiang
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Guoying Che
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Yangyang Tao
- grid.412463.60000 0004 1762 6325Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150001 P.R. China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang, 150001, P.R. China.
| |
Collapse
|
12
|
TMBIM4 Deficiency Facilitates NLRP3 Inflammasome Activation-Induced Pyroptosis of Trophoblasts: A Potential Pathogenesis of Preeclampsia. BIOLOGY 2023; 12:biology12020208. [PMID: 36829486 PMCID: PMC9953300 DOI: 10.3390/biology12020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Impaired invasion of EVTs results in inadequate remodelling of arteries and poor placentation, leading to PE. TMBIM4 was found to promote the migration and invasion of human osteosarcoma U2-OS and breast cancer MCF7 cell lines. However, the effect of TMBIM4 on trophoblast biological behaviour and its relevance to PE pathophysiology remain unclear. In this study, we confirmed that TMBIM4 was highly expressed in cytotrophoblasts, syncytiotrophoblasts, and EVTs of the human placenta during early pregnancy. By comparing the expression levels of TMBIM4 in the placenta of women with normal-term pregnancy and PE, TMBIM4 was found to be significantly decreased in PE. Thereafter, we determined the expression of TMBIM4 in the LPS-treated first-trimester human trophoblast cell line HTR-8/SVneo (mimicking a PE-like cell model), and determined the effect of TMBIM4 on trophoblast function and its underlying mechanism. LPS treatment reduced the expression of TMBIM4 and induced NLRP3 inflammasome activity in HTR-8/SVneo cells. KO of TMBIM4 in the HTR-8/SVneo cell line impaired cell viability, migration, and invasion, which was more severe in the LPS/ATP-treated TMBIM4-KO cell line. Moreover, TMBIM4 deficiency enhanced NLRP3 inflammasome activity and promoted subsequent pyroptosis, with or without LPS/ATP treatment. The negative relationship between TMBIM4 expression and NLRP3 inflammatory activity was verified in PE placentas. Inhibiting the NLRP3 inflammasome with MCC950 in HTR-8/SVneo cells alleviated LPS/ATP-induced pyroptosis and damaged cell function in the TMBIM4-KO cell line. Overall, this study revealed a new PE-associated protein, TMBIM4, and its biological significance in trophoblast pyroptosis mediated by the NLRP3 inflammasome. TMBIM4 may serve as a potential target for the treatment of placental inflammation-associated PE.
Collapse
|
13
|
Fu M, Zhang X, Liu C, Lyu J, Liu X, Zhong S, Liang Y, Liu P, Huang L, Xiao Z, Wang X, Liang X, Wang H, Fan S. Phenotypic and functional alteration of CD45+ immune cells in the decidua of preeclampsia patients analyzed by mass cytometry (CyTOF). Front Immunol 2023; 13:1047986. [PMID: 36685576 PMCID: PMC9852836 DOI: 10.3389/fimmu.2022.1047986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a severe placenta-related pregnancy disease that has been associated with maternal systemic inflammation and immune system disorders. However, the distribution and functional changes in immune cells of the maternal-placental interface have not been well characterized. Herein, cytometry by time-of-flight mass spectrometry (CyTOF) was used to investigate the immune atlas at the decidua, which was obtained from four PE patients and four healthy controls. Six superclusters were identified, namely, T cells, B cells, natural killer (NK) cells, monocytes, granulocytes, and others. B cells were significantly decreased in the PE group, among which the reduction in CD27+CD38+ regulatory B cell (Breg)-like cells may stimulate immune activation in PE. The significantly increased migration of B cells could be linked to the significantly overexpressed chemokine C-X-C receptor 5 (CXCR5) in the PE group, which may result in the production of excessive autoantibodies and the pathogenesis of PE. A subset of T cells, CD11c+CD8+ T cells, was significantly decreased in PE and might lead to sustained immune activation in PE patients. NK cells were ultimately separated into four subsets. The significant reduction in a novel subset of NK cells (CD56-CD49a-CD38+) in PE might have led to the failure to suppress inflammation at the maternal-fetal interface during PE progression. Moreover, the expression levels of functional markers were significantly altered in the PE group, which also inferred that shifts in the decidual immune state contributed to the development of PE and might serve as potential treatment targets. This is a worthy attempt to elaborate the differences in the phenotype and function of CD45+ immune cells in the decidua between PE and healthy pregnancies by CyTOF, which contributes to understand the pathogenesis of PE, and the altered cell subsets and markers may inspire the immune modulatory therapy for PE.
Collapse
Affiliation(s)
- Min Fu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Shilin Zhong
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Zhansong Xiao
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| | - Xinxin Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Xiaoling Liang
- The Assisted Reproduction Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Sun Yat‐Sen Memorial Hospital, Guangzhou, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University - Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Huang X, Chi H, Gou S, Guo X, Li L, Peng G, Zhang J, Xu J, Nian S, Yuan Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes (Basel) 2023; 14:124. [PMID: 36672865 PMCID: PMC9859148 DOI: 10.3390/genes14010124] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common, highly malignant, and aggressive gastrointestinal tumor. The conventional treatment of PAAD shows poor results, and patients have poor prognosis. The synthesis and degradation of proteins are essential for the occurrence and development of tumors. Aggrephagy is a type of autophagy that selectively degrades aggregated proteins. It decreases the formation of aggregates by degrading proteins, thus reducing the harm to cells. By breaking down proteins, it decreases the formation of aggregates; thus, minimizing damage to cells. For evaluating the response to immunotherapy and prognosis in PAAD patients, in this study, we developed a reliable signature based on aggrephagy-related genes (ARGs). We obtained 298 AGGLncRNAs. Based on the results of one-way Cox and LASSO analyses, the lncRNA signature was constructed. In the risk model, the prognosis of patients in the low-risk group was noticeably better than that of the patients in the high-risk group. Additionally, the ROC curves and nomograms validated the capacity of the risk model to predict the prognosis of PAAD. The patients in the low-risk and high-risk groups showed considerable variations in functional enrichment and immunological analysis. Regarding drug sensitivity, the low-risk and high-risk groups had different half-maximal inhibitory concentrations (IC50).
Collapse
Affiliation(s)
- Xueyuan Huang
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Siqi Gou
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Xu
- Statistics Department, School of Science, Minzu University of China, Beijing 100081, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
15
|
Nunode M, Hayashi M, Nagayasu Y, Sawada M, Nakamura M, Sano T, Fujita D, Ohmichi M. miR-515-5p suppresses trophoblast cell invasion and proliferation through XIAP regulation in preeclampsia. Mol Cell Endocrinol 2023; 559:111779. [PMID: 36155776 DOI: 10.1016/j.mce.2022.111779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNA molecules that can be secreted into the circulation and which exist in remarkably stable forms. Circulating miRNAs regulate numerous biological process and are aberrantly expressed in pathological conditions. Differentially expressed circulating miRNAs have received attention as potential biomarkers for many diseases. In this study, we revealed that miR-515-5p was significantly upregulated in maternal serum from preeclampsia patients in comparison to normal pregnant women. Bioinformatics prediction and a dual-luciferase reporter gene assay revealed that miR-515-5p directly targets the X-linked inhibitor of apoptosis protein (XIAP) 3'-untranslated region. In addition, the overexpression of miR-515-5p inhibited the proliferation and invasion of HTR-8/SVneo trophoblast cells. The decreased XIAP expression and reduced epithelial-mesenchymal transition (EMT) were observed in the preeclamptic placenta. Collectively, miR-515-5p may play critical roles in the pathogenesis of preeclampsia through suppression of XIAP, and serum miR-515-5p may act as a potential biomarker for preeclampsia.
Collapse
Affiliation(s)
- Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoko Nagayasu
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masami Sawada
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Takumi Sano
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Daisuke Fujita
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
16
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
17
|
Cheng S, Huang Z, Jash S, Wu K, Saito S, Nakashima A, Sharma S. Hypoxia-Reoxygenation Impairs Autophagy-Lysosomal Machinery in Primary Human Trophoblasts Mimicking Placental Pathology of Early-Onset Preeclampsia. Int J Mol Sci 2022; 23:5644. [PMID: 35628454 PMCID: PMC9147570 DOI: 10.3390/ijms23105644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
We have previously described that placental activation of autophagy is a central feature of normal pregnancy, whereas autophagy is impaired in preeclampsia (PE). Here, we show that hypoxia-reoxygenation (H/R) treatment dysregulates key molecules that maintain autophagy-lysosomal flux in primary human trophoblasts (PHTs). Ultrastructural analysis using transmission electron microscopy reveals a significant reduction in autophagosomes and autolysosomes in H/R-exposed PHTs. H/R-induced accumulation of protein aggregates follows a similar pattern that occurs in PHTs treated with a lysosomal disruptor, chloroquine. Importantly, the placenta from early-onset PE deliveries exhibits the same features as seen in H/R-treated PHTs. Taken together, our results indicate that H/R disrupts autophagic machinery in PHTs and that impaired autophagy in the placenta from early-onset PE deliveries mimics the events in H/R-treated PHTs. Notably, assessment of key regulators at each stage of autophagic processes, especially lysosomal integrity, and verification of autophagic ultrastructure are essential for an accurate evaluation of autophagy activity in human trophoblasts and placental tissue from PE deliveries.
Collapse
Affiliation(s)
- Shibin Cheng
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Zheping Huang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Sukanta Jash
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Kathleen Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 30-0194, Japan; (S.S.); (A.N.)
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 30-0194, Japan; (S.S.); (A.N.)
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| |
Collapse
|
18
|
Human Trophoblast Cell-Derived Extracellular Vesicles Facilitate Preeclampsia by Transmitting miR-1273d, miR-4492, and miR-4417 to Target HLA-G. Reprod Sci 2022; 29:2685-2696. [PMID: 35503501 DOI: 10.1007/s43032-022-00939-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Extracellular vesicles (EVs) can intercellularly transmit a wide range of bioactive molecules, and these cargoes may potentially serve as therapeutic biomarkers for preeclampsia. Herein, the current study aims to elucidate the mechanism underlying the human trophoblast cell-derived EV-mediated miRNA-mRNA network that could potentially influence the development of preeclampsia based on microarray datasets from publicly available GEO databases. Preeclampsia-related genes were retrieved from the GeneCards and CTD databases, which were then subjected to GO and KEGG enrichment analyses in an effort to identify key pathways in preeclampsia. The obtained results suggested an important role of the immune- and inflammation-related pathways in preeclampsia. Infiltration proportion of 22 immune cells was subsequently analyzed using the CIBERSORT algorithm. Placental tissues of patients with preeclampsia presented with increased proportion of resting NK cells and resting dendritic cells, while there was a reduction in the proportion of activated NK cells. Differentially expressed mRNAs were additionally predicted in the preeclampsia-related datasets retrieved from the GEO database, and then intersected with preeclampsia-related genes to identify the key genes. HLA-G was indicated as a key target gene in the development of preeclampsia and further associated with hypoxia, immune, and inflammatory pathways. The upstream microRNAs (miRNAs/miRs) of the key genes were further predicted and intersected with differentially expressed miRNAs in the human trophoblast cell-derived EV-related datasets from the GEO database to obtain the key miRNAs. EVs secreted by human trophoblast cells under hypoxic conditions were associated with 3 key upstream miRNAs of HLA-G, namely miR-1273d, miR-4492, and miR-4417, which might be implicated in the development of preeclampsia via targeting of HLA-G. Collectively, our findings highlighted that EVs secreted by human trophoblast cells under hypoxic conditions transferred miR-1273d, miR-4492, and miR-4417, all of which targeted HLA-G, thus orchestrating immune- and inflammation-related pathways and consequently promoting the development of preeclampsia.
Collapse
|
19
|
Identification of early onset pre-eclampsia related key genes via bioinformatic analysis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Miller EC, Bello NA, Davis R, Friedman AM, Elkind MS, Wapner R, Tom SE. Women with Adverse Pregnancy Outcomes Have Higher Odds of Midlife Stroke: The Population Assessment of Tobacco and Health Study. J Womens Health (Larchmt) 2022; 31:503-512. [PMID: 34846924 PMCID: PMC9063148 DOI: 10.1089/jwh.2021.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: A history of adverse pregnancy outcomes (APOs) is associated with increased risk of future cardiovascular disease, including stroke. Few large U.S. population-based surveys included data on APOs. Methods: The Population Assessment of Tobacco and Health study is a nationally representative survey of 45,971 U.S. respondents. Female respondents ≥50 years old who reported pregnancy history at the 2013-2014 baseline interview were included in this cross-sectional analysis (n = 3,175; weighted n = 35,783,619). The primary exposure was a history of ≥1 APO, including preterm delivery, low birth weight, preeclampsia, placental abruption, and stillbirth. The primary outcomes were (1) stroke before age 60 and (2) any stroke. We used weighted logistic regression models to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association between APO and stroke, adjusting for age, race/ethnicity, socioeconomic status, parity, and vascular risk factors. Results: Among stroke-free respondents, 15% reported ≥1 APO. Among women who reported a stroke before age 60, 39% reported ≥1 APO (p < 0.001); among women reporting stroke at any age, 25% reported ≥1 APO (p = 0.01). Controlling for covariates, women with APOs had increased odds of stroke before age 60 (adjusted OR 2.66, 95% CI 1.49, 4.75). The association of APOs with stroke at any age was not significant after controlling for covariates (adjusted OR 1.57, 95% CI 0.93, 2.64). Conclusion: In this analysis of U.S. nationally representative survey data, APOs were independently associated with midlife stroke. Women with APOs have higher odds of midlife stroke and warrant targeted prevention strategies.
Collapse
Affiliation(s)
- Eliza C. Miller
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Natalie A. Bello
- Department of Medicine, and Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rindcy Davis
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Alexander M. Friedman
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mitchell S.V. Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sarah E. Tom
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Shi XF, Zhang Z, Wu HY, Wang Y, Chang AM, Gao JJ, Liu K, Song WY, Wang L, Wang HP. Lysine (K)-specific demethylase 5C regulates the incidence of severe preeclampsia by adjusting the expression of bone morphogenetic protein-7. Bioengineered 2022; 13:8538-8547. [PMID: 35331081 PMCID: PMC9161961 DOI: 10.1080/21655979.2022.2051840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the roles of the lysine (K)-specific demethylase 5C (KDM5C)-bone morphogenetic protein-7 (BMP-7) signaling pathway in the pathogenesis of severe preeclampsia (sPE). A total of 180 pregnant patients were enrolled in the study and classified into three groups: an early-onset sPE group (EOsPE) (n = 60), a late-onset sPE group (LOsPE) (n = 60), and a control group (normal pregnancy; n = 60). The messenger RNA (mRNA) and protein expression levels of bone morphogenetic protein receptor II (BMPRII), BMP-7, and KDM5C were detected in placenta samples from the two sPE groups, and their sites were evaluated using immunohistochemistry (IHC). The sPE groups showed an increased KDM5C mRNA expression, and the EOsPE group showed a decreased BMP-7 and BMPRII mRNA expression compared with the LOsPE group. However, contradictory results were discovered in terms of protein expression. Immunostaining of KDM5C, BMP-7, and BMPRII was observed in villous trophoblast and extravillous trophoblast cells. Compared with the control group, the staining intensity of KDM5C in the placental tissue trophoblast cell nucleus and vascular endothelial cells of the sPE groups was weaker, while that of BMP-7 and BMPRII was stronger, and the staining intensity was more subjective in the LOsPE group. Consistent findings were obtained by IHC and Western blot analysis. KDM5C nuclear-cytoplasmic translocation may regulate sPE through BMP-7 and its receptors. The KDM5C-BMP-7 signaling pathway may also lead to less invasion and increased apoptosis of the trophoblast cells, which is involved in the pathogenesis of sPE.
Collapse
Affiliation(s)
- Xu-Feng Shi
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhan Zhang
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Ying Wu
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ai-Min Chang
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Jun Gao
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kan Liu
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan-Yu Song
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan-Ping Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Abstract
Women face a disproportionate burden of stroke mortality and disability. Biologic sex and sociocultural gender both contribute to differences in stroke risk factors, assessment, treatment, and outcomes. There are substantial differences in the strength of association of stroke risk factors, as well as female-specific risk factors. Moreover, there are differences in presentation, response to treatment, and stroke outcomes in women. This review outlines current knowledge of impact of sex and gender on stroke, as well as delineates research gaps and areas for future inquiry.
Collapse
Affiliation(s)
- Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Tracy E. Madsen
- Division of Sex and Gender in Emergency Medicine, Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI; Department of Epidemiology, Brown University School of Public Health, Providence RI
| | - Amy Y. X. Yu
- Department of Medicine (Neurology), University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Cheryl Carcel
- Neurology Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Judith H. Lichtman
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Eliza C. Miller
- Division of Stroke and Cerebrovascular Disease, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
23
|
Chen H, Gong Y, Sun F, Han B, Zhou B, Fan J, Gu X. Myocardial Function in Offspring Aged 5 to 8 Years of Pregnancy Complicated by Severe Preeclampsia Measured by Two-Dimensional Speckle-Tracking Echocardiography. Front Physiol 2022; 12:643926. [PMID: 35069228 PMCID: PMC8774218 DOI: 10.3389/fphys.2021.643926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: This study aimed to quantitatively assess myocardial strain in preterm children aged 5 to 8 years of pregnancy complicated by severe preeclampsia (PE) by two-dimensional (2D) speckle tracking echocardiography. Method: A cohort study of 23 preterm children delivered by severe PE pregnant women from 2010 to 2012 in the First Affiliated Hospital of Soochow University was carried out. 23 preterm children from uneventful pregnancies in the same period served as controls. Myocardial functions including left ventricular longitudinal strain, radial strain, circumferential strain, and right ventricular longitudinal strain were evaluated by conventional Doppler, tissue Doppler imaging, and 2D speckle-tracking echocardiography (2D STE). All examinations were performed by an experienced ultrasonographer using the VIVID E9 (GE Healthcare) machine, according to standard techniques. Results: Children aged 5–8 years delivered from severe PE presented less weight (24.41 vs. 20.89 kg, P < 0.05), shorter height (124.1 vs 115.6 cm, P < 0.05) and faster heart rates (84 vs. 93 bpm, P < 0.05) compared to offspring of normotensive women. There were no significant differences in global left ventricular longitudinal strain, radial strain, circumferential strain, and right ventricular longitudinal strain between the children in the experimental group and the control group (P > 0.05). Conclusion: Exposure to the intrauterine environment of severe PE during the fetal period did not have a significant impact on cardiac structure in premature children at 5–8 years old, but they had a higher resting heart rate which may be associated with cardiovascular disease in the long run.
Collapse
Affiliation(s)
- Huiyun Chen
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Gong
- Suining Central Hospital, Suining, China
| | - Fangcan Sun
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Han
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyuan Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Fan
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinxian Gu
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
24
|
Ferreira BD, Barros T, Moleiro ML, Guedes-Martins L. Preeclampsia and Fetal Congenital Heart Defects. Curr Cardiol Rev 2022; 18:80-91. [PMID: 35430980 PMCID: PMC9896419 DOI: 10.2174/1573403x18666220415150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/01/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction, impaired implantation and placental insufficiency have been identified as mechanisms behind the development of pre-eclampsia, resulting in angiogenic factors' alteration. Angiogenic imbalance is also associated with congenital heart defects, and this common physiologic pathway may explain the association between them and pre-eclampsia. This review aims to understand the physiology shared by these two entities and whether women with pre-eclampsia have an increased risk of fetal congenital heart defects (or the opposite). The present research has highlighted multiple vasculogenic pathways associated with heart defects and preeclampsia, but also epigenetic and environmental factors, contributing both. It is also known that fetuses with a prenatal diagnosis of congenital heart disease have an increased risk of several comorbidities, including intrauterine growth restriction. Moreover, the impact of pre-eclampsia goes beyond pregnancy as it increases the risk for following pregnancies and for diseases later in life in both offspring and mothers. Given the morbidity and mortality associated with these conditions, it is of foremost importance to understand how they are related and its causative mechanisms. This knowledge may allow earlier diagnosis, an adequate surveillance or even the implementation of preventive strategies.
Collapse
Affiliation(s)
| | - Tânia Barros
- Address correspondence to this author at the Instituto de Ciências Biomédicas Abel Salazar, University of Porto, P.O. Box: 4050-313, Porto, Portugal; Tel/Fax: +351917518938; E-mail:
| | | | | |
Collapse
|
25
|
MiR-133b regulates oxidative stress injury of trophoblasts in preeclampsia by mediating the JAK2/STAT3 signaling pathway. J Mol Histol 2021; 52:1177-1188. [PMID: 34623553 DOI: 10.1007/s10735-021-10024-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related syndrome. Aberrant placental microRNAs (miRNAs) expression might associate with PE, including miR-133b. However, its role in the pathogenesis of preeclampsia remains elusive. Therefore, this study explored the role of miR-133b in oxidative stress injury of trophoblasts in preeclampsia (PE) by mediating the JAK2/STAT3 signaling pathway. Placental tissues were collected from PE patients to detect the expression of miR-133b and JAK2/STAT3. Then, in vitro experiments were performed on human extravillous trophoblast-derived HTR-8/SVneo cells, which were divided into Normal, hypoxia/reoxygenation (H/R), H/R + miR-NC, H/R + miR-133b inhibitor, H/R + JAK2 siRNA and H/R + miR-133b inhibitor + JAK2 siRNA groups. Cell invasion and migration abilities were detected by Transwell and wound healing assays, while apoptosis was detected by flow cytometry. The intracellular oxidative stress levels were also measured. Furthermore, the expression of miR-133b and the JAK2/STAT3 pathway was determined by qRT-PCR and Western blotting. We found that miR-133b was up-regulated, with decreases in JAK2 and p-STAT3/STAT3 in placental tissues of PE patients. Additionally, HTR8/SVneo cells in the H/R group had decreased invasion and migration abilities with increased apoptotic rates and oxidative stress levels. Moreover, the expression of miR-133b was up-regulated with decreases in p-JAK2 and p-STAT3 in H/R-treated HTR8/SVneo cells. These indicators in the H/R + miR-133b inhibitor group were ameliorated in comparison with those in the H/R group but deteriorated in the H/R + JAK2 siRNA group. Moreover, JAK2 siRNA reversed the positive effect of the miR-133b inhibitor on the invasion and migration abilities of trophoblasts. In summary, inhibiting miR-133b may improve oxidative stress injury to promote the migration and invasion of trophoblasts and suppress apoptosis by activating the JAK2/STAT3 pathway.
Collapse
|
26
|
Gao Y, Zhang X, Meng T. Overexpression of let-7b exerts beneficial effects on the functions of human placental trophoblasts by activating the ERK1/2 signaling pathway. Mol Reprod Dev 2021; 89:39-53. [PMID: 34549851 DOI: 10.1002/mrd.23535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
The present work aimed to explore let-7b's molecular mechanisms that regulate the functions of placental trophoblasts and to examine placental let-7b expression in human pre-eclampsia (PE). Human trophoblast HTR-8/SVneo cells underwent transduction with control and let-7b overexpressing lentiviruses, respectively. Cell proliferation assessment utilized cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Apoptosis, autophagy, inflammation, epithelial-to-mesenchymal transition (EMT), and ERK1/2 signaling-associated proteins were assessed by immunoblot. Placental tissue samples were collected from women with normal pregnancy (n = 20) and PE patients (n = 14). Let-7b overexpression in HTR-8/SVneo cells remarkably induced cell proliferation and invasion, suppressed apoptosis and autophagy, and resulted in decreased tumor necrosis factorα (TNF-α) expression and increased interleukin 6 (IL-6) expression in trophoblasts. Notably, the beneficial effects of let-7b overexpression, including cell invasion and EMT, were largely reversed by treatment with U0126, an indirect ERK1/2 signaling inhibitor, in these cells. TGF-β receptor type-1 (TGFBR1) overexpression weakened let-7b's functions in ERK pathway activation and invasion in trophoblasts. Placental tissue specimens from PE cases demonstrated significantly lower let-7b expression compared with normal controls. Overexpression of let-7b exerts beneficial effects on the functions of human placental trophoblasts via ERK1/2 signaling, and placental let-7b is downregulated in human PE. These findings suggest let-7b is a promising biomarker for the prospective diagnosis and targeted therapy of PE.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuefeng Zhang
- Department of Emergency, Shen Yang Red Cross Hospital, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Benner M, Lopez-Rincon A, Thijssen S, Garssen J, Ferwerda G, Joosten I, van der Molen RG, Hogenkamp A. Antibiotic Intervention Affects Maternal Immunity During Gestation in Mice. Front Immunol 2021; 12:685742. [PMID: 34512624 PMCID: PMC8428513 DOI: 10.3389/fimmu.2021.685742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pregnancy is a portentous stage in life, during which countless events are precisely orchestrated to ensure a healthy offspring. Maternal microbial communities are thought to have a profound impact on development. Although antibiotic drugs may interfere in these processes, they constitute the most frequently prescribed medication during pregnancy to prohibit detrimental consequences of infections. Gestational antibiotic intervention is linked to preeclampsia and negative effects on neonatal immunity. Even though perturbations in the immune system of the mother can affect reproductive health, the impact of microbial manipulation on maternal immunity is still unknown. Aim To assess whether antibiotic treatment influences maternal immunity during pregnancy. Methods Pregnant mice were treated with broad-spectrum antibiotics. The maternal gut microbiome was assessed. Numerous immune parameters throughout the maternal body, including placenta and amniotic fluid were investigated and a novel machine-learning ensemble strategy was used to identify immunological parameters that allow distinction between the control and antibiotic-treated group. Results Antibiotic treatment reduced diversity of maternal microbiota, but litter sizes remained unaffected. Effects of antibiotic treatment on immunity reached as far as the placenta. Four immunological features were identified by recursive feature selection to contribute to the most robust classification (splenic T helper 17 cells and CD5+ B cells, CD4+ T cells in mesenteric lymph nodes and RORγT mRNA expression in placenta). Conclusion In the present study, antibiotic treatment was able to affect the carefully coordinated immunity during pregnancy. These findings highlight the importance of inclusion of immunological parameters when studying the effects of medication used during gestation.
Collapse
Affiliation(s)
- Marilen Benner
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gerben Ferwerda
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Renate G van der Molen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Chen L, Shi Q, Fan B, Cai Y. Role of lncRNA BCYRN1 in trophoblast cell physiology and pathogenesis of preeclampsia. Exp Ther Med 2021; 22:1137. [PMID: 34466147 PMCID: PMC8383326 DOI: 10.3892/etm.2021.10571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a key role in the pathogenesis of preeclampsia (PE). The present study investigated the role of the lncRNA brain cytoplasmic RNA 1 (BCYRN1) in PE. A total of 30 patients with severe PE (SPE) and 30 patients with mild PE (MPE) were recruited, whilst 30 healthy pregnant individuals were enrolled as controls. Placental tissues of enrolled subjects were collected after delivery. The clinical data of pregnant women and newborns were recorded before the correlation between BCYRN1 expression and clinical characteristics was analyzed. Furthermore, HTR-8/SVneo cells were transfected with BCYRN1 overexpression plasmids and BCYRN1 small interfering (si)RNA. Cell Counting Kit-8, Transwell, flow cytometry and tube formation assays were used to detect the function of BCYRN1 in HTR-8/SVneo cells. Reverse transcription-quantitative PCR was used to detect BCYRN1 expression in placental tissues and HTR-8/SVneo cells. Western blotting was used to detect the protein expression levels of Wnt1 and β-catenin. BCYRN1 expression was lower in placenta with mild PE compared with in normal placenta, and was in turn lower in placenta with severe PE. BCYRN1 was negatively correlated with systolic blood pressure and 24-h urinary protein in patients with PE. BCYRN1 siRNA inhibited cell viability, migration, invasion and tube forming abilities whilst increasing apoptosis. By contrast, BCYRN1 overexpression conferred opposite effects. The levels of Wnt1 and β-catenin expression in the cells and placental tissues were next measured. Cells overexpressing BCYRN1 were further treated with the Wnt pathway inhibitor XAV939. Wnt1 and β-catenin expression were elevated when BCYRN1 was overexpressed, but were decreased after BCYRN1 knockdown. XAV939 attenuated the effect of BCYRN1 overexpression on HTR-8/SVneo cells. Overall, the resulted indicated that upregulation of BCYRN1 increased trophoblast viability and prevented apoptosis by activating the Wnt/β-catenin pathway to delay PE onset.
Collapse
Affiliation(s)
- Liping Chen
- Antenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qi Shi
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Bo Fan
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yan Cai
- Antenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
29
|
Association of second trimester uterine artery Doppler parameters with maternal hypertension 2–7 years after delivery. INTERNATIONAL JOURNAL OF CARDIOLOGY CARDIOVASCULAR RISK AND PREVENTION 2021; 10:200105. [PMID: 35112117 PMCID: PMC8790099 DOI: 10.1016/j.ijcrp.2021.200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Background Reduced uterine artery compliance is associated with adverse pregnancy outcomes (APOs) and may indicate underlying maternal cardiovascular pathology. We investigated associations between second trimester uterine artery Doppler (UAD) parameters and incident maternal hypertension 2–7 years after delivery. Methods A cohort of 10,038 nulliparous US participants was recruited early in pregnancy. A subgroup of 3739, without baseline hypertension and with complete follow-up visits 2–7 years after delivery, were included in this analysis. We investigated UAD indicators of compliance including: 1) early diastolic notch; 2) resistance index (RI); and 3) pulsatility index (PI). We defined hypertension as systolic blood pressure ≥130 mmHg, diastolic ≥80 mmHg, or antihypertensive medication use. We calculated odds ratios (OR) and 95 % confidence intervals (95%CI) for associations between UAD parameters and hypertension, adjusting for age, obesity, race/ethnicity, insurance, smoking, and APOs. Results A total of 187 (5 %) participants developed hypertension after the index pregnancy. Presence of early diastolic notch on UAD was not associated with incident hypertension. Increased RI and PI correlated with higher odds of hypertension (RI: adjusted OR 1.15 [95 % CI 1.03–1.30]; PI: adjusted OR 1.03 [95%CI 1.01–1.05] for each 0.1 unit increase). Maximum RI above 0.84 or maximum PI above 2.3 more than doubled the odds of incident hypertension (RI: adjusted OR 2.49, 95%CI 1.45–4.26; PI: adjusted OR 2.36, 95%CI 1.45–3.86). Conclusion Higher resistance and pulsatility indices measured on second trimester UAD were associated with increased odds of incident hypertension 2–7 years later, and may be biomarkers of higher maternal cardiovascular risk.
Collapse
|
30
|
Banerjee S, Huang Z, Wang Z, Nakashima A, Saito S, Sharma S, Cheng S. Etiological Value of Sterile Inflammation in Preeclampsia: Is It a Non-Infectious Pregnancy Complication? Front Cell Infect Microbiol 2021; 11:694298. [PMID: 34485175 PMCID: PMC8415471 DOI: 10.3389/fcimb.2021.694298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding of sterile inflammation and its associated biological triggers and diseases is still at the elementary stage. This becomes more warranted in cases where infections are not associated with the pathology. Detrimental effects of bacterial and viral infections on the immune responses at the maternal-fetal interface as well as pregnancy outcomes have been well documented. However, an infection-induced etiology is not thought to be a major contributing component to severe pregnancy complications such as preeclampsia (PE) and gestational diabetes. How is then an inflammatory signal thought to be associated with these pregnancy complications? It is not clear what type of inflammation is involved in the onset of PE-like features. We opine that sterile inflammation regulated by the inflammasome-gasdermins-caspase-1 axis is a contributory factor to the onset of PE. We hypothesize that increased production and release of damage-associated molecular patterns (DAMPs) or Alarmins such as high-mobility group box1 (HMGB1), cell-free fetal DNA, uric acid, the NOD-like receptor pyrin-containing receptor 3 (NLRP3) inflammasome, IL-1β and IL-18 occur in the PE placenta. Some of these molecules have already been observed in the placenta from women with PE. Mechanistically, emerging evidence has demonstrated that excessive placental endoplasmic reticulum (ER) stress, impaired autophagy and gasdermine D (GSDMD)-mediated intrinsic pyroptosis are key events that contribute to systemic sterile inflammation in patients with PE, especially early-onset PE (e-PE). In this review, we highlight the advances on the roles of sterile inflammation and inflammatory signaling cascades involving ER stress, autophagy deficiency and pyroptosis in PE pathophysiology. Deciphering the mechanisms underlying these inflammatory pathways may provide potential diagnostic biomarkers and facilitate the development of therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zheping Huang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zhengke Wang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Shibin Cheng
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Cheng S, Banerjee S, Daiello LA, Nakashima A, Jash S, Huang Z, Drake JD, Ernerudh J, Berg G, Padbury J, Saito S, Ott BR, Sharma S. Novel blood test for early biomarkers of preeclampsia and Alzheimer's disease. Sci Rep 2021; 11:15934. [PMID: 34354200 PMCID: PMC8342418 DOI: 10.1038/s41598-021-95611-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
A non-invasive and sensitive blood test has long been a goal for early stage disease diagnosis and treatment for Alzheimer's disease (AD) and other proteinopathy diseases. We previously reported that preeclampsia (PE), a severe pregnancy complication, is another proteinopathy disorder with impaired autophagy. We hypothesized that induced autophagy deficiency would promote accumulation of pathologic protein aggregates. Here, we describe a novel, sensitive assay that detects serum protein aggregates from patients with PE (n = 33 early onset and 33 late onset) and gestational age-matched controls (n = 77) as well as AD in both dementia and prodromal mild cognitive impairment (MCI, n = 24) stages with age-matched controls (n = 19). The assay employs exposure of genetically engineered, autophagy-deficient human trophoblasts (ADTs) to serum from patients. The aggregated protein complexes and their individual components, including transthyretin, amyloid β-42, α-synuclein, and phosphorylated tau231, can be detected and quantified by co-staining with ProteoStat, a rotor dye with affinity to aggregated proteins, and respective antibodies. Detection of protein aggregates in ADTs was not dependent on transcriptional upregulation of these biomarkers. The ROC curve analysis validated the robustness of the assay for its specificity and sensitivity (PE; AUC: 1, CI: 0.949-1.00; AD; AUC: 0.986, CI: 0.832-1.00). In conclusion, we have developed a novel, noninvasive diagnostic and predictive assay for AD, MCI and PE.
Collapse
Affiliation(s)
- Shibin Cheng
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Sayani Banerjee
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Lori A. Daiello
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Akitoshi Nakashima
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sukanta Jash
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Zheping Huang
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Jonathan D. Drake
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Jan Ernerudh
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - Goran Berg
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - James Padbury
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Shigeru Saito
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Brian R. Ott
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Surendra Sharma
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| |
Collapse
|
32
|
Pittara T, Vyrides A, Lamnisos D, Giannakou K. Pre-eclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG 2021; 128:1421-1430. [PMID: 33638891 DOI: 10.1111/1471-0528.16683] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Pre-eclampsia is a pregnancy-associated condition with complex disease mechanisms and a risk factor for various long-term health outcomes for the mother and infant. OBJECTIVE To summarise evidence on the association of pre-eclampsia with long-term health outcomes arising in women and/or infants. SEARCH STRATEGY PubMed, EMBASE, Scopus and ISI Web of Science were searched from inception to July 2020. SELECTION CRITERIA Systematic reviews and meta-analyses examining associations between pre-eclampsia and long-term health outcomes in women and their infants. DATA COLLECTION AND ANALYSIS Data were extracted by two independent reviewers. We re-estimated the summary effect size by random-effects and fixed-effects models, the 95% confidence interval, the 95% prediction interval, the between-study heterogeneity, any evidence of small-study effects and excess significance bias. RESULTS Twenty-one articles were included (90 associations). Seventy-nine associations had nominally statistically significant findings (P < 0.05). Sixty-five associations had large or very large heterogeneity. Evidence for small-study effects and excess significance bias was found in seven and two associations, respectively. Nine associations: cerebrovascular disease (cohort studies), cerebrovascular disease (overall), cardiac disease (cohort studies), dyslipidaemia (all studies), risk of death (late-onset pre-eclampsia), fatal and non-fatal ischaemic heart disease, cardiovascular mortality (cohort studies), any diabetes or use of diabetic medication (unadjusted), and attention deficit/hyperactivity disorder (ADHD) (adjusted) were supported with robust evidence. CONCLUSION Many of the meta-analyses in this research field have caveats casting doubts on their validity. Current evidence suggests an increased risk for women to develop cardiovascular-related diseases, diabetes and dyslipidaemia after pre-eclampsia, while offspring exposed to pre-eclampsia are at higher risk for ADHD. TWEETABLE ABSTRACT Cardiovascular and cerebrovascular diseases were supported with convincing evidence for long-term health outcomes after pre-eclampsia.
Collapse
Affiliation(s)
- T Pittara
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Vyrides
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - D Lamnisos
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - K Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
33
|
Huang X, Wang L, Zhao S, Liu H, Chen S, Wu L, Liu L, Ding J, Yang H, Maxwell A, Yin Z, Mor G, Liao A. Pregnancy Induces an Immunological Memory Characterized by Maternal Immune Alterations Through Specific Genes Methylation. Front Immunol 2021; 12:686676. [PMID: 34163485 PMCID: PMC8215664 DOI: 10.3389/fimmu.2021.686676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
During pregnancy, the maternal immune system undergoes major adaptive modifications that are necessary for the acceptance and protection of the fetus. It has been postulated that these modifications are temporary and limited to the time of pregnancy. Growing evidence suggests that pregnancy has a long-term impact on maternal health, especially among women with pregnancy complications, such as preeclampsia (PE). In addition, the presence of multiple immunological-associated changes in women that remain long after delivery has been reported. To explain these long-term modifications, we hypothesized that pregnancy induces long-term immunological memory with effects on maternal well-being. To test this hypothesis, we evaluated the immunological phenotype of circulating immune cells in women at least 1 year after a normal pregnancy and after pregnancy complicated by PE. Using multiparameter flow cytometry (FCM) and whole-genome bisulfite sequencing (WGBS), we demonstrate that pregnancy has a long-term effect on the maternal immune cell populations and that this effect differs between normal pregnancy and pregnancy complicated by PE; furthermore, these modifications are due to changes in the maternal methylation status of genes that are associated with T cell and NK cell differentiation and function. We propose the existence of an "immunological memory of pregnancy (IMOP)" as an evolutionary advantage for the success of future pregnancies and the proper adaptation to the microchimeric status established during pregnancy. Our findings demonstrate that the type of immune cell populations modified during pregnancy may have an impact on subsequent pregnancy and future maternal health.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Anhui Province Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Liping Liu
- Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hengwen Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Anthony Maxwell
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Ruano CSM, Apicella C, Jacques S, Gascoin G, Gaspar C, Miralles F, Méhats C, Vaiman D. Alternative splicing in normal and pathological human placentas is correlated to genetic variants. Hum Genet 2021; 140:827-848. [PMID: 33433680 PMCID: PMC8052246 DOI: 10.1007/s00439-020-02248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Two major obstetric diseases, preeclampsia (PE), a pregnancy-induced endothelial dysfunction leading to hypertension and proteinuria, and intra-uterine growth-restriction (IUGR), a failure of the fetus to acquire its normal growth, are generally triggered by placental dysfunction. Many studies have evaluated gene expression deregulations in these diseases, but none has tackled systematically the role of alternative splicing. In the present study, we show that alternative splicing is an essential feature of placental diseases, affecting 1060 and 1409 genes in PE vs controls and IUGR vs controls, respectively, many of those involved in placental function. While in IUGR placentas, alternative splicing affects genes specifically related to pregnancy, in preeclamptic placentas, it impacts a mix of genes related to pregnancy and brain diseases. Also, alternative splicing variations can be detected at the individual level as sharp splicing differences between different placentas. We correlate these variations with genetic variants to define splicing Quantitative Trait Loci (sQTL) in the subset of the 48 genes the most strongly alternatively spliced in placental diseases. We show that alternative splicing is at least partly piloted by genetic variants located either in cis (52 QTL identified) or in trans (52 QTL identified). In particular, we found four chromosomal regions that impact the splicing of genes in the placenta. The present work provides a new vision of placental gene expression regulation that warrants further studies.
Collapse
Affiliation(s)
- Camino S M Ruano
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Clara Apicella
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Géraldine Gascoin
- Unité Mixte de Recherche MITOVASC, Équipe Mitolab, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
- Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Francisco Miralles
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Céline Méhats
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
35
|
Associations between Dietary Patterns and Inflammatory Markers during Pregnancy: A Systematic Review. Nutrients 2021; 13:nu13030834. [PMID: 33806342 PMCID: PMC8000934 DOI: 10.3390/nu13030834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Elevated inflammation in pregnancy has been associated with multiple adverse pregnancy outcomes and potentially an increased susceptibility to future chronic disease. How maternal dietary patterns influence systemic inflammation during pregnancy requires further investigation. The purpose of this review was to comprehensively evaluate studies that assessed dietary patterns and inflammatory markers during pregnancy. This review was guided by the Preferred Reporting Items for Systematic Review and Meta-Analyses. Included studies were sourced from EMBASE, PubMed, Web of Science, and Scopus and evaluated using The Quality Assessment Tool for Quantitative Studies. Inclusion criteria consisted of human studies published in English between January 2007 and May 2020 that addressed associations between dietary patterns and inflammatory markers during pregnancy. Studies focused on a single nutrient, supplementation, or combined interventions were excluded. A total of 17 studies were included. Despite some inconsistent findings, maternal diets characterized by a higher intake of animal protein and cholesterol and/or a lower intake of fiber were shown to be associated with certain pro-inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF- α), IL-8, serum amyloid A (SAA), and glycoprotein acetylation (GlycA)). Future studies that explore a broader range of inflammatory markers in the pregnant population, reduce measurement errors, and ensure adequate statistical adjustment are warranted.
Collapse
|
36
|
Auger N, Low N, Paradis G, Ayoub A, Fraser WD. Preeclampsia and the longitudinal risk of hospitalization for depression at 28 years. Soc Psychiatry Psychiatr Epidemiol 2021; 56:429-436. [PMID: 32653941 DOI: 10.1007/s00127-020-01920-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The association between pregnancy characteristics and risk of depression in women is poorly understood. We investigated the relationship between preeclampsia and risk of hospitalization for depression over three decades. METHODS We carried out a longitudinal cohort study of 1,210,963 women who delivered an infant in any hospital in Quebec, Canada, between 1989 and 2016. The exposure was preeclampsia at the first or in subsequent pregnancies, including preeclampsia onset time (early < 34 weeks vs. late ≥ 34 weeks of gestation) and severity (mild, severe, superimposed). The outcome was hospitalization for depression any time after pregnancy. We used Cox proportional hazards regression models adjusted for maternal characteristics to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of preeclampsia with depression hospitalization. RESULTS Women with preeclampsia had a higher incidence of hospitalization for depression compared with no preeclampsia (1.43 vs. 1.14 per 1000 person-years). Preeclampsia was associated with 1.16 times the risk of depression hospitalization after 28 years of follow-up (95% CI 1.09-1.23). Associations were present for mild (HR 1.15, 95% CI 1.07-1.24), severe (HR 1.16, 95% CI 1.04-1.29) and late onset preeclampsia (HR 1.17, 95% CI 1.10-1.25). Risks were more pronounced after the first year postpartum. CONCLUSION Preeclampsia appears to be associated with the risk of depression hospitalization several decades after pregnancy. Clinicians who care for women with mental health disorders should be aware that a history of preeclampsia increases the risk of severe depression.
Collapse
Affiliation(s)
- Nathalie Auger
- University of Montreal Hospital Research Centre, Montreal, QC, Canada. .,Institut national de santé publique du Québec, 190 Cremazie Blvd E., Montreal, QC, H2P 1E2, Canada. .,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada.
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gilles Paradis
- Institut national de santé publique du Québec, 190 Cremazie Blvd E., Montreal, QC, H2P 1E2, Canada.,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Aimina Ayoub
- University of Montreal Hospital Research Centre, Montreal, QC, Canada.,Institut national de santé publique du Québec, 190 Cremazie Blvd E., Montreal, QC, H2P 1E2, Canada
| | - William D Fraser
- Department of Obstetrics and Gynecology, Sherbrooke University Hospital Research Centre, Sherbrooke, Canada
| |
Collapse
|
37
|
Aggrephagy Deficiency in the Placenta: A New Pathogenesis of Preeclampsia. Int J Mol Sci 2021; 22:ijms22052432. [PMID: 33670947 PMCID: PMC7957664 DOI: 10.3390/ijms22052432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Aggrephagy is defined as the selective degradation of aggregated proteins by autophagosomes. Protein aggregation in organs and cells has been highlighted as a cause of multiple diseases, including neurodegenerative diseases, cardiac failure, and renal failure. Aggregates could pose a hazard for cell survival. Cells exhibit three main mechanisms against the accumulation of aggregates: protein refolding by upregulation of chaperones, reduction of protein overload by translational inhibition, and protein degradation by the ubiquitin-proteasome and autophagy-lysosome systems. Deletion of autophagy-related genes reportedly contributes to intracellular protein aggregation in vivo. Some proteins recognized in aggregates in preeclamptic placentas include those involved in neurodegenerative diseases. As aggregates are derived both intracellularly and extracellularly, special endocytosis for extracellular aggregates also employs the autophagy machinery. In this review, we discuss how the deficiency of aggrephagy and/or macroautophagy leads to poor placentation, resulting in preeclampsia or fetal growth restriction.
Collapse
|
38
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of Cardio-Obstetrics: Role of inflammation and endothelial dysfunction. Curr Hypertens Rev 2021; 18:17-33. [DOI: 10.2174/1573402117666210218105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
:
Preeclampsia (PE) is a worldwide pregnancy complication with serious maternal and neonatal consequences. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this still incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction poses the most useful clinical approach to reduce the PE burden. Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase dramatically the risk of PE provides a critical opportunity to improve outcomes by acting on potential reversible factors, and also contribute to better understand this pathophysiologic enigma. In this review, we highlight major clinical contributors of PE and shed light about their potential link with endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- María M. Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Juan Torrado
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Sosa
- Department of Obstetrics and Gynecology “C”, Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
39
|
|
40
|
Miller EC, Miltiades A, Pimentel-Soler N, Booker WA, Landau-Cahana R, Marshall RS, D'Alton ME, Wapner R, Lawrence Cleary K, Bello N. Cardiovascular and cerebrovascular health after pre-eclampsia: the Motherhealth prospective cohort study protocol. BMJ Open 2021; 11:e043052. [PMID: 33414149 PMCID: PMC7797304 DOI: 10.1136/bmjopen-2020-043052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Cardiovascular and cerebrovascular diseases (CCVDs) are the leading cause of maternal mortality in the first year after delivery. Women whose pregnancies were complicated by pre-eclampsia are at particularly high risk for adverse events. In addition, women with a history of pre-eclampsia have higher risk of CCVD later in life. The physiological mechanisms that contribute to increased CCVD risk in these women are not well understood, and the optimal clinical pathways for postpartum CCVD risk reduction are not yet defined. METHODS AND ANALYSIS The Motherhealth Study (MHS) is a prospective cohort study at Columbia University Irving Medical Center (CUIMC), a quaternary care academic medical centre serving a multiethnic population in New York City. MHS began recruitment on 28 September 2018 and will enrol 60 women diagnosed with pre-eclampsia with severe features in the antepartum or postpartum period, and 40 normotensive pregnant women as a comparison cohort. Clinical data, biospecimens and measures of vascular function will be collected from all participants at the time of enrolment. Women in the pre-eclampsia group will complete an additional three postpartum study visits over 12-24 months. Visits will include additional detailed cardiovascular and cerebrovascular phenotyping. As this is an exploratory, observational pilot study, only descriptive statistics are planned. Data will be used to inform power calculations for future planned interventional studies. ETHICS AND DISSEMINATION The CUIMC Institutional Review Board approved this study prior to initiation of recruitment. All participants signed informed consent prior to enrolment. Results will be disseminated to the clinical and research community, along with the public, on completion of analyses. Data will be shared on reasonable request.
Collapse
Affiliation(s)
- Eliza C Miller
- Department of Neurology, Columbia University, New York, New York, USA
| | - Andrea Miltiades
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Nicole Pimentel-Soler
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Whitney A Booker
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Ruth Landau-Cahana
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | | | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Kirsten Lawrence Cleary
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
- Department of Obstetrics and Gynecology, Yale University, New Haven, Connecticut, USA
| | - Natalie Bello
- Department of Medicine, Cardiology Division, Columbia University, New York, New York, USA
| |
Collapse
|
41
|
Azimi-Nezhad M, Teymoori A, Salmaninejad A, Ebrahimzadeh-Vesal R. Association of MTHFR C677T Polymorphism with Preeclampsia in North East of Iran (Khorasan Province). Fetal Pediatr Pathol 2020; 39:373-380. [PMID: 31448666 DOI: 10.1080/15513815.2019.1655819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Preeclampsia (PE) is one of the main causes of fetal and maternal mortality. The analysis of candidate gene polymorphisms can improve our understanding of the mechanisms underlying pathogenesis of PE. Present study is aimed at investigating the association between MTRR c.66A > G, MTHFR c.677C > T, MTHFR c.1298A > C, and MTR c.2756A > G polymorphisms and PE in Iranian women. Methods: About 117 women with history of PE and 103 healthy women with a pregnancy not complicated by PE were selected. The genomic DNA was extracted from peripheral blood. Single-nucleotide polymorphisms were genotyped using Real-Time PCR. Results: There was a significant difference between MTHFR c.677C > T polymorphism with PE (p = 0.045). The frequency of C/T heterozygous genotypes were (58% vs. 36%) in the case and control groups, respectively. There were no statistically significant differences between other genetic polymorphisms. Conclusions: The results indicated that the MTHFR c.677C > T polymorphism may be associated with development of PE in Iranian women.
Collapse
Affiliation(s)
- Mohsen Azimi-Nezhad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Teymoori
- Department of Medical Genetics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Reza Ebrahimzadeh-Vesal
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
42
|
Nakashima A, Cheng SB, Ikawa M, Yoshimori T, Huber WJ, Menon R, Huang Z, Fierce J, Padbury JF, Sadovsky Y, Saito S, Sharma S. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy 2020; 16:1771-1785. [PMID: 31856641 PMCID: PMC8386603 DOI: 10.1080/15548627.2019.1707494] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
The etiology of preeclampsia (PE), a serious pregnancy complication, remains an enigma. We have demonstrated that proteinopathy, a pathologic feature of neurodegenerative diseases, is a key observation in the placenta and serum from PE patients. We hypothesize that the macroautophagy/autophagy machinery that mediates degradation of aggregated proteins and damaged organelles is impaired in PE. Here, we show that TFEB (transcription factor EB), a master transcriptional regulator of lysosomal biogenesis, and its regulated proteins, LAMP1, LAMP2, and CTSD (cathepsin D), were dysregulated in the placenta from early and late onset PE deliveries. Primary human trophoblasts and immortalized extravillous trophoblasts (EVTs) showed reduced TFEB expression and nuclear translocation as well as lysosomal protein content in response to hypoxia. Hypoxia-exposed trophoblasts also showed decreased PPP3/calcineurin phosphatase activity and increased XPO1/CRM1 (exportin 1), events that inhibit TFEB nuclear translocation. These proteins were also dysregulated in the PE placenta. These results are supported by observed lysosomal ultrastructural defects with decreased number of autolysosomes in hypoxia-treated primary human trophoblasts. Autophagy-deficient human EVTs exhibited poor TFEB nuclear translocation, reduced lysosomal protein expression and function, and increased MTORC1 activity. Sera from PE patients induced these features and protein aggregation in EVTs. Importantly, trophoblast-specific conditional atg7 knockout mice exhibited reduced TFEB expression with increased deposition of protein aggregates in the placenta. These results provide compelling evidence for a regulatory link between accumulation of protein aggregates and TFEB-mediated impaired lysosomal biogenesis and autophagy in the placenta of PE patients. Abbreviation:atg7: autophagy related 7; CTSD: cathepsin D; ER: endoplasmic reticulum; EVTs: extravillous trophoblasts; KRT7: keratin 7; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; mSt: mStrawberry; MTORC1: mechanistic target of rapamycin complex 1; NP: normal pregnancy; NPS: normal pregnancy serum; PE: preeclampsia; PES: preeclampsia serum; p-RPS6KB: phosphorylated ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shi-Bin Cheng
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Warren J. Huber
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ramkumar Menon
- Deaprtment of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zheping Huang
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jamie Fierce
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - James F. Padbury
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology, University of Pittsburgh, PA, USA
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Surendra Sharma
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
43
|
Tao J, Xia LZ, Liang L, Chen Y, Wei D, Meng J, Wu S, Wang Z. MiR-124-3p promotes trophoblast cell HTR-8/SVneo pyroptosis by targeting placental growth factor. Placenta 2020; 101:176-184. [PMID: 33010604 DOI: 10.1016/j.placenta.2020.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION MiR-124-3p is one of the aberrantly expressed miRNAs in the placentas of patients with preeclampsia (PE), a severe obstetric complication characterised by hypertension and proteinuria. This study aimed to investigate the role of miR-124-3p in the invasion, migration and death of trophoblast cells and explore the potential mechanisms. METHODS MiR-124-3p expression in placental tissues was compared with that in normal placenta. HTR8/SVneo cells were then transfected with miR-124-3p mimics to examine cellular apoptosis, migration and invasion. Furthermore, the expression of pyroptosis-related molecular NLRP3, Pro-caspase1, caspase1, IL-1β and GSDMD was examined with Western blot. Dual luciferase reporter assay was performed to confirm that placental growth factor (PLGF) is a direct target of miR-124-3p, and HTR-8/SVneo cells were transfected with small interfering RNA PLGF (siPLGF) to determine whether PLGF knockdown promotes HTR-8/SVneo pyroptosis. Finally, intracellular ROS was diminished with N-acetyl-l-cysteine (NAC) to observe whether the pro-pyroptosis effect of PLGF knockdown is alleviated. RESULTS Results in this study showed that miR-124-3p expression was remarkably increased in the placenta of patients with PE. Moreover, the transfection of miR-124-3p mimics in trophoblastic cells significantly decreased cell migration and invasion but increased cell apoptosis and the expression of NLRP3, pro-caspase1, caspase1, IL-1β and GSDMD. Therefore, PLGF was confirmed as a direct target of miR-124-3p. Finally, siPLGF transfection can mimic the effects of miR-124-3p, and NAC can inhibit this effect. CONCLUSION In summary, miR-124-3p is upregulated in PE, and in vitro functional analysis revealed that this mRNA inhibits trophoblast invasion and migration but promotes cell pyroptosis partly via the PLGF-ROS pathway.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| | - Lin-Zhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| | - ShiYuan Wu
- YueYang Maternal-Child Medicine Health Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, 416000, China.
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
44
|
Schuster J, Cheng SB, Padbury J, Sharma S. Placental extracellular vesicles and pre-eclampsia. Am J Reprod Immunol 2020; 85:e13297. [PMID: 32619308 DOI: 10.1111/aji.13297] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-eclampsia is a hypertensive disease of pregnancy characterized by new-onset hypertension, with either proteinuria and/or organ dysfunction. Pre-eclampsia is a leading cause of maternal morbidity and mortality; however, the underlying cellular and molecular mechanisms are not well understood. There is consensus that the underlying mechanism(s) resulting in pre-eclampsia is centered around abnormal placentation, inadequate spiral-artery remodeling, and deficiency in trophoblast invasion, resulting in impaired maternal blood flow to the placenta and a release of signals and/or inflammatory mediators into maternal circulation triggering the systemic manifestations of pre-eclampsia. ER stress, resulting in impaired autophagy and placental release of aggregated proteins, may also confer systemic stress to maternal organs in pre-eclampsia. Extracellular vesicles (EVs), lipid-bilayer enclosed structures containing macromolecules including proteins, miRNA, and other important nucleotides, have been suggested to play an important role in this maternal-fetal communication. Circulating EVs are present in greater quantity in the plasma of pre-eclampsia subjects compared to normal pregnancy, and the placental derived EVs have been shown to have altered protein and RNA cargo. In this review, we will focus on EVs and their role in pre-eclampsia, specifically their role in immune responses, inflammation, altered angiogenesis, and endothelial dysfunction.
Collapse
Affiliation(s)
- Jessica Schuster
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Shi-Bin Cheng
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - James Padbury
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
45
|
Cui J, Chen X, Lin S, Li L, Fan J, Hou H, Li P. MiR-101-containing extracellular vesicles bind to BRD4 and enhance proliferation and migration of trophoblasts in preeclampsia. Stem Cell Res Ther 2020; 11:231. [PMID: 32527308 PMCID: PMC7291671 DOI: 10.1186/s13287-020-01720-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Preeclampsia (PE) is a frequently occurring pregnancy disorder in the placenta, which results in various maternal and fetal complications. The current study aims to evaluate the role of extracellular vesicles (EVs)-encapsulated microRNA (miR)-101 in biological processes of trophoblasts in PE and its underlying mechanism. Methods Human umbilical cord mesenchymal stem cell (HUCMSC) and HUCMSC-derived EVs were isolated and cultured, after which EV characterization was carried out using PKH67 staining. In silico analyses were adopted to predict the downstream target genes of miR-101, and dual luciferase reporter gene assay was applied to validate the binding affinity. Furthermore, loss- and gain-of-function approaches were adopted to determine the role of miR-101 and bromodomain-containing protein 4 (BRD4) in trophoblast proliferation and invasion using EDU staining and transwell assay. In addition, a rat model of PE was established to verify the function of EV-encapsulated miR-101 in vivo. Results Placental tissues obtained from PE patients presented with downregulated miR-101 expression and upregulated BRD4 and CXCL11 expression. EV-encapsulated miR-101 from HUCMSCs could be delivered into the trophoblast HTR-8/SVneo cells, thus enhancing proliferation and migration of trophoblasts. Mechanically, miR-101 targeted and negatively regulated BRD4 expression. BRD4 knockdown promoted the proliferation and migration of trophoblasts by suppressing NF-κB/CXCL11 axis. EV-encapsulated miR-101 from HUCMSCs also reduced blood pressure and 24 h urine protein in vivo, thereby ameliorating PE. Conclusion In summary, EV-encapsulated miR-101 promoted proliferation and migration of placental trophoblasts through the inhibition of BRD4 expression via NF-κB/CXCL11 inactivation.
Collapse
Affiliation(s)
- Jinhui Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China
| | - Xinjuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China
| | - Shuo Lin
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 516000, People's Republic of China
| | - Ling Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China
| | - Jianhui Fan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China
| | - Hongying Hou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China
| | - Ping Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 516000, Guangdong Province, People's Republic of China.
| |
Collapse
|
46
|
de Rivero Vaccari JP. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Front Endocrinol (Lausanne) 2020; 11:8. [PMID: 32047476 PMCID: PMC6997205 DOI: 10.3389/fendo.2020.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/03/2022] Open
Abstract
The inflammasome is a key regulator of innate immunity involved in the inflammatory response to infections as well as disease through the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. Even though the inflammasome was first described in the context of infections, most research in recent years has focused on targeting the inflammasome as a therapeutic option in sterile inflammatory events. Recent evidence indicates a clear involvement of the inflammasome in Reproductive Biology such as infertility and preeclampsia. In this mini-review, I summarize the current findings on the inflammasome that have been described in the field of Reproductive Biology and highlight the potential that the inflammasome has as a novel therapeutic option in this field. The topics covered in this review as it pertains to the inflammasome field cover the literature published on male and female infertility, endometriosis, preeclampsia, placental inflammation, and reproductive senescence.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
- InflamaCORE, LLC, Miami, FL, United States
- *Correspondence: Juan Pablo de Rivero Vaccari
| |
Collapse
|
47
|
Cheng SB, Nakashima A, Huber WJ, Davis S, Banerjee S, Huang Z, Saito S, Sadovsky Y, Sharma S. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis 2019; 10:927. [PMID: 31804457 PMCID: PMC6895177 DOI: 10.1038/s41419-019-2162-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Systemic manifestation of preeclampsia (PE) is associated with circulating factors, including inflammatory cytokines and damage-associated molecular patterns (DAMPs), or alarmins. However, it is unclear whether the placenta directly contributes to the increased levels of these inflammatory triggers. Here, we demonstrate that pyroptosis, a unique inflammatory cell death pathway, occurs in the placenta predominantly from early onset PE, as evidenced by elevated levels of active caspase-1 and its substrate or cleaved products, gasdermin D (GSDMD), IL-1β, and IL-18. Using cellular models mimicking pathophysiological conditions (e.g., autophagy deficiency, hypoxia, and endoplasmic reticulum (ER) stress), we observed that pyroptosis could be induced in autophagy-deficient human trophoblasts treated with sera from PE patients as well as in primary human trophoblasts exposed to hypoxia. Exposure to hypoxia elicits excessive unfolded protein response (UPR) and ER stress and activation of the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome in primary human trophoblasts. Thioredoxin-interacting protein (TXNIP), a marker for hyperactivated UPR and a crucial signaling molecule linked to NLRP3 inflammasome activation, is significantly increased in hypoxia-treated trophoblasts. No evidence was observed for necroptosis-associated events. Importantly, these molecular events in hypoxia-treated human trophoblasts are significantly observed in placental tissue from women with early onset PE. Taken together, we propose that placental pyroptosis is a key event that induces the release of factors into maternal circulation that possibly contribute to severe sterile inflammation and early onset PE pathology.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Warren J Huber
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sarah Davis
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sayani Banerjee
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zheping Huang
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Surendra Sharma
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T, Yoshino O, Sago H, Matsumoto K, Sharma S, Saito S. Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep 2019; 9:11466. [PMID: 31391477 PMCID: PMC6685987 DOI: 10.1038/s41598-019-47607-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy is a stress factor culminating into mild endoplasmic reticulum (ER) stress, which is necessary for placental development. However, excessive or chronic ER stress in pre-eclamptic placentas leads to placental dysfunction. The precise mechanisms through which excessive ER stress impacts trophoblasts are not well understood. Here, we showed that ER stress reduces the number of lysosomes, resulting in inhibition of autophagic flux in trophoblast cells. ER stress also disrupted the translocation of lysosomes to the surface of trophoblast cells, and inhibited lysosomal exocytosis, whereby the secretion of lysosomal-associated membrane protein 1 (LAMP1) into culture media was significantly attenuated. In addition, we found that serum LAMP1 and beta-galactosidase levels were significantly decreased in pre-eclampsia patients compared to normal pregnant women, potentially indicating lysosomal dysfunction through ER stress in pre-eclamptic placentas. Thus, we demonstrated that excessive ER stress essentially disrupts homeostasis in trophoblasts in conjunction with autophagy inhibition by lysosomal impairment.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shi-Bin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley street, Providence, RI, 02905, USA
| | - Tae Kusabiraki
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Aiko Aoki
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akemi Ushijima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
49
|
Kamity R, Sharma S, Hanna N. MicroRNA-Mediated Control of Inflammation and Tolerance in Pregnancy. Front Immunol 2019; 10:718. [PMID: 31024550 PMCID: PMC6460512 DOI: 10.3389/fimmu.2019.00718] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
Gestational age-dependent immune intolerance at the maternal-fetal interface might be a contributing factor to placental pathology and adverse pregnancy outcomes. Although the intrauterine setting is highly choreographed and considered to be a protective environment for the fetus, unscheduled inflammation might overwhelm the intrauterine milieu to cause a cascade of events leading to adverse pregnancy outcomes. The old paradigm of a sterile intrauterine microenvironment has been challenged, and altered microflora has been detected in gestational tissues and amniotic fluid in the absence of induction of significant inflammation. Is there a role for endotoxin tolerance at the maternal-fetal interface? Endotoxin tolerance is a phenomenon in which tissues or cells exposed to the bacterial product, particularly lipopolysaccharide, become less responsive to subsequent exposures accompanied by decreased expression of pro-inflammatory mediators. This could also be related to trained or experienced immunity that leads to the successful outcome of subsequent pregnancies. Adaptation to endotoxin tolerance or trained immunity might be critical in preventing rejection of the fetus by the maternal immune system and protecting the fetus from excessive maternal inflammatory responses to infectious agents; however, to date, the exact mechanisms contributing to the establishment and maintenance of tolerance at the maternal-fetal interface remain incompletely understood. There is now extensive evidence suggesting that microRNAs (miRNAs) play important roles in the maintenance of a healthy pregnancy. miRNAs not only circulate freely in extracellular fluids but are also packaged within extracellular vesicles (EVs) produced by various cells and tissues. The placenta is a known, abundant, and transient source of EVs; therefore, our proposed model suggests that repeated exposure to infectious agents induces a tolerant phenotype at the maternal-fetal interface mediated by specific miRNAs mostly contained within placental EVs. We hypothesize that impaired endotoxin tolerance or failed trained immunity at the maternal-fetal interface will result in a pathological inflammatory response contributing to early or late pregnancy maladies.
Collapse
Affiliation(s)
- Ranjith Kamity
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Nazeeh Hanna
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| |
Collapse
|
50
|
Miller EC, Boehme AK, Chung NT, Wang SS, Lacey JV, Lakshminarayan K, Zhong C, Woo D, Bello NA, Wapner R, Elkind MSV, Willey JZ. Aspirin reduces long-term stroke risk in women with prior hypertensive disorders of pregnancy. Neurology 2019; 92:e305-e316. [PMID: 30587515 PMCID: PMC6345119 DOI: 10.1212/wnl.0000000000006815] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether hypertensive disorders of pregnancy (HDP) increased long-term stroke risk in women in the California Teachers Study (CTS), a prospective cohort study, and whether aspirin or statin use modified this risk. METHODS CTS participants ≤60 years of age at the time of enrollment in 1995 were followed up prospectively for validated stroke outcomes obtained via linkage with California hospital records through December 31, 2015. We calculated unadjusted and adjusted hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the primary outcomes of all stroke and stroke before 60 years of age among those with and without a history of HDP. We tested for interactions (p < 0.2) and performed stratified analyses to assess the risk of the primary outcomes in women with and without self-reported use of aspirin or statins. RESULTS Of 83,749 women included in the analysis, 4,070 (4.9%) had HDP. Women with prior HDP had increased risk of all stroke (adjusted HR 1.3, 95% CI 1.2-1.4) but no increased risk of stroke before age 60 (adjusted HR 1.2, 95% CI 0.9-1.7). There was an interaction (p = 0.18) between aspirin use and HDP history on risk of stroke before age 60: nonusers of aspirin had higher risk (adjusted HR 1.5, 95% CI 1.0-2.1) while aspirin users did not (adjusted HR 0.8, 95% CI 0.4-1.7). This effect was not seen with statins. CONCLUSIONS After controlling for comorbid conditions, women with prior HDP had increased long-term stroke risk, which was reduced by aspirin use. Randomized trials may be needed to assess whether long-term aspirin use could benefit selected women with a history of HDP.
Collapse
Affiliation(s)
- Eliza C Miller
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH.
| | - Amelia K Boehme
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Nadia T Chung
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Sophia S Wang
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - James V Lacey
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Kamakshi Lakshminarayan
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Charlie Zhong
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Daniel Woo
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Natalie A Bello
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Ronald Wapner
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Mitchell S V Elkind
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| | - Joshua Z Willey
- From the Departments of Neurology (E.C.M., A.K.B., M.S.V.E., J.Z.W.), Medicine (N.A.B.), and Obstetrics and Gynecology (R.W.), Columbia University; Department of Epidemiology (A.K.B., M.S.V.E.), Columbia University Mailman School of Public Health, New York, NY; Department of Population Sciences (N.T.C., S.S.W., J.V.L., C.Z.), Beckman Research Institute and City of Hope National Medical Center, Duarte, CA; Department of Neurology (K.L.), University of Minnesota Medical Center, Minneapolis; and Department of Neurology (D.W.), University of Cincinnati Medical Center, OH
| |
Collapse
|