1
|
Tang W, Yin JB, Lin RG, Wu CY, Huang JL, Zhu JJ, Yang LF, Li GM, Cai DZ, Liu LL, Liu YL, Zhang HY. Rapgef3 modulates macrophage reprogramming and exacerbates synovitis and osteoarthritis under excessive mechanical loading. iScience 2025; 28:112131. [PMID: 40276767 PMCID: PMC12018577 DOI: 10.1016/j.isci.2025.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
Evidence indicates that mechanical loading plays an important role in osteoarthritis (OA) progression, while the specific pathological changes of the synovium under excessive mechanical loading are unclear. Results showed that excessive mechanical loading caused pro-inflammation of synovial macrophages, which has been confirmed to exist in OA. High Rapgef3 expression level was found in RNA sequencing of RAW246.7 subjected to 0.5 Hz and 20% cyclic tensile strain. We verified this in the synovium of patients with OA and destabilization of the medial meniscus (DMM)-OA mice. Interestingly, the Rapgef3 content of chondrocytes was very low. Primary chondrocytes treated with Rapgef3 alone did not show metabolic phenotype, but an OA phenotype appeared when treated with Rapgef3-stimulated macrophage culture supernatant. Mechanically, excessive mechanical loading activated p65-nuclear factor κB (NF-κB) pathway through Rapgef3, which promoted the inflammation of macrophage, resulting in severe articular cartilage injury. Intra-articular Rapgef3 knockout reversed synovitis and cartilage degeneration, which might provide a therapeutic target for OA.
Collapse
Affiliation(s)
- Wen Tang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jian-bin Yin
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Ren-gui Lin
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun-yu Wu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jia-luo Huang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jin-jian Zhu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Ling-feng Yang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guang-ming Li
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Dao-zhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liang-liang Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan-li Liu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hai-yan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
2
|
Srivastava V, Harsulkar A, Aphale S, Märtson A, Kõks S, Kulkarni P, Deshpande S. Functional Attributes of Synovial Fluid from Osteoarthritic Knee Exacerbate Cellular Inflammation and Metabolic Stress, and Fosters Monocyte to Macrophage Differentiation. Biomedicines 2025; 13:878. [PMID: 40299511 PMCID: PMC12024712 DOI: 10.3390/biomedicines13040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Besides conventional norms that recognize synovial fluid (SF) as a joint lubricant, nutritional channel, and a diagnostic tool in knee osteoarthritis (kOA), based on the authors previous studies, this study aims to define functional role of SF in kOA. Methods: U937, a monocytic, human myeloid cell line, was induced with progressive grades of kOA SF, and the induction response was assessed on various pro-inflammatory parameters. This 'SF challenge test model' was further extended to determine the impact of SF on U937 differentiation using macrophage-specific markers and associated transcription factor genes. Mitochondrial membrane potential changes in SF-treated cells were evaluated with fluorescent JC-1 probe. Results: a significant increase in nitric oxide, matrix metalloproteinase (MMP) 1, 13, and vascular endothelial growth factor (VEGF)-1 was noted in the induced cells. A marked increase was seen in CD68, CD86, and the transcription factors -activator protein (AP)-1, interferon regulatory factor (IRF)-1, and signal transducer and activator of transcription (STAT)-6 in the SF-treated cells indicating active monocytes to macrophage differentiation. Reduced mitochondrial membrane potential was reflected by a reduced red-to-green ratio in JC-1 staining. Conclusions: these results underline the active role of OA SF in stimulating and maintaining inflammation in joint cells, fostering monocyte differentiation into pro-inflammatory macrophages. The decline in the membrane potential suggestive of additional inflammatory pathway in OA via the release of pro-apoptotic factors and damaged associated molecular patterns (DAMPs) within the cells. Overall, biochemical modulation of SF warrants a potential approach to intervene inflammatory cascade in OA and mitigate its progression.
Collapse
Affiliation(s)
- Vanshika Srivastava
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Abhay Harsulkar
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Shama Aphale
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia;
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, L Puusepa 8, 51014 Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - Priya Kulkarni
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive JG56, P.O. Box 116131, Gainesville, FL 32611, USA
| | - Shantanu Deshpande
- Department of Orthopaedics, Bharati Hospital, Pune-Satara Road, Pune 411043, India
| |
Collapse
|
3
|
Wu H, Qian Y, Zhu K, Deng Z, Zeng H, Li J, Li H, Liao G, Chen L, Que Y, Huang W, Wang H, Fang H, Huang G, Hu S. Roles of innate immune system and receptor Dectin-1 in synovium and cartilage homeostasis of osteoarthritis. Int J Biol Macromol 2025; 309:142669. [PMID: 40164261 DOI: 10.1016/j.ijbiomac.2025.142669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Innate immunity is crucial in the progression of osteoarthritis (OA); however, its mechanisms require further exploration. This study aims to investigate the mechanisms of innate immunity in OA synovitis. METHODS RNA sequencing data were analyzed to detect the expression characteristics of innate immunity-related genes in OA synovium. The Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) database was used to identify hub genes, and an OA diagnostic model was constructed using 113 combinations of machine learning algorithms. Single-cell sequencing data were used to identify the expression patterns of hub genes and innate immunity-related pathways in cell clusters and to illustrate the interactions among cell populations. The functional mechanism of Dectin-1 in OA was validated experimentally. RESULTS Innate immunity-related genes and pathways were significantly expressed in the synovium of patients with OA. We constructed an OA diagnostic model, and HLA-DRA+ cells were identified as a critical cell population. The innate immune receptor Dectin-1 on macrophages regulated macrophage M1 polarization and cartilage homeostasis via the Dectin-1/Syk/NF-κB pathway, influencing the progression of OA. CONCLUSION This study reveals the expression patterns of innate immunity-related genes and pathways in the OA synovium and highlights the role of Dectin-1 in macrophages.
Collapse
Affiliation(s)
- Han Wu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yewen Qian
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaiyuan Zhu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zengfa Deng
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hua Zeng
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jintao Li
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haosheng Li
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoqing Liao
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingxiang Chen
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yonghua Que
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weisen Huang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hechong Wang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hang Fang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Guangxin Huang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Shu Hu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Sherman SL, Gudeman AS, Kelly JD, Dimeff RJ, Farr J. Mechanisms of Action of Intra-articular Hyaluronic Acid Injections for Knee Osteoarthritis: A Targeted Review of the Literature. Am J Sports Med 2025:3635465241302820. [PMID: 40108507 DOI: 10.1177/03635465241302820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BACKGROUND The knee is the most commonly afflicted joint in osteoarthritis (OA). Injection of intra-articular of hyaluronic acid (IAHA) is a frequently used therapy for the management of knee OA with varying product characteristics. PURPOSE To describe and characterize the mechanism of action (MoA) of IAHA products concerning nociception, chondroprotection, and anti-inflammatory properties via a targeted literature review. STUDY DESIGN Systematic review; Level of evidence, 2. METHODS We followed the standard methodologies for conducting and reporting targeted reviews as recommended by the Cochrane Handbook for Systematic Reviews of Interventions, adapted for conducting a targeted literature review. Relevant studies were identified by searching the Embase database using predefined search strategies via the Ovid platform. The results of the review were reported according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses). RESULTS A total of 182 studies were included in this targeted literature review. Of these, 107 reported chondroprotective action, 59 anti-inflammatory activity, 18 analgesic properties, 30 proteoglycan or glycosaminoglycan synthesis, 8 subchondral bone effects, 2 mechanical effects, and 1 other effects of IAHA. These MoAs were studied through diverse types of studies: in vitro biochemistry, animal physiological studies, or human physiological and clinical studies. The chondroprotective effect was the most studied MoA and showed an increase in anabolic biomarkers, such as collagen types II, IX, and XI, and a reduction in catabolic biomarkers, such as matrix metalloproteinases, which play a primary role in the downstream signaling pathways in OA and cartilage degradation in the synovial fluid. IAHA was widely reported by studies to reduce soluble inflammatory mediators, such as interleukins 1β and 6 and tumor necrosis factor α, thereby decreasing the production of degradative enzymes (eg, matrix metalloproteinases, aggrecanases). IAHA was also reported to enhance the synthesis of intrinsic proteoglycan (eg, aggrecan) and glycosaminoglycans, thus delaying the progression of OA. IAHA also reported improvement in the mechanical function of the knee by increasing the viscosity of the synovial fluid, reducing the coefficient of friction, and improving its lubrication. Overall, a significant decrease in knee pain was observed after IAHA treatments. CONCLUSION Preclinical and clinical studies established evidence for varied MoAs by which IAHA preparations may produce a desired effect in patients with knee OA.
Collapse
Affiliation(s)
| | - Andrew S Gudeman
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - John D Kelly
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
5
|
Largo R, Mediero A, Villa-Gomez C, Bermejo-Alvarez I, Herrero-Beaumont G. Aberrant anabolism hinders constructive metabolism of chondrocytes by pharmacotherapy in osteoarthritis. Bone Joint Res 2025; 14:199-207. [PMID: 40042132 PMCID: PMC11881514 DOI: 10.1302/2046-3758.143.bjr-2024-0241.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Osteoarthritis (OA) is a highly prevalent and disabling disease with an unmet therapeutic need. The characteristic cartilage loss and alteration of other joint structures result from a complex interaction of multiple risk factors, with mechanical overload consistently playing a central role. This overload generates an inflammatory response in the cartilage due to the activation of the innate immune response in chondrocytes, which occurs through various cellular mechanisms. Moreover, risk factors associated with obesity, being overweight, and metabolic syndrome enhance the inflammatory response both locally and systemically. OA chondrocytes, the only cells present in articular cartilage, are therefore inflamed and initiate an anabolic process in an attempt to repair the damaged tissue, which ultimately results in an aberrant and dysfunctional process. Under these circumstances, where the cartilage continues to be subjected to chronic mechanical stress, proposing a treatment that stimulates the chondrocytes' anabolic response to restore tissue structure does not appear to be a therapeutic target with a high likelihood of success. In fact, anabolic drugs proposed for the treatment of OA have yet to demonstrate efficacy. By contrast, multiple therapeutic strategies focused on pharmacologically managing the inflammatory component, both at the joint and systemic levels, have shown promise. Therefore, prioritizing the control of chronic innate pro-inflammatory pathways presents the most viable and promising therapeutic strategy for the effective management of OA. As research continues, this approach may offer the best opportunity to alleviate the burden of this incapacitating disease.
Collapse
Affiliation(s)
- Raquel Largo
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Aranzazu Mediero
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Cristina Villa-Gomez
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ismael Bermejo-Alvarez
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
6
|
Altahla R, Alshorman J, Tao X. Ferroptosis plays a role in osteoarthritis. ALL LIFE 2024; 17. [DOI: 10.1080/26895293.2024.2391292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/28/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Ruba Altahla
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jamal Alshorman
- Department of Orthopedics, The Second Affiliated Hospital, Hubei University of Science and Technology, Xiang Ning, People’s Republic of China
| | - Xu Tao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Chuluunbat O, Ikemoto H, Okumo T, Adachi N, Hisamitsu T, Sunagawa M. Electroacupuncture Inhibits Cartilage Degeneration in a Rat Knee Osteoarthritis (KOA) Model by Suppressing ADAMTS5 Expression. Cureus 2024; 16:e73736. [PMID: 39677117 PMCID: PMC11646643 DOI: 10.7759/cureus.73736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is characterized by cartilage degradation, osteophyte formation, and synovitis. Cartilage degradation in KOA begins with the loss of aggrecan, primarily due to A Disintegrin and Metalloproteinase with Thrombospondin Motif 5 (ADAMTS5), which is produced by chondrocytes and synovial cells and a key target for therapeutic intervention. Current treatments for KOA primarily focus on pain relief, as disease-modifying osteoarthritis drugs (DMOADs) remain unavailable. Electroacupuncture (EA), applying electrical stimulation to acupoints, has been investigated for its potential to alleviate KOA symptoms; however, the specific effects of different acupoint combinations remain unclear. This study investigates the effect of EA on pain and cartilage degeneration in a KOA rat model by examining ADAMTS5 expression in synovial tissue. Materials and methods Male Wistar rats were divided into five groups: control, sham-operated, KOA model, KOA treated with EA at ST36 (Zusanli)-LR8 (Ququan) (KOA+LR8), and KOA treated at ST36-Ex-LE2 (Heding) (KOA+Ex-LE2). The DMM (destabilization of the medial meniscus) procedure induced KOA, and EA was applied thrice weekly for four weeks. The rotarod test was used to assess motor coordination, and samples were collected for immunofluorescence, Western blot, and histological analysis. Pain was assessed via c-fos expression in the spinal cord, while Safranin O-Fast Green staining was used to evaluate cartilage degeneration via the Osteoarthritis Research Society International (OARSI) scoring system. Results The KOA group post-surgery showed reduced motor coordination, while EA at both ST36-LR8 and ST36-Ex-LE2 enhanced performance (day 28: control: 28.8 ± 0.6, sham: 28.4 ± 3.7, KOA: 19.7 ± 0.9, KOA+LR8: 24.8 ± 1.5, KOA+Ex-LE2: 26.9 ± 1.2). Expression of c-fos, elevated in the KOA group, was significantly suppressed by EA (control: 7.6 ± 0.9, sham: 13.6 ± 2.8, KOA: 24.5 ± 2.1, KOA+LR8: 12.8 ± 0.9, KOA+Ex-LE2: 17.0 ± 1.2). Histologically, KOA rats showed severe cartilage degradation and osteophyte formation, while EA at ST36-Ex-LE2 significantly reduced these changes (control: 0.2 ± 0.1, sham: 0.4 ± 0.2, KOA: 1.8 ± 0.4, KOA+LR8: 1.0 ± 0.2, KOA+Ex-LE2: 0.5 ± 0.2). The ST36-LR8 group also showed improvements, although less pronounced than the ST36-Ex-LE2 group. Western blotting revealed that DMM-induced ADAMTS5 expression was significantly inhibited by EA at ST36-Ex-LE2 but not at ST36-LR8 (control: 1.0 ± 0, sham: 1.2 ± 0.4, KOA: 3.0 ± 0.3, KOA+LR8: 2.1 ± 0.3, KOA+Ex-LE2: 1.4 ± 0.4). Conclusion EA at ST36-Ex-LE2 showed a remarkable protective effect on articular cartilage by inhibiting ADAMTS5 expression from synovium, suggesting that it can break the vicious cycle of synovitis and cartilage destruction. In contrast, EA at ST36-LR8 had a moderate effect on cartilage degeneration and ADAMTS5 expression. The difference in efficacy may be due to the anatomical differences between acupoints. ST36-Ex-LE2 coincides with an area rich in synovial fibroblasts and mast cells involved in inflammation and pain. This highlights the importance of acupoint selection to maximize the therapeutic effect of EA. The specificity of this acupoint combination provides a potential strategy for managing KOA and slowing the progression of the disease. Further studies are needed to elucidate the detailed mechanisms behind the effects of EA and explore its potential as an alternative or complementary treatment for KOA.
Collapse
Affiliation(s)
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Takayuki Okumo
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Tadashi Hisamitsu
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| |
Collapse
|
8
|
Kuang S, Liu Z, Liu L, Fu X, Sheng W, Hu Z, Lin C, He Q, Chen J, Gao S. Polygonatum sibiricum polysaccharides protect against knee osteoarthritis by inhibiting the TLR2/NF-κB signaling pathway in vivo and in vitro. Int J Biol Macromol 2024; 274:133137. [PMID: 38901508 DOI: 10.1016/j.ijbiomac.2024.133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Polygonatum sibiricum polysaccharides (PSP), the primary constituent of Polygonatum sibiricum, have been shown to exhibit a wide range of pharmacological effects, but their impact on osteoarthritis (OA) remains unclear. The objective of this study was to investigate the protective effects of PSP against OA and to elucidate its underlying molecular mechanism. In our in vitro experiments, PSP not only inhibited the IL-1β-induced inflammatory responses and the nuclear factor kappa-B (NF-κB) signaling pathway in chondrocytes but also regulated the cartilage matrix metabolism. In addition, we detected 394 significantly differentially expressed genes through RNA-seq analysis on PSP-intervened chondrocytes, and the toll-like receptor 2 (TLR2) was identified as the most important feature by functional network analysis and qRT-PCR. It was also revealed that PSP treatment significantly reversed the IL-1-induced up-regulation of TLR2 expression in chondrocytes, while TLR2 overexpression partially inhibited the regulatory effects of PSP on inflammation, NF-κB signaling pathway and matrix metabolism. In our in vivo experiments, PSP treatment alleviated the development of destabilization of medial meniscus (DMM)-induced OA in mouse knee joints, inhibited the DMM-induced activation of the TLR2/NF-κB signaling pathway in mouse knee joint cartilage, and reduced the serum levels of inflammatory cytokines. In conclusion, PSP exerts its anti-inflammatory, matrix synthesis-promoting and matrix catabolism-suppressing effects in knee OA by inhibiting the TLR2/NF-κB signaling pathway, suggesting that PSP may be potentially targeted as a novel all-natural, low-toxicity drug for OA prevention and treatment.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhewen Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Jisong Chen
- Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Yang Y, Hang W, Li J, Liu T, Hu Y, Fang F, Yan D, McQuillan PM, Wang M, Hu Z. Effect of General Anesthetic Agents on Microglia. Aging Dis 2024; 15:1308-1328. [PMID: 37962460 PMCID: PMC11081156 DOI: 10.14336/ad.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of general anesthetic agents (GAAs) on microglia and their potential neurotoxicity have attracted the attention of neuroscientists. Microglia play important roles in the inflammatory process and in neuromodulation of the central nervous system. Microglia-mediated neuroinflammation is a key mechanism of neurocognitive dysfunction during the perioperative period. Microglial activation by GAAs induces anti-inflammatory and pro-inflammatory effects in microglia, suggesting that GAAs play a dual role in the mechanism of postoperative cognitive dysfunction. Understanding of the mechanisms by which GAAs regulate microglia may help to reduce the incidence of postoperative adverse effects. Here, we review the actions of GAAs on microglia and the consequent changes in microglial function. We summarize clinical and animal studies associating microglia with general anesthesia and describe how GAAs interact with neurons via microglia to further explore the mechanisms of action of GAAs in the nervous system.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA.
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA.
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Saxer F, Hollinger A, Bjurström M, Conaghan P, Neogi T, Schieker M, Berenbaum F. Pain-phenotyping in osteoarthritis: Current concepts, evidence, and considerations towards a comprehensive framework for assessment and treatment. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100433. [PMID: 38225987 PMCID: PMC10788802 DOI: 10.1016/j.ocarto.2023.100433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Pain as central symptom of osteoarthritis (OA) needs to be addressed as part of successful treatment. The assessment of pain as feature of disease or outcome in clinical practice and drug development remains a challenge due to its multidimensionality and the plethora of confounders. This article aims at providing insights into our understanding of OA pain-phenotypes and suggests a framework for systematic and comprehensive assessments. Methods This narrative review is based on a search of current literature for various combinations of the search terms "pain-phenotype" and "knee OA" and summarizes current knowledge on OA pain-phenotypes, putting OA pain and its assessment into perspective of current research efforts. Results Pain is a complex phenomenon, not necessarily associated with tissue damage. Various pain-phenotypes have been described in knee OA. Among those, a phenotype with high pain levels not necessarily matching structural changes and a phenotype with low pain levels and impact are relatively consistent. Further subgroups can be differentiated based on patient reported outcome measures, assessments of comorbidities, anxiety and depression, sleep, activity and objective measures such as quantitative sensory testing. Conclusions The complexity of both OA as disease and pain in OA prompt the definition of a set of variables that facilitate assessments comparable across studies to maximize our understanding of pain, as central concern for the patient.
Collapse
Affiliation(s)
- F. Saxer
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, University of Basel, 4002, Basel, Switzerland
| | - A. Hollinger
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - M.F. Bjurström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - P.G. Conaghan
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, UK
| | - T. Neogi
- Clinical Epidemiology Research and Training Unit and Rheumatology, Boston University School of Medicine Epidemiology, Boston University School of Public Health, United States
| | - M. Schieker
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - F. Berenbaum
- Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| |
Collapse
|
11
|
Shi T, Zhao J, Long K, Gao M, Chen F, Chen X, Zhang Y, Huang B, Shao D, Yang C, Wang L, Zhang M, Leong KW, Chen L, He K. Cationic mesoporous silica nanoparticles alleviate osteoarthritis by targeting multiple inflammatory mediators. Biomaterials 2023; 303:122366. [PMID: 37948854 DOI: 10.1016/j.biomaterials.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.
Collapse
Affiliation(s)
- Tongfei Shi
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jingtong Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kongrong Long
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Mohan Gao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuenian Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yue Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baoding Huang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Nursing, Jilin University, Changchun, 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Yang X, Jiang Q, Luan T, Yu C, Liu Z, Wang T, Wan J, Huang J, Li K. Pyruvate Dehydrogenase Kinase 1 inhibition mediated oxidative phosphorylation enhancement in cartilage promotes osteoarthritis progression. BMC Musculoskelet Disord 2023; 24:597. [PMID: 37474941 PMCID: PMC10357736 DOI: 10.1186/s12891-023-06585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Osteoarthritis (OA) is a common disease characterized by cartilage degradation. Growing evidence showed that glucose metabolism impacts joint homeostasis and an imbalance between glycolysis and oxidative phosphorylation (OXPHOS) may exacerbate OA progression, however, a definitive link is yet to be established. Here, we report that pyruvate metabolism and oxidative phosphorylation pathway is enriched in OA cartilage through gene set enrichment analysis (GSEA) and expression of Pyruvate Dehydrogenase Kinase 1 (PDK1), an enzyme that can phosphorylate Pyruvate Dehydrogenase (PDH), and inhibit pyruvate fluxes into the tricarboxylic acid (TCA) cycle and to OXPHOS, in articular cartilage is notably reduced through destabilization of medial meniscus (DMM). Moreover, by inhibiting PDK1, cartilage loss is markedly accelerated in DMM-induced OA through extracellular matrix (ECM) degradation and apoptosis of chondrocytes. These results indicate that PDK1 is involved in the progression of OA through accelerating cartilage matrix degradation and synovium inflammation to ameliorate cartilage degeneration.
Collapse
Affiliation(s)
- Xian Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing, Chongqing, China
| | - Ting Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing, Chongqing, China.
| | - Ke Li
- Department of Orthopedics Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Shabbir MA, Mehak F, Khan MR, Ahmed W, Nawaz MF, Hassoun A, Bhat ZF, Aadil RM. Unraveling the role of natural functional oils in modulating osteoarthritis related complications. Crit Rev Food Sci Nutr 2023; 64:6881-6901. [PMID: 36762672 DOI: 10.1080/10408398.2023.2176815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.
Collapse
Affiliation(s)
- Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, J&K, India
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
16
|
Carmon I, Zecharyahu L, Elayyan J, Meka SRK, Reich E, Kandel L, Bilkei-Gorzo A, Zimmer A, Mechoulam R, Kravchenko-Balasha N, Dvir-Ginzberg M. HU308 Mitigates Osteoarthritis by Stimulating Sox9-Related Networks of Carbohydrate Metabolism. J Bone Miner Res 2023; 38:154-170. [PMID: 36350089 PMCID: PMC10098743 DOI: 10.1002/jbmr.4741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is characterized by progressive, irreversible erosion of articular cartilage accompanied by severe pain and immobility. This study aimed to assess the effect and mechanism of action of HU308, a selective cannabinoid receptor type 2 (CB2) agonist, in preventing OA-related joint damage. To test the assumption that HU308 could prevent OA-related joint damage, Cnr2 null mice and wild type (WT) mice were aged to reach 20 months and analyzed for joint structural features. OA was induced in WT mice via a post-traumatic procedure or aging, followed by HU308 local (intra-articular) or systemic (intraperitoneal) administration, respectively. Additional analyses of time and dose courses for HU308 were carried out in human primary chondrocytes, analyzed by RNA sequencing, RT-PCR, chromatin immunoprecipitation, and immunoblotting. Our results showed that Cnr2 null mice exhibited enhanced age-related OA severity and synovitis compared to age-matched WT mice. Systemic administration of HU308 to 16-month-old mice improved pain sensitivity and maintained joint integrity, which was consistent with the intra-articular administration of HU308 in post-traumatic OA mice. When assessing human chondrocytes treated with HU308, we uncovered a dose- and time-related increase in ACAN and COL2A1 expression, which was preceded by increased SOX9 expression due to pCREB transcriptional activity. Finally, transcriptomic analysis of patient-derived human chondrocytes identified patient subpopulations exhibiting HU308-responsive trends as judged by enhanced SOX9 expression, accompanied by enriched gene networks related to carbohydrate metabolism. Collectively, the results showed that HU308 reduced trauma and age-induced OA via CB2-pCREB dependent activation of SOX9, contributing to augmented gene networks related to carbohydrate metabolism. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Idan Carmon
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lital Zecharyahu
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jinan Elayyan
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sai R K Meka
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Reich
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Kandel
- Orthopedic Complex. Hebrew University- Hadassah Medical Center, Jerusalem, Israel
| | | | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Raphael Mechoulam
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mona Dvir-Ginzberg
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Carmon I, Smoum R, Farhat E, Reich E, Kandel L, Yekhtin Z, Gallily R, Mechoulam R, Dvir-Ginzberg M. A Fenchone Derivative Effectively Abrogates Joint Damage Following Post-Traumatic Osteoarthritis in Lewis Rats. Cells 2022; 11:cells11244084. [PMID: 36552848 PMCID: PMC9777073 DOI: 10.3390/cells11244084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model. METHODS Initially, we assessed the selectivity of CB2 using a Gs-protein receptor cAMP potency assay, which was also validated for antagonistic effects dependent on the Gi-protein receptor cAMP pathway. Based on EC50 values, 1D was selected for a zymosan inflammatory pain model. Next, 1D was administered in two doses intra-articularly (IA), in a post-traumatic medial meniscal tear (MMT, Lewis rats) model, and compared to sham, vehicle, and a positive control consisting of fibroblast growth factor 18 (FGF18) administration. The histopathological assessment was carried out according to the Osteoarthritis Research Society International (OARSI) guidelines for rat models following 28 days post-MMT. RESULTS The G protein receptor assays confirmed that both 1B and 1D possess CB2 agonistic effects in cell lines and in chondrocytes. Co-administering a CB2 antagonists to 25 mg/kg 1D in a paw inflammatory pain model abolished 1D-related anti-swelling effect and partially abolishing its analgesic effects. Using an MMT model, the high dose (i.e., 24 µg) of 1D administered via IA route, exhibited reduced cartilage damage. Particularly, this dose of 1D exhibited a 30% improvement in cartilage degeneration (zonal/total tibial scores) and lesion depth ratios (44%), comparable to the FGF18 positive control. Synovitis scores remained unaffected and histopathologic evaluation of subchondral bone damage did not suggest that 1D treatment changed the load-bearing ability of the rats. Contrary to the anabolic effect of FGF18, synovial inflammation was observed and was accompanied by increased osteophyte size. CONCLUSION The structural histopathological analysis supports a disease-modifying effect of IA-administered 1D compound without any deleterious effects on the joint structure.
Collapse
Affiliation(s)
- Idan Carmon
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Reem Smoum
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Eli Farhat
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Eli Reich
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Leonid Kandel
- Orthopedic Surgery Complex, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Zhannah Yekhtin
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ruth Gallily
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raphael Mechoulam
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mona Dvir-Ginzberg
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence: ; Tel.: +972-2-675-7614
| |
Collapse
|
18
|
Cao F, Jiang X, Xiong A, Yang M, Shi J, Chang Y, Gao T, Yang S, Tan J, Xia P, Xu J. Identification of the OA-related metabolism-related genes, corresponding transcription factors, relevant pathways, and specific bioactive small molecules. Int Immunopharmacol 2022; 112:109096. [PMID: 36152536 DOI: 10.1016/j.intimp.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
Abstract
Metabolic alteration of articular cartilage is associated with the pathogenesis of Osteoarthritis (OA). This study aims to identify the metabolism-related genes, corresponding transcription factors (TFs), and relevant pathways. Overall, RNA sequencing profiles of articular cartilage were collected from the GEO database. Metabolism-related genes and OA-related hallmarks were collected from the MSigDB v7.1. Differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Variation Analysis (GSVA) were conducted to identify pathways or hallmarks that were related to the pathogenesis of OA. The Pearson correlation analysis was used to establish the regulatory network among transcription factors, metabolism-related genes, and hallmarks. To further confirm the regulation of the identified transcription factors, Chromatin Immunoprecipitation-sequencing (ChIP-seq) was conducted, and single-cell sequencing was used to locate the cell clusters. Connectivity Map (CM) analysis were also conducted to identify the potential specific bioactive small molecules targeting the metabolic alteration of osteoarthritis. scTPA database was used to detect activated signaling pathways. Collectively, a total of 74 and 38 differentially expressed metabolism-related genes and TFs were retrieved. Skeletal system development, extracellular matrix, and cell adhesion molecule binding were important pathways in GO analysis. Human papillomavirus infection, PI3K-Akt signaling pathway, and Human T-cell leukemia virus 1 infection were the top 3 pathways in KEGG. 7 and 12 hallmarks were down- and up-regulated in GSVA, respectively. Ten bioactive small molecules may be potential treatments of OA by regulating the metabolism of articular cartilage. ChIP-seq analysis showed high relativity between transcription factors and their target genes. Furthermore, single-cell sequencing confirms the high expression of identified transcription factors in chondrocytes. To conclude, we established a comprehensive network integrated with transcription factors, metabolism-related genes, and hallmarks.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Xu Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Ao Xiong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Meng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianming Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Yingjian Chang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Tianhao Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Shangliang Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jun Tan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Peige Xia
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
19
|
Xu X, Li N, Wu Y, Yan K, Mi Y, Yi N, Tan X, Kuang G, Lu M. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol 2022; 13:951860. [PMID: 36188596 PMCID: PMC9521277 DOI: 10.3389/fphar.2022.951860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Knee osteoarthritis (KOA), a chronic degenerative disease, is mainly characterized by destruction of articular cartilage and inflammatory reactions. At present, there is a lack of economical and effective clinical treatment. Zhuifeng Tougu (ZFTG) capsules have been clinically approved for treatment of OA as they relieve joint pain and inflammatory manifestations. However, the mechanism of ZFTG in KOA remains unknown. Purpose: This study aimed to investigate the effect of ZFTG on the TLR4/MyD88/NF-κB signaling pathway and its therapeutic effect on rabbits with KOA. Study design: In vivo, we established a rabbit KOA model using the modified Videman method. In vitro, we treated chondrocytes with IL-1β to induce a pro-inflammatory phenotype and then intervened with different concentrations of ZFTG. Levels of IL-1β, IL-6, TNF-α, and IFN-γ were assessed with histological observations and ELISA data. The effect of ZFTG on the viability of chondrocytes was detected using a Cell Counting Kit-8 and flow cytometry. The protein and mRNA expressions of TLR2, TLR4, MyD88, and NF-κB were detected using Western blot and RT-qPCR and immunofluorescence observation of NF-κB p65 protein expression, respectively, to investigate the mechanism of ZFTG in inhibiting inflammatory injury of rabbit articular chondrocytes and alleviating cartilage degeneration. Results: The TLR4/MyD88/NF-κB signaling pathway in rabbits with KOA was inhibited, and the levels of IL-1β, IL-6, TNF-α, and IFN-γ in blood and cell were significantly downregulated, consistent with histological results. Both the protein and mRNA expressions of TLR2, TLR4, MyD88, NF-κB, and NF-κB p65 proteins in that nucleus decreased in the ZFTG groups. Moreover, ZFTG promotes the survival of chondrocytes and inhibits the apoptosis of inflammatory chondrocytes. Conclusion: ZFTG alleviates the degeneration of rabbit knee joint cartilage, inhibits the apoptosis of inflammatory chondrocytes, and promotes the survival of chondrocytes. The underlying mechanism may be inhibition of the TLR4/MyD88/NF-kB signaling pathway and secretion of inflammatory factors.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongrong Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Yan
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yilin Mi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nanxing Yi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, China
| | - Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Postdoctoral Research Workstation, Hinye Pharmaceutical Co., Ltd., Changsha, Hunan, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
Yang G, Wang K, Song H, Zhu R, Ding S, Yang H, Sun J, Wen X, Sun L. Celastrol ameliorates osteoarthritis via regulating TLR2/NF-κB signaling pathway. Front Pharmacol 2022; 13:963506. [PMID: 36034791 PMCID: PMC9399520 DOI: 10.3389/fphar.2022.963506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Osteoarthritis (OA) is a joint disease characterized by degeneration of joint cartilage and is a significant cause of severe joint pain, physical disability, and impaired quality of life in the aging population. Celastrol, a Chinese herbal medicine, has attracted wide interests because of its anti-inflammatory effects on a variety of diseases. This study aimed to investigate the effect of celastrol on OA as well as the mechanisms in vivo and in vitro. Methods: A rat knee OA model was established using “medial collateral ligament transection (MCLT) + partial meniscectomy (pMMT)”. Eight weeks after surgery, the OA rats started to receive intra-articular injection of celastrol (1 mg/kg) once a week. Safranin O-fast green (S&F) and hematoxylin and eosin (H&E) staining were used to estimate histopathological changes. Micro-CT was used to evaluate bone volume of the subchondral bone of the knee joint. Chondrocytes were isolated from the knee cartilage of rats and OA patients. Enzyme linked immunosorbent assay (ELISA), Western Blot (WB), Polymerase Chain Reaction (PCR), and Immunohistochemistry (IHC) were used to detect the expression of inflammatory factors and stromal proteins, respectively. Results: We found that celastrol treatment significantly delayed the progression of cartilage damage with a significant reduction in osteophyte formation and bone resorption in OA rat model. In IL-1β-stimulated rat chondrocytes, celastrol significantly suppressed the production of inflammatory factors such as cyclooxygenase-2 (COX2), interleukin-6 (IL-6), and prostaglandin E2 (PEG2), and reduced IL-1β-induced matrix degradation by down-regulating the expression of matrix metalloproteinase 13 (MMP13). In addition, we found that toll-like receptor 2 (TLR2) was up-regulated in OA patients and rat knee OA models, while celastrol inhibited TLR2 signal and its downstream nuclear factor-kappa B (NF-κB) phosphorylation. Conclusion: In summary, celastrol may improve OA by inhibiting the TLR2/NF-κB signaling pathway, which provides innovative strategies for the treatment of OA.
Collapse
Affiliation(s)
- Guangxia Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- Department of Rheumatology, Affiliated Huai’an No 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hua Song
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Rujie Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Sun
- Department of Rheumatology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| | - Lingyun Sun
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| |
Collapse
|
21
|
Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int J Mol Sci 2022; 23:ijms23158274. [PMID: 35955410 PMCID: PMC9368269 DOI: 10.3390/ijms23158274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development. Current studies have indicated that the injury of nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources, biochemical pathways, and the signal-transduction system. Moreover, we outline the detection methods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the development of medicine regarding chronic pain.
Collapse
|
22
|
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol 2022; 13:907750. [PMID: 35860250 PMCID: PMC9289681 DOI: 10.3389/fimmu.2022.907750] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity remains the most important risk factor for the incidence and progression of osteoarthritis (OA). The leading cause of OA was believed to be overloading the joints due to excess weight which in turn leads to the destruction of articular cartilage. However, recent studies have proved otherwise, various other factors like adipose deposition, insulin resistance, and especially the improper coordination of innate and adaptive immune responses may lead to the initiation and progression of obesity-associated OA. It is becoming increasingly evident that multiple inflammatory cells are recruited into the synovial joint that serves an important role in pathological changes in the synovial joint. Polarization of macrophages and macrophage-produced mediators are extensively studied and linked to the inflammatory and destructive responses in the OA synovium and cartilage. However, the role of other major innate immune cells such as neutrophils, eosinophils, and dendritic cells in the pathogenesis of OA has not been fully evaluated. Although cells of the adaptive immune system contribute to the pathogenesis of obesity-induced OA is still under exploration, a quantity of literature indicates OA synovium has an enriched population of T cells and B cells compared with healthy control. The interplay between a variety of immune cells and other cells that reside in the articular joints may constitute a vicious cycle, leading to pathological changes of the articular joint in obese individuals. This review addresses obesity and the role of all the immune cells that are involved in OA and summarised animal studies and human trials and knowledge gaps between the studies have been highlighted. The review also touches base on the interventions currently in clinical trials, different stages of the testing, and their shortcomings are also discussed to understand the future direction which could help in understanding the multifactorial aspects of OA where inflammation has a significant function.
Collapse
Affiliation(s)
- Udhaya Nedunchezhiyan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ibin Varughese
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ross Crawford
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Indira Prasadam,
| |
Collapse
|
23
|
Lef1 ablation alleviates cartilage mineralization following posttraumatic osteoarthritis induction. Proc Natl Acad Sci U S A 2022; 119:e2116855119. [PMID: 35594394 PMCID: PMC9173807 DOI: 10.1073/pnas.2116855119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cartilage mineralization is imperative in various processes such as skeletal growth and fracture repair. However, this process may also be pathological, as in the case of the degenerative joint disease, osteoarthritis (OA). Using a posttraumatic OA model (PTOA), we find that cartilage-specific Sirt1 genetic nulls caused severe synovitis and mineralization of the lateral joint compartment, due to augmented Lef1 gene expression. Conversely, cartilage-specific Lef1 nulls exhibited impaired synovitis and mineralization of the lateral joint, accompanied by a reduction of local pain. Consistently, transcriptomic profiles of Lef1-ablated chondrocytes exhibited enhanced anabolism, yet impaired pathways related to calcification and inflammation. Accordingly, cartilage mineralization of the lateral joint compartment relies on amplified inflammatory pathways, contributing to articular damage following PTOA. Cartilage mineralization is a tightly controlled process, imperative for skeletal growth and fracture repair. However, in osteoarthritis (OA), cartilage mineralization may impact the joint range of motion, inflict pain, and increase chances for joint effusion. Here we attempt to understand the link between inflammation and cartilage mineralization by targeting Sirtuin 1 (SIRT1) and lymphoid enhancer binding factor 1 (LEF1), both reported to have contrasting effects on cartilage. We find that inflammatory-dependent cleavage of SIRT1 or its cartilage-specific genetic ablation, directly enhanced LEF1 expression accompanied by a catabolic response. Applying a posttraumatic OA (PTOA) model to cartilage-specific Sirt1 nulls displayed severe OA, which was accompanied by synovitis, meniscal mineralization, and osteophyte formation of the lateral joint compartment. Alternatively, cartilage-specific Lef1 nulls presented reduced lateral mineralization, OA severity, and local pain. Differential gene expression analysis revealed that Lef1 ablation reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like receptor (Tlr) pathways, while enhancing SRY-Box transcription factor 9 (Sox9) and cartilaginous extracellular matrix genes. The results support a link between inflammation and Lef1-dependent cartilage mineralization, mediated by the inactivation of Sirt1. By ablating Lef1 in a PTOA model, the structural and pain-related phenotypes of OA were reduced, in part, by preventing cartilage mineralization of the lateral joint compartment, partially manifested by meniscal tissue mineralization. Overall, these data provide a molecular axis to link between inflammation and cartilage in a PTOA model.
Collapse
|
24
|
Liu J, Tang G, Liu W, Zhou Y, Fan C, Zhang W. MiR-20a-5p facilitates cartilage repair in osteoarthritis via suppressing mitogen-activated protein kinase kinase kinase 2. Bioengineered 2022; 13:13801-13814. [PMID: 35707845 PMCID: PMC9276018 DOI: 10.1080/21655979.2022.2084270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) chondrogenic differentiation contributes to the treatment of osteoarthritis (OA). Numerous studies have indicated that microRNAs (miRNAs) regulate the pathogenesis and development of multiple disorders, including OA. Nevertheless, the role of miR-20a-5p in OA remains obscure. Forty male C57BL/6 mice were divided into four groups and were surgically induced OA or underwent sham surgery in the presence or absence of miR-20a-5p. Flow cytometry was implemented to detect surface markers of BMSCs. Reverse transcription quantitative polymerase chain reaction revealed the upregulation of miR-20a-5p during BMSC chondrogenic differentiation. Western blotting displayed that miR-20a-5p inhibition decreased protein levels of cartilage matrix markers but enhanced those of catabolic and hypertrophic chondrocyte markers in BMSCs. Alcian blue staining, hematoxylin‑eosin staining and micro-CT revealed that miR-20a-5p inhibition restrained chondrogenic differentiation and miR-20a-5p overexpression promoted the repair of damaged cartilage and subchondral bone, respectively. Luciferase reporter assay identified that mitogen activated protein kinase kinase kinase 2 (Map3k2) was a target of miR-20a-5p in BMSCs. Moreover, the expression of miR-20a-5p and Map3k2 was negatively correlated in murine cartilage tissues. Knocking down Map3k2 could rescue the suppressive influence of miR-20a-5p inhibition on chondrogenic differentiation of BMSCs. In conclusion, miR-20a-5p facilitates BMSC chondrogenic differentiation and contributes to cartilage repair in OA by suppressing Map3k2.
Collapse
Affiliation(s)
- Jiazhi Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guo Tang
- Department of Orthopaedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Wenjun Liu
- Department of Orthopaedics, South Hospital of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Jin QH, Kim HK, Na JY, Jin C, Seon JK. Anti-inflammatory effects of mesenchymal stem cell-conditioned media inhibited macrophages activation in vitro. Sci Rep 2022; 12:4754. [PMID: 35306509 PMCID: PMC8934344 DOI: 10.1038/s41598-022-08398-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) on macrophages have been reported, however, the underlying mechanism remains unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of MSCs on lipopolysaccharide (LPS)-stimulated macrophages and the subsequent downregulation of their inflammatory mediators. Macrophages were treated with conditioned media from MSCs, without a subsequent change of MSCs responding to the inflammation state. This study also evaluated whether the interleukin (IL) 4 stimulation of MSCs can improve their anti-inflammatory effects. Results demonstrated that the MSC-conditioned medium (MSC-CM) stimulated with IL4 significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression of LPS-activated macrophages. MSC-CM treatment inhibited the mRNA transcription of the cytokines IL1β and IL6, the chemokines C–C motif ligand (CCL) 2, CCL3, CCL4, and CCL5, and the chemokine receptors CCR2 and CCR5, in LPS-stimulated macrophages. As revealed through western blot and immunofluorescence analyses, the phosphorylation of p38, JNK, and ERK MAPKs, as well as phosphorylation of NF-κB in stimulated macrophages, were also inhibited by the MSC-CM. Further, more potent anti-inflammatory effects were observed with the IL4-stimulated cells, compared with those observed with the non-stimulated cells. The MSC-CM demonstrated a potent anti-inflammatory effect on LPS-activated macrophages, while the IL4 stimulation improved this effect. These findings indicate that MSCs could exert anti-inflammatory effects on macrophages, and may be considered as a therapeutic agent in inflammation treatment.
Collapse
|
26
|
Ferreira NDR, Sanz CK, Raybolt A, Pereira CM, DosSantos MF. Action of Hyaluronic Acid as a Damage-Associated Molecular Pattern Molecule and Its Function on the Treatment of Temporomandibular Disorders. FRONTIERS IN PAIN RESEARCH 2022; 3:852249. [PMID: 35369538 PMCID: PMC8971669 DOI: 10.3389/fpain.2022.852249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The temporomandibular joint is responsible for fundamental functions. However, mechanical overload or microtraumas can cause temporomandibular disorders (TMD). In addition to external factors, it is known that these conditions are involved in complex biological mechanisms, such as activation of the immune system, activation of the inflammatory process, and degradation of extracellular matrix (ECM) components. The ECM is a non-cellular three-dimensional macromolecular network; its most studied components is hyaluronic acid (HA). HA is naturally found in many tissues, and most of it has a high molecular weight. HA has attributed an essential role in the viscoelastic properties of the synovial fluid and other tissues. Additionally, it has been shown that HA molecules can contribute to other mechanisms in the processes of injury and healing. It has been speculated that the degradation product of high molecular weight HA in healthy tissues during injury, a low molecular weight HA, may act as damage-associated molecular patterns (DAMPs). DAMPs are multifunctional and structurally diverse molecules that play critical intracellular roles in the absence of injury or infection. However, after cellular damage or stress, these molecules promote the activation of the immune response. Fragments from the degradation of HA can also act as immune response activators. Low molecular weight HA would have the ability to act as a pro-inflammatory marker, promoting the activation and maturation of dendritic cells, the release of pro-inflammatory cytokines such as interleukin 1 beta (IL-1β), and tumor necrosis factor α (TNF-α). It also increases the expression of chemokines and cell proliferation. Many of the pro-inflammatory effects of low molecular weight HA are attributed to its interactions with the activation of toll-like receptors (TLRs 2 and 4). In contrast, the high molecular weight HA found in healthy tissues would act as an anti-inflammatory, inhibiting cell growth and differentiation, decreasing the production of inflammatory cytokines, and reducing phagocytosis by macrophages. These anti-inflammatory effects are mainly attributed to the interaction of high-weight HA with the CD44 receptor. In this study, we review the action of the HA as a DAMP and its functions on pain control, more specifically in orofacial origin (e.g., TMD).
Collapse
Affiliation(s)
- Natália dos Reis Ferreira
- Faculty of Medicine, Institute of Occlusion and Orofacial Pain, University of Coimbra, Coimbra, Portugal
| | - Carolina Kaminski Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline Raybolt
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cláudia Maria Pereira
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Marcos Fabio DosSantos ;
| |
Collapse
|
27
|
Toll-like receptor 3 activation promotes joint degeneration in osteoarthritis. Cell Death Dis 2022; 13:224. [PMID: 35277480 PMCID: PMC8917184 DOI: 10.1038/s41419-022-04680-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Osteoarthritis (OA) is characterized by cartilage degradation that is induced by inflammation. Sterile inflammation can be caused by damage-associated molecular patterns that are released by chondrocytes and activate pattern recognition receptors. We evaluate the role of toll-like receptor-3-activating RNA in the pathogenesis of OA. Toll-like receptor 3 (TLR3) was detected by semiquantitative reverse transcriptase PCR, western blotting and microscopy. Rhodamine-labelled poly(I:C) was used to image uptake in chondrocytes and full-thickness cartilage. The production of IFNβ in chondrocytes after stimulation with poly(I:C) as well as in the synovial fluid of OA patients was measured using ELISA. Chondrocyte apoptosis was chemically induced using staurosporine. Immunohistochemistry was performed to examine TLR3 expression and apoptosis in human and murine OA cartilage. RNA in synovial fluid was quantified by RiboGreen assay. Destabilisation of the medial meniscus was performed in TLR3−/− and wildtype mice. OA was assessed after eight weeks using OARSI score. TLR3 expression was confirmed by western blot and RT-PCR. Poly(I:C) was internalised by chondrocytes as well as cartilage and caused an increase of IFNβ production in murine (11.46 ± 11.63 (wo) to 108.7 ± 25.53 pg/ml; N = 6) and human chondrocytes (1.88 ± 0.32 (wo) to 737.6 ± 130.5 pg/ml; N = 3; p < 0.001). OA cartilage showed significantly more TLR3-positive (KL0 = 0.22 ± 0.24; KL4 = 6.02 ± 6.75; N ≥ 15) and apoptotic chondrocytes (KL0 = 0.6 ± 1.02; KL4 = 9.78 ± 7.79; N ≥ 12) than healthy cartilage (p < 0.001). Staurosporine-induced chondrocyte apoptosis causes a dose-dependent RNA release (0 ng/ml = 1090 ± 39.1 ng/ml; 1000 ng/ml=2014 ± 160 ng/ml; N = 4; p < 0.001). Human OA synovial fluid contained increased concentrations of RNA (KL0-2 = 3408 ± 1129 ng/ml; KL4 = 4870 ± 1612ng/ml; N ≥ 7; p < 0.05) and IFNβ (KL0-2 = 41.95 ± 92.94 ng/ml; KL3 = 1181 ± 1865ng/ml; N ≥ 8; p < 0.05). TLR3−/− mice showed reduced cartilage degradation eight weeks after OA induction (OARSI WT = 5.5 ± 0.04; TLR3−/− = 3.75 ± 1.04; N ≥ 6) which was accompanied by gradually decreasing levels of TUNEL-positive cells (WT = 34.87 ± 24.10; TLR3−/ = 19.64 ± 7.89) resulting in decreased IFNβ expression (WT = 12.57 ± 5.43; TLR3−/− = 6.09 ± 2.07) in cartilage (p < 0.05). The release of RNA by apoptotic chondrocytes thus activating TLR3 signalling is one possible way of perpetuating inflammatory cartilage changes. The inhibition of TLR3 could be a possible therapeutic target for OA treatment.
Collapse
|
28
|
Liu W, Chen Y, Zeng G, Yang S, Yang T, Ma M, Song W. Single-Cell Profiles of Age-Related Osteoarthritis Uncover Underlying Heterogeneity Associated With Disease Progression. Front Mol Biosci 2022; 8:748360. [PMID: 35083277 PMCID: PMC8784753 DOI: 10.3389/fmolb.2021.748360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Osteoarthritis (OA) is the most common chronic degenerative joint disease, which represents the leading cause of age-related disability. Here, this study aimed to depict the intercellular heterogeneity of OA synovial tissues. Methods: Single-cell RNA sequencing (scRNA-seq) data were preprocessed and quality controlled by the Seurat package. Cell cluster was presented and cell types were annotated based on the mRNA expression of corresponding marker genes by the SingleR package. Cell-cell communication was assessed among different cell types. After integrating the GSE55235 and GSE55457 datasets, differentially expressed genes were identified between OA and normal synovial tissues. Then, differentially expressed marker genes were overlapped and their biological functions were analyzed. Results: Totally, five immune cell subpopulations were annotated in OA synovial tissues including macrophages, dendritic cells, T cells, monocytes and B cells. Pseudo-time analysis revealed the underlying evolution process in the inflammatory microenvironment of OA synovial tissue. There was close crosstalk between five cell types according to the ligand-receptor network. The genetic heterogeneity was investigated between OA and normal synovial tissues. Furthermore, functional annotation analysis showed the intercellular heterogeneity across immune cells in OA synovial tissues. Conclusion: This study offered insights into the heterogeneity of OA, which provided in-depth understanding of the transcriptomic diversities within synovial tissue. This transcriptional heterogeneity may improve our understanding on OA pathogenesis and provide potential molecular therapeutic targets for OA.
Collapse
Affiliation(s)
- Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuting Yang
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Weidong Song, ; Mengjun Ma,
| | - Weidong Song
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weidong Song, ; Mengjun Ma,
| |
Collapse
|
29
|
Wang J, Zhang L, Zhu J, Gu J, Wang X, Tao H. Hyaluronic Acid Modified Curcumin-Loaded Chitosan Nanoparticles Inhibit Chondrocyte Apoptosis to Attenuate Osteoarthritis via Upregulation of Activator Protein 1 and RUNX Family Transcription Factor 2. J Biomed Nanotechnol 2022; 18:144-157. [PMID: 35180907 DOI: 10.1166/jbn.2022.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyaluronic acid (HA) and curcumin (CUR) have been previously utilized for osteoarthritis (OA) treatment. CUR-loaded chitosan nanoparticles (CUR@CS NPs) and HA CUR@CS NPs were synthesized in our research to ascertain the synergistic impacts of HA and CUR-loaded NPs on OA treatment. CUR@CS NPs and HA CUR@CS NPs were synthesized with evaluation of their particle size, potential, PDI, encapsulation efficiency, drug loading and surface coating as well as HA binding rate. The in vitro CUR release curve and stability of HA-CUR@CS NPs were measured. Chondrocytes were isolated from the cartilages of OA patients, followed by cell uptake assay. The chondrocyte viability and apoptosis were determined. Subsequently, the knee OA model was established, followed by H&E, Safranin O/Fast green staining and micro-CT. HA CUR@CS NPs improved CUR stability and bioavailability. CUR@CS NPs and HA-CUR@CS NPs were successfully characterized and could further be internalized by chondrocytes. CUR@CS NPs promoted tBHP-induced chondrocyte viability and inhibited chondrocyte apoptosis. HA-CUR@CS NPs upregulated the AP-1 and RUNX2 transcription levels to activate Hedgehog pathway, which subsequently blocked the Notch pathway. Mechanically, HA-CUR@CS NPs sustained release and long-lasting effect and long-term retention in the joint cavity and downregulated the expression of several pro-inflammatory cytokines in vivo. HA-CUR@CS NPs exhibited superior effects in the preceding experiments than CUR@CS NPs. Altogether, HA-CUR@CS NPs may restrict inflammation and chondrocyte apoptosis in OA through upregulation of AP-1 and RUNX2.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, P. R. China
| | - Liaoran Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jiaxue Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianhua Gu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Xiang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Hairong Tao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
30
|
Peng Y, Li J, Lin H, Tian S, Liu S, Pu F, Zhao L, Ma K, Qing X, Shao Z. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review. BIOMATERIALS TRANSLATIONAL 2021; 2:343-360. [PMID: 35837417 PMCID: PMC9255795 DOI: 10.12336/biomatertransl.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
31
|
Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100066. [PMID: 34909684 PMCID: PMC8663929 DOI: 10.1016/j.crphar.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Aims To treat osteoarthritic chondrocytes and thereby reduce the inflammation with a drug combination that primarily affects 5-HT- and ATP-evoked Ca2+ signaling. In osteoarthritic chondrocytes, Ca2+ signaling is elevated, resulting in increased production of ATP and inflammatory mediators. The expression of TLR4 and Na+/K+-ATPase was used to evaluate the inflammatory status of the cells. Main methods Equine chondrocytes were collected from joints with mild structural osteoarthritic changes and cultured in monolayers. The cells were treated with a combination of bupivacaine (1 pM) and sildenafil (1 μM) in combination with vitamin D3 (100 nM). A high-throughput screening system, the Flexstation 3 microplate reader, was used to measure intra- and extracellular Ca2+ signaling after exposure to 5-HT, glutamate, or ATP. Expression of inflammatory receptors was assessed by Western blotting. Key findings Drug treatment substantially reduced 5-HT- and ATP-evoked intracellular Ca2+ release and TLR4 expression compared to those in untreated chondrocytes. The combination of sildenafil, vitamin D3 together with metformin, as the ability to take up glucose is limited, increased Na+/K+-ATPase expression. Significance The combination of these three therapeutic substances at concentrations much lower than usually used, reduced expression of the inflammatory receptor TLR4 and increased the cell membrane enzyme Na+/K+-ATPase, which regulates cell volume and reduces increased intracellular Ca2+ concentrations. These remarkable results indicate that this drug combination has disease-modifying osteoarthritis drug (DMOAD) properties and may be a new clinical therapy for osteoarthritis (OA).
Collapse
|
32
|
Li M, Li H, Ran X, Yin H, Luo X, Chen Z. Effects of adenovirus-mediated knockdown of IRAK4 on synovitis in the osteoarthritis rabbit model. Arthritis Res Ther 2021; 23:294. [PMID: 34863246 PMCID: PMC8643028 DOI: 10.1186/s13075-021-02684-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The use of interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor as a treatment for the inflammatory joint disease is a promising method. However, its underlying mechanism in osteoarthritis (OA) remains unclear. The purpose of this study is to look into the effects of adenovirus-mediated knockdown of IRAK4 on synovitis in the OA rabbit model. METHODS Ad-shIRAK4 was injected two weeks after anterior cruciate ligament resection. Six weeks later, the rabbits were killed. The expression of IRAK4, TNFR-associated factor 6(TRAF6), TGF-activated kinase 1(TAK1), p-IKB kinase (p-IKK), p-nuclear factor kappa-B (p-NFκB), p38, and p-p38 in the synovial membrane was detected by western blot, qRT-PCR, and immunohistochemistry analysis. Immunohistochemistry was to detect the expression of IRAK4 proteins in articular cartilage. H&E staining was to assess the pathological changes of synovium and cartilage. The levels of interleukin (IL)-1β, tumor necrosis factor-α(TNF-α), and MMP-13 in the synovial fluid were measured by ELISA. X-ray and micro-computerized tomography (μCT) scans were used to assess knee joint conditions and microstructure of subchondral bone. RESULTS IRAK4 expression levels in synovial tissues of the OA model group exhibited a significant upward trend. Ad-shIRAK4 significantly reduced IRAK4 mRNA expression in synovium tissues. Notably, Ad-shIRAK4 suppressed the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) signaling. In addition, in the Ad-shIRAK4 treatment group, we can see less inflammatory cell infiltration and reduced hyperplasia and angiogenesis. The levels of IL-1β, TNF-α, and MMP-13 in the synovial fluid in the OA model group were significantly higher than that in the control group, which were reduced by Ad-shIRAK4 treatment. Finally, Results of HE stains, immunohistochemistry, and μCT showed that Ad-shIRAK4 treatment has a protective effect on cartilage damage. CONCLUSIONS IRAK4 is significantly upregulated in the synovium from the osteoarthritis rabbit model. In addition, Ad-shIRAK4 reduced the expression of IRAK4 and suppressed TLR/IL-1R signaling in the synovium from the osteoarthritis rabbit model. Ad-shIRAK4 could alleviate synovitis and cartilage degradation in the osteoarthritis rabbit model, and thus alleviate the symptoms of OA and prevent the progression of OA.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Huiyun Li
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xun Ran
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuling Luo
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| | - Zhiwei Chen
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
33
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021; 10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Nandana Bhardwaj
- Department of Science and Mathematics Indian Institute of Information Technology Guwahati Bongora Guwahati Assam 781015 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
34
|
Ruan A, Wang Q, Ma Y, Zhang D, Yang L, Wang Z, Xie Q, Yin Y. Efficacy and Mechanism of Electroacupuncture Treatment of Rabbits With Different Degrees of Knee Osteoarthritis: A Study Based on Synovial Innate Immune Response. Front Physiol 2021; 12:642178. [PMID: 34421630 PMCID: PMC8375319 DOI: 10.3389/fphys.2021.642178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/04/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic degenerative bone and joint disease, which is often clinically manifested as pain, joint swelling, and deformity. Its pathological manifestations are mainly synovial inflammation and cartilage degeneration. This study aims to investigate the efficacy of electro-acupuncture (EA) on model rabbits with varying degrees of KOA and to study the mechanism of EA on KOA based on the innate immune response. Mild and moderate rabbit KOA models were established using a modified Hluth method, and EA was given to both the mild and moderate model groups. The Lequesne-MG index was used to evaluate the behavioral changes in the rabbits before and after EA treatment. Morphological changes in the synovial membrane and cartilage of each group were observed by H&E staining. The Mankin scoring standard and the Krenn scoring standard were used to score the pathology of the cartilage tissue and synovial tissue, respectively. The inflammatory factors and metalloproteinases were detected in the serum of each group by ELISA. The protein and messenger RNA (mRNA) expressions of important elements related to Toll-like receptors (TLRs)-mediated innate immune response in the synovial tissue were detected by Western blot and quantitative PCR (qPCR). The Lequesne-MG index score of the rabbits gradually increased with the modeling prolonged but decreased significantly after EA treatment, indicating that EA has a better effect on alleviating the pain and improving the dysfunction. The morphological analysis showed that the inflammation of and the damage to the synovial membrane and the cartilage tissue gradually deteriorated with the modeling prolonged. However, the synovial membrane inflammation was significantly relieved after EA treatment, and the cartilage injury showed signs of repair. The ELISA analysis showed that, with the modeling prolonged, the serum-related inflammatory factors and mechanism of metalloproteinases gradually increased but decreased after EA treatment. The tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and matrix metalloproteinase3 (MMP3) of EA1 group were significantly lower than those of EA2 group. Both Western blot and qPCR results showed that the protein and mRNA expressions of the elements related to the innate immune response in the synovial membrane increased gradually with the modeling prolonged, but decreased significantly after EA treatment. Additionally, the expression of some components in EA1 group was significantly lower than that in EA2 group. These results confirm that synovial inflammation gradually aggravated with time from the early to mid-stage of KOA. EA alleviated the inflammation and histological changes in KOA rabbits by inhibiting the TLRs-mediated innate synovial immune response. This suggests that using EA in the early stage of KOA may achieve a desirable efficacy.
Collapse
Affiliation(s)
- Anmin Ruan
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Qingfu Wang
- Department of Tendon and Injury, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yufeng Ma
- Department of Tendon and Injury, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Zhang
- Department of General Surgery, The Second Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lili Yang
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Zhongpeng Wang
- Acupuncture and Moxibustion Department, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qi Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yueshan Yin
- Acupuncture and Moxibustion Department, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Zhang TM, Yang K, Liang SX, Tian YY, Xu ZY, Liu H, Yan YB. Microarray Analysis of Differential Gene Expression Between Traumatic Temporomandibular Joint Fibrous and Bony Ankylosis in a Sheep Model. Med Sci Monit 2021; 27:e932545. [PMID: 34400603 PMCID: PMC8379999 DOI: 10.12659/msm.932545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The type of traumatic temporomandibular joint (TMJ) ankylosis depends on the degree of severity of TMJ trauma. Here, we performed comprehensive differential molecular profiling between TMJ fibrous and bony ankylosis. Material/Methods Six sheep were used and a bilateral different degree of TMJ trauma was performed to induce fibrous ankylosis in one side and bony ankylosis in the other side. The ankylosed calluses were harvested at days 14 and 28 postoperatively and analyzed by Affymetrix OviGene-1_0-ST microarrays. DAVID was used to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Ten DEGs, including 7 hub genes from PPI analysis, were confirmed by real-time PCR. Results We found 90 and 323 DEGs at least 2-fold at days 14 and 28, respectively. At day 14, bony ankylosis showed upregulated DEGs, such as TLR8, SYK, NFKBIA, PTPRC, CD86, ITGAM, and ITGAL, indicating a stronger immune and inflammatory response and cell adhesion, while genes associated with anti-adhesion (PRG4) and inhibition of osteoblast differentiation (SFRP1) had higher expression in fibrous ankylosis. At day 28, bony ankylosis showed increased biological process related to new bone formation, while fibrous ankylosis was characterized by a prolonged immune and inflammatory reaction. Conclusions This study provides a differential gene expression profile between TMJ fibrous and bony ankylosis. Further study of these key genes may provide new ideas for future treatment of TMJ bony ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Kun Yang
- Tianjin Medical University, Tianjin, China (mainland)
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Hao Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Ying-Bin Yan
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| |
Collapse
|
36
|
Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, Zhang R, Bai X, Zhang H, Cai D. MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis 2021; 12:533. [PMID: 34031369 PMCID: PMC8144578 DOI: 10.1038/s41419-021-03800-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
Milk fat globule-epidermal growth factor (EGF) factor 8 (MFG-E8), as a necessary bridging molecule between apoptotic cells and phagocytic cells, has been widely studied in various organs and diseases, while the effect of MFG-E8 in osteoarthritis (OA) remains unclear. Here, we identified MFG-E8 as a key factor mediating chondrocyte senescence and macrophage polarization and revealed its role in the pathology of OA. We found that MFG-E8 expression was downregulated both locally and systemically as OA advanced in patients with OA and in mice after destabilization of the medial meniscus surgery (DMM) to induce OA. MFG-E8 loss caused striking progressive articular cartilage damage, synovial hyperplasia, and massive osteophyte formation in OA mice, which was relieved by intra-articular administration of recombinant mouse MFG-E8 (rmMFG-E8). Moreover, MFG-E8 restored chondrocyte homeostasis, deferred chondrocyte senescence and reprogrammed macrophages to the M2 subtype to alleviate OA. Further studies showed that MFG-E8 was inhibited by miR-99b-5p, expression of which was significantly upregulated in OA cartilage, leading to exacerbation of experimental OA partially through activation of NF-κB signaling in chondrocytes. Our findings established an essential role of MFG-E8 in chondrocyte senescence and macrophage reprogramming during OA, and identified intra-articular injection of MFG-E8 as a potential therapeutic target for OA prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Lu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianying Pan
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Bingsheng Luo
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hua Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiaochun Bai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
37
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|
38
|
Sohn R, Rösch G, Junker M, Meurer A, Zaucke F, Jenei-Lanzl Z. Adrenergic signalling in osteoarthritis. Cell Signal 2021; 82:109948. [PMID: 33571663 DOI: 10.1016/j.cellsig.2021.109948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Marius Junker
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany.
| |
Collapse
|
39
|
Han W, Chen X, Wang X, Shen Z, Wang X, Zhang Z, Wang H. TLR-4, TLR-5 and IRF4 are diagnostic markers of knee osteoarthritis in the middle-aged and elderly patients and related to disease activity and inflammatory factors. Exp Ther Med 2020; 20:1291-1298. [PMID: 32765669 PMCID: PMC7388421 DOI: 10.3892/etm.2020.8825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Expression and diagnostic value of serum toll-like receptor-4 (TLR-4), Toll-like receptor-5 (TLR-5) and interferon regulatory factor 4 (IRF4) in middle-aged and elderly patients with knee osteoarthritis (KOA) and their correlation with Interleukin 1β (IL-1β), interleukin-6 (IL-6), matrix metalloproteinase-1 and tumor necrosis factor-α (TNF-α) were investigated. Sixty-eight middle-aged and elderly patients with KOA in Puyang Hospital of Traditional Chinese Medicine were selected as the study group and 49 healthy people receiving physical examination were the control group. Levels of serum TLR-4, TLR-5, IRF4, IL-1β, IL-6, MMP-1 and TNF-α were measured by enzyme linked immunosorbent assay (ELISA). Correlation between the expression levels of serum TLR-4, TLR-5, IRF4 and K-L grades was determined by Spearman correlation analysis. The diagnostic efficacy of serum TLR-4, TLR-5 and IRF4 for KOA was analyzed by the receiver operator characteristics analysis (ROC). Expression of serum TLR-4, TLR-5 and IRF4 in the study group was significantly higher than those in the control group. The sensitivity and specificity of TLR-4 in the diagnosis of KOA were, respectively, 76.47 and 93.88%, those of TLR-5 were 73.29 and 87.76%, those of IRF4 were 72.06 and 95.92%, and those of TLR-4, TLR-5 and IRF4 were 94.12 and 97.96%. Expression of serum TLR-4, TLR-5 and IRF4 was significantly higher in the severe group than in the moderate group, and significantly higher in the moderate group than those the in mild group, and significantly higher in the mild group than those in the suspected mild group. Expression of TLR-4, TLR-5 and IRF4 in serum was positively correlated with the concentration of IL-1β, IL-6, MMP-1 and TNF-α, respectively (P<0.001). The combined detection of TLR-4, TLR-5 and IRF4 can be used for early diagnosis of KOA, and they are positively correlated with IL-1β and IL-6, MMP-1 and TNF-α.
Collapse
Affiliation(s)
- Wenchao Han
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Xiumin Chen
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Xianyin Wang
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Zhen Shen
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Xiaobing Wang
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Zuofeng Zhang
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| | - Huiru Wang
- Department of Orthopedics, Puyang Hospital of Traditional Chinese Medicine, Puyang, Henan 457000, P.R. China
| |
Collapse
|
40
|
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage 2020; 28:562-571. [PMID: 31862470 PMCID: PMC6951330 DOI: 10.1016/j.joca.2019.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
In this narrative review, we discuss the emerging role of innate immunity in osteoarthritis (OA) joint pain. First, we give a brief description of the pain pathway in the context of OA. Then we consider how neuro-immune signaling pathways may promote OA pain. First, activation of neuronal Pattern Recognition Receptors by mediators released in a damaged joint can result in direct excitation of nociceptors, as well as in production of chemokines and cytokines. Secondly, indirect neuro-immune signaling may occur when innate immune cells produce algogenic factors, including chemokines and cytokines, that act on the pain pathway. Neuro-immune crosstalk occurs at different levels of the pathway, starting in the joint but also in the innervating dorsal root ganglia and in the dorsal horn. Synovitis is characterized by recruitment of immune cells, including macrophages, mast cells, and CD4+ lymphocytes, which may contribute to nociceptor sensitization and OA pain through production of algogenic factors that amplify the activation of sensory neurons. We discuss examples where this scenario has been suggested by findings in human OA and in animal models. Overall, increasing evidence suggests that innate immune pathways play an initiating as well as facilitating role in pain, but information on how these pathways operate in OA remains limited. Since these innate pathways are eminently targetable, future studies in this area may provide fruitful leads towards a better management of symptomatic OA.
Collapse
|
41
|
Liu B, Ji C, Shao Y, Liang T, He J, Jiang H, Chen G, Luo Z. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. Biomed Pharmacother 2020; 127:110144. [PMID: 32330796 DOI: 10.1016/j.biopha.2020.110144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Etoricoxib, a selective Cyclooxygenase-2 (COX-2) inhibitor, is commonly used in osteoarthritis (OA) for pain relief, however, little is known about the effects on subchondral bone. In the current study, OA was induced via destabilization of the medial meniscus (DMM) in C57BL/6 mice. Two days after surgery, mice were treated with different concentrations of Etoricoxib. Four weeks after treatment, micro computed tomography (Micro-CT) analysis, histological analysis, atomic force microscopy (AFM) analysis, and scanning electron microscopy (SEM) were performed to evaluate OA progression. We demonstrated that Etoricoxib inhibited osteophyte formation in the subchondral bone. However, it also reduced the bone volume fraction (BV/TV), lowered trabecular thickness (Tb.Th), and more microfractures and pores were observed in the subchondral bone. Moreover, Etoricoxib reduced the elastic modulus of subchondral bone. Exposure to Etoricoxib further increased the empty/total osteocyte ratio of the subchondral bone. Etoricoxib did not show significant improvement in articular cartilage destruction and synovial inflammation in early OA. Together, our observations suggested that although Etoricoxib can relieve OA-induced pain and inhibit osteophyte formation in the subchondral bone, it can also change the microstructures and biomechanical properties of subchondral bone, promote subchondral bone loss, and reduce subchondral bone quality in early OA mice.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Chenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Yijie Shao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Ting Liang
- Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Jiaheng He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Huaye Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Guangdong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China.
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
42
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
43
|
Affiliation(s)
- Mary C Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- Arthritis/Immunology Section, San Francisco Veterans Administration Health Care System, 4150 Clement Street, 111R, San Francisco, CA, 94121, USA.
| |
Collapse
|