1
|
Tolchinsky A, Ellis GFR, Levin M, Kaňková Š, Burgdorf JS. Disgust as a primary emotional system and its clinical relevance. Front Psychol 2024; 15:1454774. [PMID: 39295749 PMCID: PMC11409098 DOI: 10.3389/fpsyg.2024.1454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This paper advocates for considering disgust as a primary emotional system within Panksepp's Affective Neuroscience framework, which has the potential to improve the efficacy of psychotherapy with obsessive-compulsive disorder, hypochondriasis, and emetophobia. In 2007, Toronchuk and Ellis provided comprehensive evidence that DISGUST system, as they defined it, matched all Panksepp's criteria for a primary emotional system. A debate ensued and was not unambiguously resolved. This paper is an attempt to resume this discussion and supplement it with the data that accumulated since then on DISGUST's relationship with the immune system and the role of DISGUST dysregulation in psychopathology. We hope that renewed research interest in DISGUST has the potential to improve clinical efficacy with hard-to-treat conditions.
Collapse
Affiliation(s)
- Alexey Tolchinsky
- Professional Psychology Program, George Washington University, Washington, DC, United States
| | - George F R Ellis
- Department of Mathematics, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Allen Discovery Center at Tufts University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czechia
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
2
|
Ciaunica A, Levin M, Rosas FE, Friston K. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans. Top Cogn Sci 2023. [PMID: 38158882 DOI: 10.1111/tops.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon
- Institute of Cognitive Neuroscience, University College London
| | - Michael Levin
- Department of Biology and Allen Discovery Center, Tufts University
| | - Fernando E Rosas
- Department of Informatics, University of Sussex
- Centre for Complexity Science, Imperial College London
- Department of Brain Sciences, Imperial College London
- Centre for Eudaimonia and Human Flourishing, University of Oxford
| | - Karl Friston
- Welcome Centre for Human Neuroimaging, University College London
- VERSES AI Research Lab
| |
Collapse
|
3
|
Golomidov AV, Grigoriev EV, Moses VG, Moses KB. Pathogenesis, Prognosis and Outcomes of Multiple Organ Failure in Newborns (Review). GENERAL REANIMATOLOGY 2022; 18:37-49. [DOI: 10.15360/1813-9779-2022-6-37-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple organ failure (MOF) is the leading cause of neonatal mortality in intensive care units. The prevalence of MOF in newborns is currently unclear, since its incidence varies in asphyxia, sepsis, prematurity, and comorbidity, and depends on the level of development and funding of health care in different countries. Sepsis and acute respiratory distress syndrome prevail among the causes of MOF in this category of patients.Aim of the review. To summarize the available literature data on the pathogenesis, therapeutic strategies and outcomes of MOF in newborns.Material and methods. We searched PubMed, Scopus, Web of Science, and RSCI databases using the following keywords: «newborns, multiple organ failure, etiology, pathogenesis, premature, diagnosis, treatment, respiratory support, cardiotonic support», without language limitations. A total of 144 full-text sources were selected for analysis, 70% of which were published in the last five years and 50% were published in the last three years. Criteria for exclusion were low information value and outdated data.Results. The prevalence of MOF in neonates is currently unclear. This could be due to common association of neonatal MOF (as well as the adult one) with various diseases; thus, its incidence is not the same for asphyxia, sepsis, prematurity, and comorbidities. There is no precise data on neonatal mortality in MOF, but according to some reports, it may be as high as 13-50%.In newborns, MOF can be caused by two major causes, intrapartum/postnatal asphyxia and sepsis, but could also be influenced by other intranatal factors such as intrauterine infections and acute interruption of placental blood flow.The key element in the pathogenesis of neonate MOF is cytokinemia, which triggers universal critical pathways. Attempts to identify different clinical trajectories of critical illness in various categories of patients have led to the discovery of MOF phenotypes with specific patterns of systemic inflammatory response. This scientific trend is very promising for the creation of new classes of drugs and individual therapeutic pathways in neonates with MOF of various etiologies.The pSOFA scale is used to predict the outcome of neonatal MOF, however, the nSOFA scale has higher validity in premature infants with low birth weight.Central nervous system damage is the major MOF-associated adverse outcome in newborns, with gestational age and the timing of treatment initiation being key factors affecting risk of MOF development in both full-term and premature infants.Conclusion. The study of cellular messengers of inflammation, MOF phenotypes, mitochondrial insufficiency, and immunity in critically ill infants with MOF of various etiologies is a promising area of research. The pSOFA scale is suggested for predicting the outcome of MOF in full-term infants, while the nSOFA scale should be used in premature infants with low birth weight.
Collapse
Affiliation(s)
| | - E. V. Grigoriev
- Research Institute for Complex Problems of Cardiovascular Diseases
| | | | - K. B. Moses
- S.V. Belyaeva Kuzbass Regional Clinical Hospital
| |
Collapse
|
4
|
Psycho-Neuro-Endocrine-Immunology: A Role for Melatonin in This New Paradigm. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154888. [PMID: 35956837 PMCID: PMC9370109 DOI: 10.3390/molecules27154888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Psychoneuroendocrinoimmunology is the area of study of the intimate relationship between immune, physical, emotional, and psychological aspects. This new way of studying the human body and its diseases was initiated in the last century’s first decades. However, the molecules that participate in the communication between the immune, endocrine, and neurological systems are still being discovered. This paper aims to describe the development of psychoneuroendocrinoimmunology, its scopes, limitations in actual medicine, and the extent of melatonin within it.
Collapse
|
5
|
Lisovska N. Multilevel mechanism of immune checkpoint inhibitor action in solid tumors: History, present issues and future development (Review). Oncol Lett 2022; 23:190. [PMID: 35527781 PMCID: PMC9073577 DOI: 10.3892/ol.2022.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors (antibodies that target and block immune checkpoints in the tumor microenvironment) is included in the standard of care for patients with different types of malignancy, such as melanoma, renal cell and urothelial carcinoma, lung cancer etc. The introduction of this new immunotherapy has altered the view on potential targets for treatment of solid tumors from tumor cells themselves to their immune microenvironment; this has led to a reconsideration of the mechanisms of tumor-associated immunity. However, only a subset of patients benefit from immunotherapy and patient response is often unpredictable, even with known initial levels of prognostic markers; the biomarkers for favorable response are still being investigated. Mechanisms of immune checkpoint inhibitors efficiency, as well as the origins of treatment failure, require further investigation. From a clinical standpoint, discrepancies between the theoretical explanation of inhibitors of immune checkpoint actions at the cellular level and their deployment at a tissue/organ level impede the effective clinical implementation of novel immune therapy. The present review assessed existing experimental and clinical data on functional activity of inhibitors of immune checkpoints to provide a more comprehensive picture of their mechanisms of action on a cellular and higher levels of biological organization.
Collapse
Affiliation(s)
- Natalya Lisovska
- Chemotherapy Department, Center of Oncology, ‘Cyber Clinic of Spizhenko’, Kapitanovka, Kyiv 08112, Ukraine
| |
Collapse
|
6
|
Li Y, Wang X, Wu Q, Liu F, Yang L, Gong B, Zhang K, Ma Y, Li Y. miR-152-3p Represses the Proliferation of the Thymic Epithelial Cells by Targeting Smad2. Genes (Basel) 2022; 13:genes13040576. [PMID: 35456382 PMCID: PMC9028272 DOI: 10.3390/genes13040576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) control the proliferation of thymic epithelial cells (TECs) for thymic involution. Previous studies have shown that expression levels of miR-152-3p were significantly increased in the thymus and TECs during the involution of the mouse thymus. However, the possible function and potential molecular mechanism of miR-152-3p remains unclear. This study identified that the overexpression of miR-152-3p can inhibit, while the inhibition of miR-152-3p can promote, the proliferation of murine medullary thymic epithelial cell line 1 (MTEC1) cells. Moreover, miR-152-3p expression was quantitatively analyzed to negatively regulate Smad2, and the Smad2 gene was found to be a direct target of miR-152-3p, using the luciferase reporter assay. Importantly, silencing Smad2 was found to block the G1 phase of cells and inhibit the cell cycle, which was consistent with the overexpression of miR-152-3p. Furthermore, co-transfection studies of siRNA–Smad2 (siSmad2) and the miR-152-3p mimic further established that miR-152-3p inhibited the proliferation of MTEC1 cells by targeting Smad2 and reducing the expression of Smad2. Taken together, this study proved miR-152-3p to be an important molecule that regulates the proliferation of TECs and therefore provides a new reference for delaying thymus involution and thymus regeneration.
Collapse
|
7
|
Constantin AM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Moldovan IM, Sufleţel RT, Djouini A, Şovrea AS, Şovrea AS, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Ophthalmology Resident Physician, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. Short histological kaleidoscope - recent findings in histology. Part II. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:275-292. [PMID: 36374135 PMCID: PMC9801680 DOI: 10.47162/rjme.63.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article focuses on the latest histological knowledge in the field regarding the peripheral lymphoid system [mucosa-associated lymphoid tissue (MALT), bronchus-associated lymphoid tissue (BALT), gut-associated lymphoid tissue (GALT)], the thymus stroma, some of the various corpuscles of the human body (Hassall's corpuscles in thymus, arenaceous corpuscles in pineal gland, corpora amylacea in prostate and other locations) and Fañanas glial cells in the cerebellum.
Collapse
Affiliation(s)
- Anne-Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Bianca Boşca
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariana Viorica Mărginean
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Elena Mihaela Jianu
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Maria Moldovan
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Amina Djouini
- Ophthalmology Resident Physician, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Alina Simona Şovrea
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Akache B, Renner TM, Tran A, Deschatelets L, Dudani R, Harrison BA, Duque D, Haukenfrers J, Rossotti MA, Gaudreault F, Hemraz UD, Lam E, Régnier S, Chen W, Gervais C, Stuible M, Krishnan L, Durocher Y, McCluskie MJ. Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Sci Rep 2021; 11:21849. [PMID: 34750472 PMCID: PMC8576046 DOI: 10.1038/s41598-021-01363-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Anh Tran
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Diana Duque
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Julie Haukenfrers
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Martin A Rossotti
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Francis Gaudreault
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Christian Gervais
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lakshmi Krishnan
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
9
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Peptides for T cell selection in the thymus. Peptides 2021; 146:170671. [PMID: 34624431 DOI: 10.1016/j.peptides.2021.170671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex (MHC)-associated peptides generated and displayed by antigen-presenting cells in the thymus are essential for the generation of functional and self-tolerant T cells that protect our body from various pathogens. The peptides displayed by cortical thymic epithelial cells (cTECs) are generated by unique enzymatic machineries including the thymoproteasomes, and are involved in the positive selection of self-protective T cells. On the other hand, the peptides displayed by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs) are involved in further selection to establish self-tolerance in T cells. Although the biochemical nature of the peptide repertoire displayed in the thymus remains unclear, many studies have suggested a thymus-specific mechanism for the generation of MHC-associated peptides in the thymus. In this review, we summarize basic knowledge and recent advances in MHC-associated thymic peptides, focusing on the generation and function of thymoproteasome-dependent peptides specifically displayed by cTECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan.
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
11
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
12
|
Holländer GA. Introduction: thymus development and function in health and disease. Semin Immunopathol 2021; 43:1-3. [PMID: 33651194 DOI: 10.1007/s00281-021-00841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georg A Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- The University Children's Hospital of Basel and the Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
13
|
Genomic Intelligence as Über Bio-Cybersecurity: The Gödel Sentence in Immuno-Cognitive Systems. ENTROPY 2021; 23:e23040405. [PMID: 33805411 PMCID: PMC8065710 DOI: 10.3390/e23040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
This paper gives formal foundations and evidence from gene science in the post Barbara McClintock era that the Gödel Sentence, far from being an esoteric construction in mathematical logic, is ubiquitous in genomic intelligence that evolved with multi-cellular life. Conditions uniquely found in the Adaptive Immune System (AIS) and Mirror Neuron System (MNS), termed the genomic immuno-cognitive system, coincide with three building blocks in computation theory of Gödel, Turing and Post (G-T-P). (i) Biotic elements have unique digital identifiers with gene codes executing 3D self-assembly for morphology and regulation of the organism using the recursive operation of Self-Ref (Self-Reference) with the other being a self-referential projection of self. (ii) A parallel offline simulation meta/mirror environment in 1–1 relation to online machine executions of self-codes gives G-T-P Self-Rep (Self-Representation). (iii) This permits a digital biotic entity to self-report that it is under attack by a biotic malware or non-self antigen in the format of the Gödel sentence, resulting in the “smarts” for contextual novelty production. The proposed unitary G-T-P recursive machinery in AIS and in MNS for social cognition yields a new explanation that the Interferon Gamma factor, known for friend-foe identification in AIS, is also integral to social behaviors. New G-T-P bio-informatics of AIS and novel anti-body production is given with interesting testable implications for COVID-19 pathology.
Collapse
|