1
|
Saliba JG, Zheng W, Shu Q, Li L, Wu C, Xie Y, Lyon CJ, Qu J, Huang H, Ying B, Hu TY. Enhanced diagnosis of multi-drug-resistant microbes using group association modeling and machine learning. Nat Commun 2025; 16:2933. [PMID: 40133304 PMCID: PMC11937555 DOI: 10.1038/s41467-025-58214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
New solutions are needed to detect genotype-phenotype associations involved in microbial drug resistance. Herein, we describe a Group Association Model (GAM) that accurately identifies genetic variants linked to drug resistance and mitigates false-positive cross-resistance artifacts without prior knowledge. GAM analysis of 7,179 Mycobacterium tuberculosis (Mtb) isolates identifies gene targets for all analyzed drugs, revealing comparable performance but fewer cross-resistance artifacts than World Health Organization (WHO) mutation catalogue approach, which requires expert rules and precedents. GAM also reveals generalizability, demonstrating high predictive accuracy with 3,942 S. aureus isolates. GAM refinement by machine learning (ML) improves predictive accuracy with small or incomplete datasets. These findings were validated using 427 Mtb isolates from three sites, where GAM inputs are also found to be more suitable in ML prediction models than WHO inputs. GAM + ML could thus address the limitations of current drug resistance prediction methods to improve treatment decisions for drug-resistant microbial infections.
Collapse
Affiliation(s)
- Julian G Saliba
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Qingbo Shu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Liqiang Li
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Chi Wu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Ye Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Ates I, Terzi U, Suzen S, Irham LM. An overview on Sjögren's syndrome and systemic lupus erythematosus' genetics. Toxicol Res (Camb) 2025; 14:tfae194. [PMID: 39991010 PMCID: PMC11847510 DOI: 10.1093/toxres/tfae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
Major autoimmune rheumatic disorders, such as systemic lupus erythematosus and Sjögren's syndrome, are defined by the presence of autoantibodies. These diseases are brought on by immune system dysregulation, which can present clinically in a wide range of ways. The etiologies of these illnesses are complex and heavily impacted by a variety of genetic and environmental variables. The most powerful susceptibility element for each of these disorders is still the human leukocyte antigen (HLA) area, that was the initial locus found to be associated. This region is primarily responsible for the HLA class II genes, such as DQA1, DQB1, and DRB1, however class I genes have also been linked. Numerous genetic variants that do not pose a risk to HLA have been found as a result of intensive research into the genetic component of these diseases conducted over the last 20 years. Furthermore, it is generally acknowledged that autoimmune rheumatic illnesses have similar genetic backgrounds and share molecular pathways of disease, including the interferon (IFN) type I routes. Pleiotropic sites for autoimmune rheumatic illnesses comprise TNIP1, DNASEL13, IRF5, the HLA region, and others. It remains a challenge to determine the causative biological mechanisms beneath the genetic connections. Nonetheless, functional analyses of the loci and mouse models have produced recent advancements. With an emphasis on the HLA region, we present an updated summary of the structure of genes underpinning both of these autoimmune rheumatic illnesses here.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Ulku Terzi
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Sinan Suzen
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Lalu Muhammad Irham
- Department of Toxicology, Ahmad Dahlan University, Faculty of Pharmacy, Prof. Dr. Soepomo, S.H., Street, Warungboto, 55164, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Rong Z, Long Y, Pan Y, Huang Z, Ouyang W. Exploring the causal link between low‑density lipoprotein cholesterol and cataract: Evidence from Mendelian randomization analysis. WORLD ACADEMY OF SCIENCES JOURNAL 2024; 7:16. [DOI: 10.3892/wasj.2024.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Zhuowei Rong
- Department of Ophthalmology, The People's Hospital of Jiangmen City, Jiangmen, Guangdong 529000, P.R. China
| | - Yun Long
- Department of Gynecological Oncology, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yanchao Pan
- Department of Ophthalmology, The People's Hospital of Xinhui, Jiangmen, Guangdong 529000, P.R. China
| | - Zhenjun Huang
- Department of Medical Oncology, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenhao Ouyang
- Department of Medical Oncology, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
4
|
Roberson JL, Neylan CJ, Judy R, Walker V, Tsao PS, Damrauer SM, Maguire LH. Critical genes in genitourinary embryogenesis are related to the development of adult hydrocele. Sci Rep 2024; 14:30314. [PMID: 39639036 PMCID: PMC11621517 DOI: 10.1038/s41598-024-81187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Despite being a common urologic disorder with potentially complicated sequela, the genetic background of adult hydrocele has not previously been described. We performed a multi-population genome-wide association study of 363,460 men in the United Kingdom BioBank and FinnGen cohorts. We identified 6,548 adult men with hydrocele. We analyzed common variants (minor allele frequency > 0.01) associated with hydrocele and set the threshold for genome-wide significance at p < 5 × 10- 8. Meta-analysis of genome-wide association studies identified 7 genome-wide significant loci which mapped to 24 genes. Multiple gene prioritization strategies highlighted PAX8, INHBB, AMHR2, and SHH, all known to be critical to genitourinary embryogenesis and associated with Mendelian genitourinary syndromes and model organism phenotypes. Identified loci affect gene expression in genitourinary structures and are associated with multiple markers of renal function. These common variants in genes critical for genitourinary embryogenesis are associated with adult hydrocele, suggesting these genes may maintain normal scrotal anatomy in adults. This large study of nearly 400,000 men is the first genomic study of idiopathic hydrocele and defines our current understanding of the genetic background of this common condition.
Collapse
Affiliation(s)
- Jeffrey L Roberson
- Department of Surgery, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Renae Judy
- Department of Surgery, Perelman School of Medicine, Philadelphia, PA, USA
| | - Venexia Walker
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Philip S Tsao
- VA Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Memorial Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lillias H Maguire
- Corporal Michael J. Crescenz Memorial Veterans Affairs Medical Center, Philadelphia, PA, USA.
- Division of Colon and Rectal Surgery, Department of Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Silverstein, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Kontou PI, Bagos PG. The goldmine of GWAS summary statistics: a systematic review of methods and tools. BioData Min 2024; 17:31. [PMID: 39238044 PMCID: PMC11375927 DOI: 10.1186/s13040-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of complex traits and diseases. GWAS summary statistics have become essential tools for various genetic analyses, including meta-analysis, fine-mapping, and risk prediction. However, the increasing number of GWAS summary statistics and the diversity of software tools available for their analysis can make it challenging for researchers to select the most appropriate tools for their specific needs. This systematic review aims to provide a comprehensive overview of the currently available software tools and databases for GWAS summary statistics analysis. We conducted a comprehensive literature search to identify relevant software tools and databases. We categorized the tools and databases by their functionality, including data management, quality control, single-trait analysis, and multiple-trait analysis. We also compared the tools and databases based on their features, limitations, and user-friendliness. Our review identified a total of 305 functioning software tools and databases dedicated to GWAS summary statistics, each with unique strengths and limitations. We provide descriptions of the key features of each tool and database, including their input/output formats, data types, and computational requirements. We also discuss the overall usability and applicability of each tool for different research scenarios. This comprehensive review will serve as a valuable resource for researchers who are interested in using GWAS summary statistics to investigate the genetic basis of complex traits and diseases. By providing a detailed overview of the available tools and databases, we aim to facilitate informed tool selection and maximize the effectiveness of GWAS summary statistics analysis.
Collapse
Affiliation(s)
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131, Lamia, Greece.
| |
Collapse
|
6
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an Allele-Specific Transcription Factor Binding Interaction that May Regulate PLA2G2A Gene Expression. Bioinform Biol Insights 2024; 18:11779322241261427. [PMID: 39081667 PMCID: PMC11287738 DOI: 10.1177/11779322241261427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
The secreted phospholipase A2 (sPLA2) isoform, sPLA2-IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA2-IIA. The work in the manuscript leveraged 4 publicly available datasets to investigate the mechanism by which rs11573156 influences sPLA2-IIA levels via bioinformatics and modeling analysis. Through genotype-tissue expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA2-IIA, PLA2G2A. SNP2TFBS was used to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified eQTL SNPs. Subsequently, candidate TF-SNP interactions were cross-referenced with the ChIP-seq results in matched tissues from ENCODE. SP1-rs11573156 emerged as the significant TF-SNP pair in the liver. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was likely affected by tissue SP1 protein levels. Using an ordinary differential equation based on Michaelis-Menten kinetic assumptions, we modeled the dependence of PLA2G2A transcription on SP1 protein levels, incorporating the SNP influence. Collectively, our analysis strongly suggests that the difference in the binding dynamics of SP1 to different rs11573156 alleles may underlie the allele-specific PLA2G2A expression in different tissues, a mechanistic model that awaits future direct experimental validation. This mechanism likely contributes to the variation in circulating sPLA2-IIA protein levels in the human population, with implications for a wide range of human diseases.
Collapse
Affiliation(s)
- Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Eric Lu
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Laurel Johnstone
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Shudong Sun
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Brian Hallmark
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Joseph C Watkins
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Hao Helen Zhang
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
- Center for Precision Nutrition and Wellness, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Shen S, Sobczyk MK, Paternoster L, Brown SJ. From GWASs toward Mechanistic Understanding with Case Studies in Dermatogenetics. J Invest Dermatol 2024; 144:1189-1199.e8. [PMID: 38782533 DOI: 10.1016/j.jid.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
Many human skin diseases result from the complex interplay of genetic and environmental mechanisms that are largely unknown. GWASs have yielded insight into the genetic aspect of complex disease by highlighting regions of the genome or specific genetic variants associated with disease. Leveraging this information to identify causal genes and cell types will provide insight into fundamental biology, inform diagnostics, and aid drug discovery. However, the etiological mechanisms from genetic variant to disease are still unestablished in most cases. There now exists an unprecedented wealth of data and computational methods for variant interpretation in a functional context. It can be challenging to decide where to start owing to a lack of consensus on the best way to identify causal genetic mechanisms. This article highlights 3 key aspects of genetic variant interpretation: prioritizing causal genes, cell types, and pathways. We provide a practical overview of the main methods and datasets, giving examples from recent atopic dermatitis studies to provide a blueprint for variant interpretation. A collection of resources, including brief description and links to the packages and web tools, is provided for researchers looking to start in silico follow-up genetic analysis of associated genetic variants.
Collapse
Affiliation(s)
- Silvia Shen
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Institute for Evolution and Ecology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Cerván-Martín M, González-Muñoz S, Guzmán-Jiménez A, Higueras-Serrano I, Castilla JA, Garrido N, Luján S, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Bossini-Castillo L, Carmona FD. Changes in environmental exposures over decades may influence the genetic architecture of severe spermatogenic failure. Hum Reprod 2024; 39:612-622. [PMID: 38305414 DOI: 10.1093/humrep/deae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
STUDY QUESTION Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service, Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
9
|
Ahmadi S, Surmava S, Kvaratskhelia D, Gogolashvili A, Kvaratskhelia E, Abzianidze E, Kankava K. Association Between Multiple Single Nucleotide Polymorphisms in Folate Metabolism Pathway and Breast Cancer Risk in Georgian Women: A Case-Control Study. Clin Med Insights Oncol 2024; 18:11795549241233693. [PMID: 38433849 PMCID: PMC10908228 DOI: 10.1177/11795549241233693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Background The folate metabolism pathway plays an integral part in DNA synthesis, methylation, and repair. Methylenetetrahydrofolate reductase (MTHFR) and methylenetetrahydrofolate dehydrogenase (MTHFD1) are both enzymes that are involved in this pathway, and the single nucleotide polymorphisms (SNPs) in genes coding for them have modulatory effects on DNA expression. This study aimed to investigate the relationship between MTHFR C677T (rs1801133) and MTHFD1 G1958A (rs2236225) polymorphisms and the risk of developing breast cancer in Georgian women. Methods A case-control study was performed examining the MTHFR C677T and MTHFD1 G1958A SNP in breast cancer-confirmed cases and healthy matched controls. Real time-polymerase chain reaction (PCR) was used to genotype SNPs. The case individuals' pathology reports were obtained following surgeries for cancer characteristic data. Statistical analysis was performed to investigate the significance of the acquired data. Results Statistical analysis of MTHFR C677T SNP revealed that the CT genotype increased the risk of breast cancer by 2.17 folds in the over-dominant model. Statistical analysis of MTHFD1 G1958A SNP showed that the GA genotype increased the risk of breast cancer by 4.12 folds in the codominant model and 2.41 folds in the over-dominant model. No statistically significant link was found between genotypes and lymph node status, however, patients with the CT genotype had higher percentages of proliferative activity. Conclusions Breast cancer seems to have a statistically significant association with the CT genotype in MTHFR C677T and the GA genotype in MTHFD1 G1958A in Georgian women.
Collapse
Affiliation(s)
- Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sandro Surmava
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Davit Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ana Gogolashvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Eka Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- V. Bakhutashvili Institute of Medical Biotechnology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- Ivane Beritashvili Center Of Experimental Biomedicine, Tbilisi, Georgia
| | - Ketevani Kankava
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
10
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an allele-specific transcription factor binding interaction that regulates PLA2G2A gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571290. [PMID: 38168258 PMCID: PMC10760018 DOI: 10.1101/2023.12.12.571290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The secreted phospholipase A 2 (sPLA 2 ) isoform, sPLA 2 -IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA 2 -IIA. Through Genotype-Tissue Expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA 2 -IIA, PLA2G2A . SNP2TFBS ( https://ccg.epfl.ch/snp2tfbs/ ) was utilized to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified SNPs. Subsequently, ChIP-seq peaks highlighted the TF combinations that specifically bind to the SNP, rs11573156. SP1 emerged as a significant TF/SNP pair in liver cells, with rs11573156/SP1 interaction being most prominent in liver, prostate, ovary, and adipose tissues. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was affected by tissue SP1 protein levels. By leveraging an ordinary differential equation, structured upon Michaelis-Menten enzyme kinetics assumptions, we modeled the PLA2G2A transcription's dependence on SP1 protein levels, incorporating the SNP's influence. Collectively, these data strongly suggest that the binding affinity differences of SP1 for the different rs11573156 alleles can influence PLA2G2A expression. This, in turn, can modulate sPLA2-IIA levels, impacting a wide range of human diseases.
Collapse
|
11
|
Tahara S, Tsuchiya T, Matsumoto H, Ozaki H. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans. BMC Genomics 2023; 24:597. [PMID: 37805453 PMCID: PMC10560430 DOI: 10.1186/s12864-023-09692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Transcription factors (TFs) exhibit heterogeneous DNA-binding specificities in individual cells and whole organisms under natural conditions, and de novo motif discovery usually provides multiple motifs, even from a single chromatin immunoprecipitation-sequencing (ChIP-seq) sample. Despite the accumulation of ChIP-seq data and ChIP-seq-derived motifs, the diversity of DNA-binding specificities across different TFs and cell types remains largely unexplored. RESULTS Here, we applied MOCCS2, our k-mer-based motif discovery method, to a collection of human TF ChIP-seq samples across diverse TFs and cell types, and systematically computed profiles of TF-binding specificity scores for all k-mers. After quality control, we compiled a set of TF-binding specificity score profiles for 2,976 high-quality ChIP-seq samples, comprising 473 TFs and 398 cell types. Using these high-quality samples, we confirmed that the k-mer-based TF-binding specificity profiles reflected TF- or TF-family dependent DNA-binding specificities. We then compared the binding specificity scores of ChIP-seq samples with the same TFs but with different cell type classes and found that half of the analyzed TFs exhibited differences in DNA-binding specificities across cell type classes. Additionally, we devised a method to detect differentially bound k-mers between two ChIP-seq samples and detected k-mers exhibiting statistically significant differences in binding specificity scores. Moreover, we demonstrated that differences in the binding specificity scores between k-mers on the reference and alternative alleles could be used to predict the effect of variants on TF binding, as validated by in vitro and in vivo assay datasets. Finally, we demonstrated that binding specificity score differences can be used to interpret disease-associated non-coding single-nucleotide polymorphisms (SNPs) as TF-affecting SNPs and provide candidates responsible for TFs and cell types. CONCLUSIONS Our study provides a basis for investigating the regulation of gene expression in a TF-, TF family-, or cell-type-dependent manner. Furthermore, our differential analysis of binding-specificity scores highlights noncoding disease-associated variants in humans.
Collapse
Affiliation(s)
- Saeko Tahara
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- School of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, 1-14, Bunkyo-Machi, Nagasaki City, Nagasaki, 852-8521, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics, Wako, Saitama, 351-0198, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Center for Artificial Intelligence Research, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
12
|
Yang Y, Li X, Meng Z, Liu Y, Qian K, Chu M, Pan Z. A body map of super-enhancers and their function in pig. Front Vet Sci 2023; 10:1239965. [PMID: 37869495 PMCID: PMC10587440 DOI: 10.3389/fvets.2023.1239965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Super-enhancers (SEs) are clusters of enhancers that act synergistically to drive the high-level expression of genes involved in cell identity and function. Although SEs have been extensively investigated in humans and mice, they have not been well characterized in pigs. Methods Here, we identified 42,380 SEs in 14 pig tissues using chromatin immunoprecipitation sequencing, and statistics of its overall situation, studied the composition and characteristics of SE, and explored the influence of SEs characteristics on gene expression. Results We observed that approximately 40% of normal enhancers (NEs) form SEs. Compared to NEs, we found that SEs were more likely to be enriched with an activated enhancer and show activated functions. Interestingly, SEs showed X chromosome depletion and short interspersed nuclear element enrichment, implying that SEs play an important role in sex traits and repeat evolution. Additionally, SE-associated genes exhibited higher expression levels and stronger conservation than NE-associated genes. However, genes with the largest SEs had higher expression levels than those with the smallest SEs, indicating that SE size may influence gene expression. Moreover, we observed a negative correlation between SE gene distance and gene expression, indicating that the proximity of SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed that SEs have strong tissue-specific activity. For example, the CORO2B gene with a brain-specific SE shows strong brain-specific expression, and the phenylalanine hydroxylase gene with liver-specific SEs shows strong liver-specific expression. Discussion In this study, we illustrated a body map of SEs and explored their functions in pigs, providing information on the composition and tissue-specific patterns of SEs. This study can serve as a valuable resource of gene regulatory and comparative analyses to the scientific community and provides a theoretical reference for genetic control mechanisms of important traits in pigs.
Collapse
Affiliation(s)
- Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xinyue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Meng
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjian Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kaifeng Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhangyuan Pan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Kobak S. VEXAS syndrome: Current clinical, diagnostic and treatment approaches. Intractable Rare Dis Res 2023; 12:170-179. [PMID: 37662628 PMCID: PMC10468411 DOI: 10.5582/irdr.2023.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
VEXAS syndrome, is a hemato-inflammatory chronic disease characterized with predominantly rheumatic and hematologic systemic involvement. It was first described in 2020 by a group of researchers in the United States. VEXAS syndrome is a rare condition that primarily affects adult males and is caused by a mutation in the UBA1 gene located on the X chromosome. Its pathogenesis is related to the somatic mutation affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. Mutant gene lead to decreased ubiquitination and activated innate immune pathways and systemic inflammation occur. The specific mechanism by which the UBA1 mutation leads to the clinical features of VEXAS syndrome is not yet fully understood. VEXAS is a newly define adult-onset inflammatory syndrome manifested with treatment-refractory fevers, arthritis, chondritis, vasculitis, cytopenias, typical vacuoles in hematopetic precursor cells, neutrophilic cutaneous and pulmonary inflammation. Diagnosing VEXAS syndrome can be challenging due to its rarity and the overlap of symptoms with other inflammatory conditions. Genetic testing to identify the UBA1 gene mutation is essential for definitive diagnosis. Currently, there is no known cure for VEXAS syndrome, and treatment mainly focuses on managing the symptoms. This may involve the use of anti-inflammatory medications, immunosuppressive drugs, and supportive therapies tailored to the individual patient's needs. Due to the recent discovery of VEXAS syndrome, ongoing research is being conducted to better understand its pathogenesis, clinical features, and potential treatment options. In this review article, the clinical, diagnostic and treatment approaches of VEXAS syndrome were evaluated in the light of the latest literature data.
Collapse
Affiliation(s)
- Senol Kobak
- Department of Internal Medicine and Rheumatology, Istinye University Faculty of Medicine, Liv Hospital, WASOG Sarcoidosis Clinic, Istanbul,Turkey
| |
Collapse
|
14
|
Ren N, Dai S, Ma S, Yang F. Strategies for activity analysis of single nucleotide polymorphisms associated with human diseases. Clin Genet 2023; 103:392-400. [PMID: 36527336 DOI: 10.1111/cge.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Genome-wide association studies (GWAS) have identified a large number of single nucleotide polymorphism (SNP) sites associated with human diseases. In the annotation of human diseases, especially cancers, SNPs, as an important component of genetic factors, have gained increasing attention. Given that most of the SNPs are located in non-coding regions, the functional verification of these SNPs is a great challenge. The key to functional annotation for risk SNPs is to screen SNPs with regulatory activity from thousands of disease associated-SNPs. In this review, we systematically recapitulate the characteristics and functional roles of SNP sites, discuss three parallel reporter screening strategies in detail based on barcode tag classification, and recommend the common in silico strategies to help supplement the annotation of SNP sites with epigenetic activity analysis, prediction of target genes and trans-acting factors. We hope that this review will contribute to this exuberant research field by providing robust activity analysis strategies that can facilitate the translation of GWAS results into personalized diagnosis and prevention measures for human diseases.
Collapse
Affiliation(s)
- Naixia Ren
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shangkun Dai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shumin Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
15
|
Huang R, Tang J, Wang S, Liu Y, Zhang M, Jin M, Qin H, Qian W, Lu Y, Yang Y, Lu B, Yao Y, Yan P, Huang J, Zhang W, Lu J, Gu M, Zhu Y, Guo X, Xian S, Liu X, Huang Z. Sequencing technology as a major impetus in the advancement of studies into rheumatism: A bibliometric study. Front Immunol 2023; 14:1067830. [PMID: 36875117 PMCID: PMC9982012 DOI: 10.3389/fimmu.2023.1067830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Background Rheumatism covers a wide range of diseases with complex clinical manifestations and places a tremendous burden on humans. For many years, our understanding of rheumatism was seriously hindered by technology constraints. However, the increasing application and rapid advancement of sequencing technology in the past decades have enabled us to study rheumatism with greater accuracy and in more depth. Sequencing technology has made huge contributions to the field and is now an indispensable component and powerful tool in the study of rheumatism. Methods Articles on sequencing and rheumatism, published from 1 January 2000 to 25 April 2022, were retrieved from the Web of Science™ (Clarivate™, Philadelphia, PA, USA) database. Bibliometrix, the open-source tool, was used for the analysis of publication years, countries, authors, sources, citations, keywords, and co-words. Results The 1,374 articles retrieved came from 62 countries and 350 institutions, with a general increase in article numbers during the last 22 years. The leading countries in terms of publication numbers and active cooperation with other countries were the USA and China. The most prolific authors and most popular documents were identified to establish the historiography of the field. Popular and emerging research topics were assessed by keywords and co-occurrence analysis. Immunological and pathological process in rheumatism, classification, risks and susceptibility, and biomarkers for diagnosis were among the hottest themes for research. Conclusions Sequencing technology has been widely applied in the study of rheumatism and propells research in the area of discovering novel biomarkers, related gene patterns and physiopathology. We suggest that further efforts be made to advance the study of genetic patterns related to rheumatic susceptibility, pathogenesis, classification and disease activity, and novel biomarkers.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jieling Tang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengwei Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, Shibei Hospital, Shanghai, China
| | - Xin Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Apicella C, Ruano CSM, Thilaganathan B, Khalil A, Giorgione V, Gascoin G, Marcellin L, Gaspar C, Jacques S, Murdoch CE, Miralles F, Méhats C, Vaiman D. Pan-Genomic Regulation of Gene Expression in Normal and Pathological Human Placentas. Cells 2023; 12:cells12040578. [PMID: 36831244 PMCID: PMC9954093 DOI: 10.3390/cells12040578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we attempted to find genetic variants affecting gene expression (eQTL = expression Quantitative Trait Loci) in the human placenta in normal and pathological situations. The analysis of gene expression in placental diseases (Pre-eclampsia and Intra-Uterine Growth Restriction) is hindered by the fact that diseased placental tissue samples are generally taken at earlier gestations compared to control samples. The difference in gestational age is considered a major confounding factor in the transcriptome regulation of the placenta. To alleviate this significant problem, we propose here a novel approach to pinpoint disease-specific cis-eQTLs. By statistical correction for gestational age at sampling as well as other confounding/surrogate variables systematically searched and identified, we found 43 e-genes for which proximal SNPs influence expression level. Then, we performed the analysis again, removing the disease status from the covariates, and we identified 54 e-genes, 16 of which are identified de novo and, thus, possibly related to placental disease. We found a highly significant overlap with previous studies for the list of 43 e-genes, validating our methodology and findings. Among the 16 disease-specific e-genes, several are intrinsic to trophoblast biology and, therefore, constitute novel targets of interest to better characterize placental pathology and its varied clinical consequences. The approach that we used may also be applied to the study of other human diseases where confounding factors have hampered a better understanding of the pathology.
Collapse
Affiliation(s)
- Clara Apicella
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Camino S. M. Ruano
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Asma Khalil
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Veronica Giorgione
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Géraldine Gascoin
- Department of Neonatology, Angers University Hospital, F-49000 Angers, France
| | - Louis Marcellin
- Department of Gynaecology, Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire (CHU) Cochin Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre (HUPC), Université de Paris, 138 Boulevard de Port-Royal, 75014 Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, 75013 Paris, France
| | - Sébastien Jacques
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Francisco Miralles
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Céline Méhats
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Daniel Vaiman
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
- Correspondence: ; Tel.: +33-1-44412301; Fax: +33-1-44412302
| |
Collapse
|
17
|
Lleo A. Geoepidemiology and the key role of sex chromosomes on autoimmune diseases. PRINCIPLES OF GENDER-SPECIFIC MEDICINE 2023:331-346. [DOI: 10.1016/b978-0-323-88534-8.00051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Ortíz-Fernández L, Martín J, Alarcón-Riquelme ME. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren's Syndrome. Clin Rev Allergy Immunol 2022; 64:392-411. [PMID: 35749015 DOI: 10.1007/s12016-022-08951-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.
Collapse
Affiliation(s)
- Lourdes Ortíz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av de la Ilustración 114, Parque Tecnológico de La Salud, 18016, Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, 171 77, Solna, Sweden.
| |
Collapse
|
19
|
Okada Y, Yamamoto K. Genetics and functional genetics of autoimmune diseases. Semin Immunopathol 2022; 44:1-2. [PMID: 35147752 DOI: 10.1007/s00281-022-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Kazuhiko Yamamoto
- Laboratory of Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|