1
|
Han S, Li S, Li L, Li S. Genetic characterization of four bacteriophages of Salmonella enterica derived from different geographic regions in China via genomic comparison. Res Vet Sci 2025; 189:105608. [PMID: 40199046 DOI: 10.1016/j.rvsc.2025.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Based on the AT content > GC content in four Salmonella enterica lytic bacteriophage genomes, information entropy analysis revealed that overall nucleotide usage bias is shaped in the gene population. This genetic feature directly contributes to synonymous codons tending toward the A/T end rather than the C/G end. Furthermore, the interplay between the nucleotide composition constraint from the bacteriophage itself and the natural selection caused by outside environments forces our bacteriophages into similar evolutionary trends in terms of overall codon usage patterns. We identified the nucleotide composition constraint which plays an important role in shaping synonymous codon usage patterns including the keto skew at the first codon position, the pyrimidine skew at the second position and the AT skew at the third position. Although the four bacteriophages were isolated from different geographical regions in China, they display similar evolutionary trends in terms of genomic organization and synonymous codon usage, which are strongly influenced by the nucleotide composition constraint of the bacteriophage. The findings of the present study reveal important details of the evolutionary and host-pathogen interactions of Salmonella enterica, which will benefit the efficient utilization of phages for therapeutic and other applications.
Collapse
Affiliation(s)
- Shengyi Han
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Shuping Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Lingxia Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China; College of Agriculture and Animal Husbandry, Xining 810016, China.
| | - Shengqing Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China.
| |
Collapse
|
2
|
Necel A, Dydecka A, Topka-Bielecka G, Wesołowski W, Lewandowska N, Bloch S, Nejman-Faleńczyk B. What, how, and why? - anti-EHEC phages and their application potential in medicine and food industry. J Appl Genet 2025; 66:219-240. [PMID: 39527365 PMCID: PMC11762087 DOI: 10.1007/s13353-024-00918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are pathogens that, only in the United States, cause more than 250,000 foodborne infections a year. Since antibiotics or other antidiarrheal agents may increase the hemolytic-uremic syndrome (HUS) development risk, currently only supportive therapy, including hydration, is used. Therefore, many methods to fight EHEC bacteria focus on their use in food processing to prevent human infection. One of the proposed anti-EHEC agents is bacteriophages, known for their bactericidal effect, host specificity, and lack of cross-resistance with antibiotics. In this review article, we provide an overview of the characteristics like source of isolation, morphology, kinetics of life cycle, and treatment potential of over 130 bacteriophages able to infect EHEC strains. Based on the reviewed literature, we conclude that bacteriophages may play a highly significant role in regulating EHEC propagation. In addition, we also point out the phage features that should be taken into account not only when using bacteriophages but also when examining their properties. This may contribute to accelerating the pace of work on the preventive use of bacteriophages, which is extremely needed in the modern world of the food industry, but also stimulate interest in phages and accelerate regulatory work that would enable the use of bacteriophages also in medicine, to fight the drug-resistant strains.
Collapse
Affiliation(s)
- Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204, Gdansk, Poland.
| | | | | | - Wojciech Wesołowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| |
Collapse
|
3
|
Zhao X, Qiao Q, Qin X, Zhao P, Li X, Xie J, Zhai F, Li Y. Viral community and antibiotic resistance genes carried by virus in soil microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177260. [PMID: 39481552 DOI: 10.1016/j.scitotenv.2024.177260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Soil microbial fuel cells (MFCs) can control the horizontal transfer of antibiotic resistance genes (ARGs) by reducing the abundance of mobile genetic elements. However, little is known about the effect of soil MFCs on the horizontal transfer pathway of ARGs transduced by viruses. In this study, the average abundance of ARGs in soil MFCs was 11 % lower than that in the open-circuit control. Lower virus abundance in soil MFCs suggested less detriment of microbial communities. The structure of the viral community was respectively shifted by the introduction of electrodes and the stimulation of biocurrent, especially for the top three viral genera Oslovirus, Tequatrovirus and Incheonvrus in soil. The ARGs aac(6)-I, cat chloramphenicol acetyltransferase, qnrA and vanY were found as the highest health risk (Rank I), and their total abundance showed the lowest in MFCs, with a decrease of 91-99 % compared to the controls. As the main carrier of ARGs, the abundance of Caudoviricetes showed a significant positive correlation with ARGs. Viral integrase was identified respectively coexisting with arnA and vanR (Rank III) in the same contig, which might aggravate their horizontal transfer. Proteobacteria was the main host of viruses carrying ARGs, which exhibited the lowest abundance in the soil MFC. The genus Pseudomonas was the host of viruses carrying ARGs, whose amount reduced by soil MFCs. This study provides an insight into the bioelectrochemical control of ARGs horizontal transfer.
Collapse
Affiliation(s)
- Xiaodong Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China
| | - Qingqing Qiao
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China
| | - Xiaorui Qin
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China
| | - Pengyu Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Jun Xie
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China
| | - Feihong Zhai
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Yuci 030619, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Han NS, Harada M, Pham-Khanh NH, Kamei K. Isolation, Characterization, and Complete Genome Sequence of Escherichia Phage KIT06 Which Infects Nalidixic Acid-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:581. [PMID: 39061264 PMCID: PMC11274021 DOI: 10.3390/antibiotics13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli (E. coli) is one of the most common sources of infection in humans and animals. The emergence of E. coli which acquires resistance to various antibiotics has made treatment difficult. Bacteriophages can be considered promising agents to expand the options for the treatment of antibiotic-resistant bacteria. This study describes the isolation and characterization of Escherichia phage KIT06, which can infect E. coli resistant to the quinolone antibiotic nalidixic acid. Phage virions possess an icosahedral head that is 93 ± 8 nm in diameter and a contractile tail (116 ± 12 nm × 13 ± 5 nm). The phage was found to be stable under various thermal and pH conditions. A one-step growth curve showed that the latent time of the phage was 20 min, with a burst size of 28 particles per infected cell. Phage KIT06 infected 7 of 12 E. coli strains. It inhibited the growth of the host bacterium and nalidixic acid-resistant E. coli. The lipopolysaccharide and outer membrane proteins of E. coli, tsx and btuB, are phage receptors. Phage KIT06 is a new species of the genus Tequatrovirus with a genome of 167,059 bp consisting of 264 open reading frames (ORFs) that encode gene products related to morphogenesis, replication, regulation, and host lysis. The lack of genes encoding integrase or excisionase indicated that this phage was lytic. Thus, KIT06 could potentially be used to treat antibiotic-resistant E. coli using phage therapy. However, further studies are essential to understand its use in combination with other antimicrobial agents and its safe use in such applications.
Collapse
Affiliation(s)
- Nguyen Song Han
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Mana Harada
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Nguyen Huan Pham-Khanh
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho City 900000, Vietnam;
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| |
Collapse
|
5
|
Markusková B, Elnwrani S, Andrezál M, Sedláčková T, Szemes T, Slobodníková L, Kajsik M, Drahovská H. Characterization of bacteriophages infecting multidrug-resistant uropathogenic Escherichia coli strains. Arch Virol 2024; 169:142. [PMID: 38851653 PMCID: PMC11162368 DOI: 10.1007/s00705-024-06063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections, and strains that are resistant to antibiotics are a major problem in treating these infections. Phage therapy is a promising alternative approach that can be used to treat infections caused by polyresistant bacterial strains. In the present study, 16 bacteriophages isolated from sewage and surface water were investigated. Phage host specificity was tested on a collection of 77 UPEC strains. The phages infected 2-44 strains, and 80% of the strains were infected by at least one phage. The susceptible E. coli strains belonged predominantly to the B2 phylogenetic group, including strains of two clones, CC131 and CC73, that have a worldwide distribution. All of the phages belonged to class Caudoviricetes and were identified as members of the families Straboviridae, Autographiviridae, and Drexlerviridae and the genera Kagunavirus, Justusliebigvirus, and Murrayvirus. A phage cocktail composed of six phages - four members of the family Straboviridae and two members of the family Autographiviridae - was prepared, and its antibacterial activity was tested in liquid medium. Complete suppression of bacterial growth was observed after 5-22 hours of cultivation, followed by partial regrowth. At 24 hours postinfection, the cocktail suppressed bacterial growth to 43-92% of control values. Similar results were obtained when testing the activity of the phage cocktail in LB and in artificial urine medium. The results indicate that our phage cocktail has potential to inhibit bacterial growth during infection, and they will therefore be preserved in the national phage bank, serving as valuable resources for therapeutic applications.
Collapse
Affiliation(s)
- Barbora Markusková
- University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sulafa Elnwrani
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Andrezál
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tatiana Sedláčková
- University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Szemes
- University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Bratislava, Slovakia
| | - Michal Kajsik
- University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
6
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
7
|
Sultan-Alolama MI, Amin A, Vijayan R, El-Tarabily KA. Isolation, Characterization, and Comparative Genomic Analysis of Bacteriophage Ec_MI-02 from Pigeon Feces Infecting Escherichia coli O157:H7. Int J Mol Sci 2023; 24:ijms24119506. [PMID: 37298457 DOI: 10.3390/ijms24119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The most significant serotype of Shiga-toxigenic Escherichia coli that causes foodborne illnesses is Escherichia coli O157:H7. Elimination of E. coli O157:H7 during food processing and storage is a possible solution. Bacteriophages have a significant impact on bacterial populations in nature due to their ability to lyse their bacterial host. In the current study, a virulent bacteriophage, Ec_MI-02, was isolated from the feces of a wild pigeon in the United Arab Emirates (UAE) for potential future use as a bio-preservative or in phage therapy. Using a spot test and an efficiency of plating analysis, Ec_MI-02 was found to infect in addition to the propagation host, E. coli O157:H7 NCTC 12900, five different serotypes of E. coli O157:H7 (three clinical samples from infected patients, one from contaminated green salad, and one from contaminated ground beef). Based on morphology and genome analysis, Ec_MI-02 belongs to the genus Tequatrovirus under the order Caudovirales. The adsorption rate constant (K) of Ec_MI-02 was found to be 1.55 × 10-8 mL/min. The latent period was 50 min with a burst size of almost 10 plaque forming units (pfu)/host cell in the one-step growth curve when the phage Ec_MI-02 was cultivated using the propagation host E. coli O157:H7 NCTC 12900. Ec_MI-02 was found to be stable at a wide range of pH, temperature, and commonly used laboratory disinfectants. Its genome is 165,454 bp long with a GC content of 35.5% and encodes 266 protein coding genes. Ec_MI-02 has genes encoding for rI, rII, and rIII lysis inhibition proteins, which supports the observation of delayed lysis in the one-step growth curve. The current study provides additional evidence that wild birds could also be a good natural reservoir for bacteriophages that do not carry antibiotic resistance genes and could be good candidates for phage therapy. In addition, studying the genetic makeup of bacteriophages that infect human pathogens is crucial for ensuring their safe usage in the food industry.
Collapse
Affiliation(s)
- Mohamad Ismail Sultan-Alolama
- Zayed Complex for Herbal Research and Traditional Medicine, Research and Innovation Center, Department of Health, Abu Dhabi 5674, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
8
|
Gao D, Ji H, Li X, Ke X, Li X, Chen P, Qian P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol Res 2023; 273:127412. [PMID: 37243984 DOI: 10.1016/j.micres.2023.127412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Salmonella and pathogenic Escherichia coli are important foodborne pathogens. Phages are being recognized as potential antibacterial agents to control foodborne pathogens. In the current study, a polyvalent broad-spectrum phage, GSP044, was isolated from pig farm sewage. It can simultaneously lyse many different serotypes of Salmonella and E. coli, exhibiting a broad host range. Using S. Enteritidis SE006 as the host bacterium, phage GSP044 was further characterized. GSP044 has a short latent period (10 min), high stability at different temperatures and pH, and good tolerance to chloroform. Genome sequencing analysis revealed that GSP044 has a double-stranded DNA (dsDNA) genome consisting of 110,563 bp with G + C content of 39%, and phylogenetic analysis of the terminase large subunit confirmed that GSP044 belonged to the Demerecviridae family, Epseptimavirus genus. In addition, the genomic sequence did not contain any lysogenicity-related, virulence-related, or antibiotic resistance-related genes. Analysis of phage-targeted host receptors revealed that the outer membrane protein (OMP) BtuB was identified as a required receptor for phage infection of host bacteria. The initial application capability of phage GSP044 was assessed using S. Enteritidis SE006. Phage GSP044 could effectively reduce biofilm formation and degrade the mature biofilm in vitro. Moreover, GSP044 significantly decreased the viable counts of artificially contaminated S. Enteritidis in chicken feed and drinking water. In vivo tests, a mouse model of intestinal infection demonstrated that phage GSP044 was able to reduce the number of colonized S. Enteritidis in the intestine. These results suggest that phage GSP044 may be a promising candidate biologic agent for controlling Salmonella infections.
Collapse
Affiliation(s)
- Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Hongyue Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiquan Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Pin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
9
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
10
|
Azari R, Yousefi MH, Taghipour Z, Wagemans J, Lavigne R, Hosseinzadeh S, Mazloomi SM, Vallino M, Khalatbari-Limaki S, Berizi E. Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs. Int J Food Microbiol 2023; 389:110097. [PMID: 36731200 DOI: 10.1016/j.ijfoodmicro.2023.110097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/16/2023]
Abstract
Foodborne Salmonella enteritidis infections place human health at risk, driven by regular outbreaks and individual cases by different contaminated food materials. This study was conducted to characterize and employ a single bacteriophage as a potential biocontrol agent. Phage Rostam was isolated, characterized and then applied as biocontrol agent against S. enteritidis in liquid whole eggs and eggshell. Rostam is a novel myovirus belonging to the Rosemountvirus genus and active against Escherichia coli and Salmonella spp. Rostam is stable in a pH range from 4 to 10, a salt concentration of 1-9 %, whereas UV radiation gradually reduces phage stability, and its 53 kb genome sequence indicates this phage does not contain known toxins or lysogeny-associated genes. Its latent period is short with a burst size of 151 PFU/cell, under standard growth conditions. Killing curves indicate that at higher multiplicities of infection (MOI), the reduction in S. enteritidis count is more pronounced. Phage Rostam (MOI 10,000) reduces S. enteritidis growth to below the detection limit at 4 °C in both liquid whole eggs and on the eggshell within 24 h. Due to its high lytic activity and stability in relevant conditions, Rostam has the potential to be an efficient biopreservative for egg and egg products.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zohreh Taghipour
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135 Turin, Italy
| | - Sepideh Khalatbari-Limaki
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Abdelaziz AA, Abo Kamer AM, Nosair AM, Al-Madboly LA. Exploring the potential efficacy of phage therapy for biocontrol of foodborne pathogenic extensively drug-resistant Escherichia coli in gastrointestinal tract of rat model. Life Sci 2023; 315:121362. [PMID: 36610637 DOI: 10.1016/j.lfs.2022.121362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
AIM The emergence of extensively drug-resistant (XDR) Escherichia coli leaves little or no therapeutic options for the control of these foodborne pathogens. The goal is to isolate, characterize, and assess the potential efficacy of a bacteriophage in the treatment of an induced gastrointestinal tract infection. MAIN METHODS Sewage water was used to isolate phage phPE42. Transmission electron microscope was used for the visualization of phage morphology. Lysis profile, growth kinetics, and stability studies were determined. The ability of phage to eradicate biofilms was assessed by crystal violet staining, resazurin assay, compound bright field microscope, and confocal laser scanning microscope (CLSM). Moreover, the efficacy of phage phPE42 as a potential therapy was evaluated in a rat model. KEY FINDINGS A newly lytic Myoviridae phage phPE42 was isolated and exhibited broad coverage activity (48.6 %) against E. coli clinical isolates. It demonstrated favorable growth kinetics and relative stability under a variety of challenging conditions. The resazurin colorimetric assay and CLSM provided evidence of phage potential's ability to significantly (P < 0.05) decrease the viability of biofilm-embedded cells. The bacterial burden in animal faeces was effectively eradicated (P < 0.05) by oral administration of phage phPE42. Phage-treated rats exhibited a significant decrease in tissue damage with no signs of inflammation, necrosis, or erosion. Furthermore, phage therapy significantly (P < 0.05) reduced the expression level of the apoptotic marker caspase-3 and the inflammatory cytokine TNF-α. SIGNIFICANCE Treatment with phage phPE42 is considered a promising alternative therapy for the control of severe foodborne infections spurred by pathogenic XDR E. coli.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Ahmed M Nosair
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
12
|
Choo KW, Mao L, Mustapha A. CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157:H7 in food products. Int J Food Microbiol 2023; 386:110026. [PMID: 36444789 DOI: 10.1016/j.ijfoodmicro.2022.110026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has become a serious global concern for food safety. Despite the application of different traditional biocontrol methods in the food industry, food borne disease outbreaks linked to this organism remain. Due to their high specificity, lytic bacteriophages are promising antimicrobial agents that could be utilized to control pathogens in foods. In this study, a novel Escherichia phage, CAM-21, was isolated from a dairy farm environment. CAM-21 showed targeted host specificity towards various serotypes of Shiga toxin-producing E. coli, including O157:H7, O26, O103, and O145. Morphological analyses revealed that CAM-21 has a polyhedron capsid and a contractile tail with a diameter of about 92.83 nm, and length of about 129.75 nm, respectively. CAM-21 showed a strong inhibitory effect on the growth of E. coli O157:H7, even at a multiplicity of infection (MOI) of as low as 0.001. Phage adsorption and one-step growth analysis indicated that the target pathogen was rapidly lysed by CAM-21 that exhibited a short latent time (20 min). Electron microscopic and genomic DNA analyses suggested that CAM-21 is a lytic phage, classified as a new species in the Tequatrovirus genus of the Myoviridae Family. Based on whole genome sequencing, CAM-21 has a double-stranded DNA with 166,962 bp, 265 open reading frames and 11 tRNA. The genome of CAM-21 did not encode toxins, virulence factors, antibiotic resistance, lysogeny or allergens. Phylogenetic and genomic comparative analyses suggested that CAM-21 is a T4-like phage species. The growth of E. coli O157:H7 was effectively controlled in milk, ground beef and baby spinach at MOIs of 1000 and 10,000. CAM-21 significantly (P ≤ 0.05) reduced the bacterial counts of the treated foods, ranging from 1.4-2.0 log CFU/mL in milk to 1.3-1.4 log CFU/g in ground beef and baby spinach. These findings suggest that the lytic phage, CAM-21, is a potential candidate for controlling E. coli O157:H7 contamination in foods.
Collapse
Affiliation(s)
- Kai Wen Choo
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Liang Mao
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, United States of America.
| |
Collapse
|
13
|
Andrezal M, Oravcova L, Kadličekova V, Ozaee E, Elnwrani S, Bugala J, Markuskova B, Kajsik M, Drahovska H. Characterization and the host specificity of Pet-CM3-4, a new phage infecting Cronobacter and Enterobacter strains. Virus Res 2023; 324:199025. [PMID: 36528171 DOI: 10.1016/j.virusres.2022.199025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacteria belonging to Cronobacter and Enterobacter genera are opportunistic pathogens responsible for infections in immunocompromised patients including neonates. Phage therapy offers a safe method for pathogen elimination, however, phages must be well characterized before application. In the present study we isolated four closely related bacteriophages from the subfamily Tevenvirinae infecting Cronobacter and Enterobacter strains. Bacteriophage Pet-CM3-4 which was isolated on C. malonaticus strain possessed broader host specificity than other three phages with primary Enterobacter hosts. Based on genome sequences all these phages have been assigned to the genus Karamvirus. We also studied factors influencing the host specificity of Pet-CM3-4 phage and its host range mutant Pet-CM3-1 and observed that a lysine to glutamine substitution in the long tail fiber adhesin was the reason of the Pet-CM3-1 reduced host specificity. By characterization of phage-resistant mutants from transposon library of C. malonaticus KMB-72 strain we identified that LPS is the receptor of both phages. C. malonaticus O:3 antigen is the receptor of Pet-CM3-1 phage and the Pet-CM3-4 phage binds to structures of the LPS core region. Obtained results will contribute to our understanding of biology and evolution of Tevenvirinae phages.
Collapse
Affiliation(s)
- Michal Andrezal
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Lucia Oravcova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Veronika Kadličekova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Elham Ozaee
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Sulafa Elnwrani
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Juraj Bugala
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Barbora Markuskova
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Michal Kajsik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia; Medirex group academy n.o., Novozámocká 1/67, 949 05 Nitra, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia.
| |
Collapse
|
14
|
Characterization of newly isolated bacteriophage to control multi-drug resistant Pseudomonas aeruginosa colonizing incision wounds in a rat model: in vitro and in vivo approach. Life Sci 2022; 310:121085. [DOI: 10.1016/j.lfs.2022.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
15
|
Sultan-Alolama MI, Amin A, El-Tarabily KA, Vijayan R. Characterization and Genomic Analysis of Escherichia coli O157:H7 Phage UAE_MI-01 Isolated from Birds. Int J Mol Sci 2022; 23:ijms232314846. [PMID: 36499178 PMCID: PMC9737526 DOI: 10.3390/ijms232314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Verotoxin-producing Escherichia coli O157:H7 is responsible for the majority of foodborne outbreaks worldwide and may lead to death. Bacteriophages are natural killers of bacteria. All previously reported E. coli O157:H7 phages were isolated from ruminants or swine. Here, we report for the first time a phage isolated from bird feces in the United Arab Emirates (UAE), designated as UAE_MI-01, indicating birds as a good source of phages. Thus, phages could be a tool for predicting the presence of the host bacteria in an animal or the environment. UAE_MI-01 was found to be a lytic phage that was stable at wide ranges of pH, temperature, and chemical disinfectants, and with a burst size of almost 100 plaque-forming units per host cell after a latent period of 20 min and an adsorption rate constant (K) of 1.25 × 10-7 mL min-1. The phage genome was found to be 44,281 bp long with an average GC content of 54.7%. The presence of the phage indicates the presence of the host cell E. coli O157:H7 in wild birds. Therefore, other birds, mainly poultry, could be also investigated for the presence of this pathogenic bacterium. To the best of our knowledge, this is the first report of an E. coli O157:H7 bacteriophage isolated from a bird.
Collapse
Affiliation(s)
- Mohamad Ismail Sultan-Alolama
- Zayed Complex for Herbal Research and Traditional Medicine, Research and Innovation Center, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (K.A.E.-T.); (R.V.)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: (K.A.E.-T.); (R.V.)
| |
Collapse
|
16
|
Cao S, Yang W, Zhu X, Liu C, Lu J, Si Z, Pei L, Zhang L, Hu W, Li Y, Wang Z, Pang Z, Xue X, Li Y. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet Res 2022; 18:386. [PMID: 36329508 PMCID: PMC9632116 DOI: 10.1186/s12917-022-03490-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Salmonella infection in livestock and poultry causes salmonellosis, and is mainly treated using antibiotics. However, the misuse use of antibiotics often triggers the emergence of multi-drug-resistant Salmonella strains. Currently, Salmonella phages is safe and effective against Salmonella, serving as the best drug of choice. This study involved 16 Salmonella bacteriophages separated and purified from the sewage and the feces of the broiler farm. A phage, vB_SalP_LDW16, was selected based on the phage host range test. The phage vB_SalP_LDW16 was characterized by the double-layer plate method and transmission electron microscopy. Furthermore, the clinical therapeutic effect of phage vB_SalP_LDW16 was verified by using the pathogenic Salmonella Enteritidis in the SPF chicken model. RESULTS The phage vB_SalP_LDW16 with a wide host range was identified to the family Siphoviridae and the order Caudoviridae, possess a double-stranded DNA and can lyse 88% (22/25) of Salmonella strains stored in the laboratory. Analysis of the biological characteristics, in addition, revealed the optimal multiplicity of infection (MOI) of vB_SalP_LDW16 to be 0.01 and the phage titer to be up to 3 × 1014 PFU/mL. Meanwhile, the phage vB_SalP_LDW16 was found to have some temperature tolerance, while the titer decreases rapidly above 60 ℃, and a wide pH (i.e., 5-12) range as well as relative stability in pH tolerance. The latent period of phage was 10 min, the burst period was 60 min, and the burst size was 110 PFU/cell. Furthermore, gastric juice was also found to highly influence the activity of the phage. The clinical treatment experiments showed that phage vB_SalP_LDW16 was able to significantly reduce the bacterial load in the blood through phage treatment, thereby improving the pathological changes in the intestinal, liver, and heart damage, and promoting the growth and development of the chicken. CONCLUSIONS The phage vB_SalP_LDW16 is a highly lytic phage with a wide host range, which can be potentially used for preventing and treating chicken salmonellosis, as an alternative or complementary antibiotic treatment in livestock farming.
Collapse
Affiliation(s)
- Shengliang Cao
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wenwen Yang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xihui Zhu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhenshu Si
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Lanying Pei
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Leilei Zhang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wensi Hu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Yanlan Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhiwei Wang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zheyu Pang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Sinder Industrial Park, Shungeng Road, Zhucheng Development Zone, Weifang, Shandong, 262200, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
| |
Collapse
|
17
|
Isolation, Characterization, and Genome Analysis of a Novel Bacteriophage, Escherichia Phage vB_EcoM-4HA13, Representing a New Phage Genus in the Novel Phage Family Chaseviridae. Viruses 2022; 14:v14112356. [PMID: 36366454 PMCID: PMC9699118 DOI: 10.3390/v14112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the leading causes of foodborne illnesses in North America and can lead to severe symptoms, with increased fatality risk for young children. While E. coli O157:H7 remains the dominant STEC serotype associated with foodborne outbreaks, there has been an increasing number of non-O157 STEC outbreaks in recent years. For the food industry, lytic bacteriophages offer an organic, self-limiting alternative to pathogen reduction-one that could replace or reduce the use of chemical and physical food processing methods. From EHEC-enriched sewage, we isolated a novel bacteriophage, vB_EcoM-4HA13 (4HA13). Phenotypic characterizations revealed 4HA13 to possess a myoviral morphotype, with a high specificity to non-motile O111 serotype, and a long latent period (90 min). Through genomic analyses, this 52,401-bp dsDNA phage was found to contain 81 CDS, but no detectable presence of antibiotic resistance, integrase, or virulence genes. A BLASTn search for each of the identified 81 CDS yielded homologues with low levels of similarity. Comparison of RNA polymerase and terminase large subunit amino acid sequences led to the proposal and acceptance of a new bacteriophage family, Chaseviridae, with 4HA13 representing a new species and genus. The discovery of this phage has broadened our current knowledge of bacteriophage diversity.
Collapse
|
18
|
Lu Z, Marchant J, Thompson S, Melgarejo H, Ignatova D, Kopić S, Damaj R, Trejo H, Paramo R, Reed A, Breidt F, Kathariou S. Bacteriophages Isolated From Turkeys Infecting Diverse Salmonella Serovars. Front Microbiol 2022; 13:933751. [PMID: 35865922 PMCID: PMC9294604 DOI: 10.3389/fmicb.2022.933751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the leading causes of foodborne illnesses worldwide. The rapid emergence of multidrug-resistant Salmonella strains has increased global concern for salmonellosis. Recent studies have shown that bacteriophages (phages) are novel and the most promising antibacterial agents for biocontrol in foods because phages specifically kill target bacteria without affecting other bacteria, do not alter organoleptic properties or nutritional quality of foods, and are safe and environmentally friendly. Due to the vast variation in Salmonella serotypes, large numbers of different and highly virulent Salmonella phages with broad host ranges are needed. This study isolated 14 Salmonella phages from turkey fecal and cecal samples. Six phages (Φ205, Φ206, Φ207, ΦEnt, ΦMont, and Φ13314) were selected for characterization. These phages were from all three families in the Caudovirales order. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that each phage had a unique structural protein profile. Each phage had a distinct host range. Φ207 and ΦEnt are both siphophages. They shared eight hosts, including seven different Salmonella serovars and one Shigella sonnei strain. These two phages showed different restriction banding patterns generated through EcoRI or HindIII digestion, but shared three bands from EcoRI digestion. ΦEnt displayed the broadest and very unusual host range infecting 11 Salmonella strains from nine serovars and three Shigella strains from two species, and thus was further characterized. The one-step growth curve revealed that ΦEnt had a short latent period (10 min) and relatively large burst size (100 PFU/infected cell). ΦEnt and its host showed better thermal stabilities in tryptic soy broth than in saline at 63 or 72°C. In the model food system (cucumber juice or beef broth), ΦEnt infection [regardless of the multiplicity of infections (MOIs) of 1, 10, and 100] resulted in more than 5-log10 reduction in Salmonella concentration within 4 or 5 h. Such high lytic activity combined with its remarkably broad and unusual host range and good thermal stability suggested that ΦEnt is a novel Salmonella phage with great potential to be used as an effective biocontrol agent against diverse Salmonella serovars in foods.
Collapse
Affiliation(s)
- Zhongjing Lu
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - John Marchant
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Samantha Thompson
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Henry Melgarejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Dzhuliya Ignatova
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Sandra Kopić
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rana Damaj
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Hedy Trejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rodrigo Paramo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Ashley Reed
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Fred Breidt
- United States Department of Agriculture, Agricultural Research Service, Washington, DC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Yamaki S, Yamazaki K, Kawai Y. Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. Int J Food Microbiol 2022; 372:109680. [DOI: 10.1016/j.ijfoodmicro.2022.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
20
|
Liao YT, Zhang Y, Salvador A, Harden LA, Wu VCH. Characterization of a T4-like Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing Escherichia coli O45 Contaminated on Mung Bean Seeds. Microbiol Spectr 2022; 10:e0222021. [PMID: 35107386 PMCID: PMC8809338 DOI: 10.1128/spectrum.02220-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023] Open
Abstract
Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| |
Collapse
|
21
|
Complete Genome Sequence of Escherichia coli O157:H7 Phage UAE_MI-01, Isolated from Bird Feces. Microbiol Resour Announc 2021; 10:e0034821. [PMID: 34264095 PMCID: PMC8281071 DOI: 10.1128/mra.00348-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage UAE_MI-01 is an Escherichia coli O157:H7 phage that was isolated from the feces of wild pigeons (Columba livia domestica) in Abu Dhabi, United Arab Emirates. All previously reported E. coli O157:H7 phages were isolated from ruminants. Here, we report the genetic features of this phage based on its complete genome sequence. UAE_MI-01 has the potential to be used as a therapeutic agent and as an industrial food preservative.
Collapse
|
22
|
Sui B, Han L, Ren H, Liu W, Zhang C. A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis. Front Microbiol 2021; 12:649673. [PMID: 34335489 PMCID: PMC8317433 DOI: 10.3389/fmicb.2021.649673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
A novel virulent bacteriophage vB_EcoM_swi3 (swi3), isolated from swine feces, lyzed 9% (6/65) of Escherichia coli and isolates 54% (39/72) of Salmonella enteritidis isolates, which were all clinically pathogenic multidrug-resistant strains. Morphological observation showed that phage swi3 belonged to the Myoviridae family with an icosahedral head (80 nm in diameter) and a contractile sheathed tail (120 nm in length). At the optimal multiplicity of infection of 1, the one-step growth analysis of swi3 showed a 25-min latent period with a burst size of 25-plaque-forming units (PFU)/infected cell. Phage swi3 remained stable both at pH 6.0–8.0 and at less than 50°C for at least 1 h. Genomic sequencing and bioinformatics analysis based on genomic sequences and the terminase large subunit showed that phage swi3 was a novel member that was most closely related to Salmonella phages and belonged to the Rosemountvirus genus. Phage swi3 harbored a 52-kb double-stranded DNA genome with 46.02% GC content. Seventy-two potential open reading frames were identified and annotated, only 15 of which had been assigned to functional genes. No gene associated with pathogenicity and virulence was identified. The effects of phage swi3 in treating pathologic E. coli infections in vivo were evaluated using a mouse model. The administration of a single intraperitoneal injection of swi3 (106 PFU) at 2 h after challenge with the E. coli strain (serotype K88) (108 colony-forming units) sufficiently protected all mice without toxic side effects. This finding highlighted that phage swi3 might be used as an effective antibacterial agent to prevent E. coli and S. enteritidis infection.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lili Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Slobodníková L, Markusková B, Kajsík M, Andrezál M, Straka M, Liptáková A, Drahovská H. Characterization of Anti-Bacterial Effect of the Two New Phages against Uropathogenic Escherichia coli. Viruses 2021; 13:v13071348. [PMID: 34372554 PMCID: PMC8310266 DOI: 10.3390/v13071348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.
Collapse
Affiliation(s)
- Lívia Slobodníková
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
| | - Barbora Markusková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
| | - Michal Kajsík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Michal Andrezál
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
| | - Marek Straka
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
| | - Adriána Liptáková
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
- Correspondence:
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| |
Collapse
|
24
|
Jiang L, Zheng R, Sun Q, Li C. Isolation, characterization, and application of Salmonella paratyphi phage KM16 against Salmonella paratyphi biofilm. BIOFOULING 2021; 37:276-288. [PMID: 33947280 DOI: 10.1080/08927014.2021.1900130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Salmonella biofilm prevention and control is of great importance. This study, investigated the use of the isolated phage KM16 belonging to the family Myoviridae in the order Caudovirales. The phage genome size was 170,126 bp. Almost all phages were adsorbed to the host within 20 min. KM16 had a latent period of 70 min followed by a rise period of 40 min. Phage KM16 had the ability to lytically infect 10 out of the 12 clinical strains of S. paratyphi tested. Phylogenetic analysis indicated that the S. paratyphi 16S rRNA, crispr 1 and fimA genes correlated with the lytic spectrum of phage KM16. The lytic spectrum of phage KM16 correlated with Salmonella pili (fimA), and Salmonella pili were the recognition site for phage adsorption to the host. Phage KM16 (MOI = 0.1) had a better anti-biofilm effect than kanamycin sulfate (10 ug ml-1) in high-concentration Salmonella cultures.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
| | - Rui Zheng
- Department of Clinical laboratory, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|