1
|
Wang C, Zhao R, Yang W, Jiang W, Tang H, Du S, Chen X. Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Bacillus Species. Int J Mol Sci 2025; 26:621. [PMID: 39859334 PMCID: PMC11765539 DOI: 10.3390/ijms26020621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. Bacillus subtilis, a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites. In this study, we characterize a novel method of plasmid transfer, termed Cell-to-Cell Natural Transformation for Plasmid Transfer (CTCNT-P), which efficiently facilitates plasmid transfer between naturally competent B. subtilis strains. This method involves co-culturing donor and recipient cells under antibiotic stress and achieves significantly higher efficiency compared to traditional methods such as Spizizen medium or electroporation-mediated transformation. Importantly, we demonstrate that CTCNT-P is applicable for plasmid transformation in wild B. subtilis isolates from natural environments and other Bacillus species, including Bacillus amyloliquefaciens, Bacillus licheniformis, and Bacillus thuringiensis. The simplicity and efficiency of CTCNT-P highlight its strong potential for industrial applications, including genetic modification of wild Bacillus strains for synthetic biology and the development of biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.W.)
| |
Collapse
|
2
|
Hinnekens P, Fayad N, Gillis A, Mahillon J. Conjugation across Bacillus cereus and kin: A review. Front Microbiol 2022; 13:1034440. [PMID: 36406448 PMCID: PMC9673590 DOI: 10.3389/fmicb.2022.1034440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- *Correspondence: Jacques Mahillon,
| |
Collapse
|
3
|
Hinnekens P, Mahillon J. Conjugation-mediated transfer of pXO16, a large plasmid from Bacillus thuringiensis sv. israelensis, across the Bacillus cereus group and its impact on host phenotype. Plasmid 2022; 122:102639. [PMID: 35842001 DOI: 10.1016/j.plasmid.2022.102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
pXO16, the 350 kb-conjugative plasmid from Bacillus thuringiensis sv. israelensis promotes its own transfer at high efficiency, triggers the transfer of mobilizable and non-mobilizable plasmids, as well as the transfer of host chromosomal loci. Naturally found in B. thuringiensis sv. israelensis, pXO16 transfers to various strains of Bacillus cereus sensu lato (s.l.) at a wide range of frequencies. Despite this host diversity, a paradox remains between the relatively large host spectrum and the natural occurrence of pXO16, so far restricted to B. thuringiensis sv. israelensis. Proposing first insights exploring this paradox, we investigated the behaviour of pXO16 amongst different members of the B. cereus group. We first looked at the transfer of pXO16 to two new host clusters of B. cereus s.l., Bacillus mycoides and Bacillus anthracis clusters. This examination brought to light the impairment of the characteristic rhizoidal phenotype of B. mycoides in presence of pXO16. We also explored the stability of pXO16 at different temperatures as some B. cereus group members are well-known for their psychro- or thermo-tolerance. This shed light on the thermo-sensitivity of the plasmid. The influence of pXO16 on its host cell growth and on swimming capacity also revealed no or limited impact on its natural host B. thuringiensis sv. israelensis. On the contrary, pXO16 affected more strongly both the growth and swimming capacity of other B. cereus s.l. hosts. This reinforced the running hypothesis of a co-evolution between pXO16 and B. thuringiensis sv. israelensis, enabling the plasmid maintenance without impairing the host strain development.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Lipke PN, Rauceo JM, Viljoen A. Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy. Int J Mol Sci 2022; 23:ijms23031110. [PMID: 35163034 PMCID: PMC8835621 DOI: 10.3390/ijms23031110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: (P.N.L.); (A.V.)
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, NY 10019, USA;
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4–5, bte L7.07.07, 1348 Louvain-la-Neuve, Belgium
- Correspondence: (P.N.L.); (A.V.)
| |
Collapse
|
5
|
Koné KM, Hinnekens P, Jovanovic J, Rajkovic A, Mahillon J. New Insights into the Potential Cytotoxic Role of Bacillus cytotoxicus Cytotoxin K-1. Toxins (Basel) 2021; 13:698. [PMID: 34678991 PMCID: PMC8540763 DOI: 10.3390/toxins13100698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
The thermotolerant representative of the Bacillus cereus group, Bacillus cytotoxicus, reliably harbors the coding gene of cytotoxin K-1 (CytK-1). This protein is a highly cytotoxic variant of CytK toxin, initially recovered from a diarrheal foodborne outbreak that caused the death of three people. In recent years, the cytotoxicity of B. cytotoxicus has become controversial, with some strains displaying a high cytotoxicity while others show no cytotoxicity towards cell lines. In order to better circumscribe the potential pathogenic role of CytK-1, knockout (KO) mutants were constructed in two B. cytotoxicus strains, E8.1 and E28.3. The complementation of the cytK-1 KO mutation was implemented in a mutant strain lacking in the cytK-1 gene. Using the tetrazolium salt (MTT) method, cytotoxicity tests of the cytK-1 KO and complemented mutants, as well as those of their wild-type strains, were carried out on Caco-2 cells. The results showed that cytK-1 KO mutants were significantly less cytotoxic than the parental wild-type strains. However, the complemented mutant was as cytotoxic as the wild-type, suggesting that CytK-1 is the major cytotoxicity factor in B. cytotoxicus.
Collapse
Affiliation(s)
- Klèma Marcel Koné
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain (UCLouvain), 1348 Louvain, Belgium; (K.M.K.); (P.H.)
| | - Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain (UCLouvain), 1348 Louvain, Belgium; (K.M.K.); (P.H.)
| | - Jelena Jovanovic
- Department of Food Technology, Safety and Health, Research Group of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University (UGent), 9000 Ghent, Belgium; (J.J.); (A.R.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Research Group of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University (UGent), 9000 Ghent, Belgium; (J.J.); (A.R.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain (UCLouvain), 1348 Louvain, Belgium; (K.M.K.); (P.H.)
| |
Collapse
|
6
|
Hinnekens P, Leprince A, Mahillon J. TipB, a novel cell wall hydrolase, is required for efficient conjugative transfer of pXO16 from Bacillus thuringiensis sv. israelensis. Res Microbiol 2021; 172:103866. [PMID: 34284092 DOI: 10.1016/j.resmic.2021.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022]
Abstract
pXO16, a large plasmid from Bacillus thuringiensis serovar israelensis, exhibits unique features. Not only is pXO16 able to transfer at high frequencies within few minutes, but it is also able to transfer among virtually all members of the Bacillus cereus group. Among the proteins encoded in the tip transfer locus of pXO16, TipB displays an atypical organization compared to known conjugative cell wall hydrolases with the large central soluble lytic transglycosylase (SLT) domain missing from the protein. We constructed a tipB deletion mutant which led to significant reduction in transfer efficiencies in both liquid and filter mating. The initial transfer frequencies could be restored when complementing tipB in trans thus showing the TipB implication in pXO16 conjugative transfer. Additionally, truncated versions of TipB were expressed in Escherichia coli to assess the protein lytic activity. When applied exogenously, TipB-2TM, in which the two N-terminal TM domains were removed, yielded a decrease of ca. 40% in optical density of B. thuringiensis sv. israelensis, a lytic activity that could partially be explained by the C-terminal CHAP-like domain. These results confirm TipB conjugative hydrolase function and provide new insights into pXO16 unique conjugative apparatus.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V, Salas M, Butala M. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res 2019; 46:9432-9443. [PMID: 30053203 PMCID: PMC6182141 DOI: 10.1093/nar/gky646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.
Collapse
Affiliation(s)
- Nadine Fornelos
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Hinnekens P, Koné KM, Fayad N, Leprince A, Mahillon J. pXO16, the large conjugative plasmid from Bacillus thuringiensis serovar israelensis displays an extended host spectrum. Plasmid 2019; 102:46-50. [DOI: 10.1016/j.plasmid.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
|
9
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Makart L, Gillis A, Hinnekens P, Mahillon J. A novel T4SS-mediated DNA transfer used by pXO16, a conjugative plasmid from Bacillus thuringiensis serovar israelensis. Environ Microbiol 2018; 20:1550-1561. [PMID: 29488309 DOI: 10.1111/1462-2920.14084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
The entomopathogenic Bacillus thuringiensis serovar israelensis displays peculiar conjugative transfer capabilities, accounted for by the large conjugative plasmid pXO16 (350 kb). The efficient and fast conjugative transfers are accompanied by a macroscopic aggregation of bacterial partners. Moreover, pXO16 has proven capable of effective mobilization and the retro-transfer of both mobilizable and 'non-mobilizable' plasmids. In this work, the aggregation phenomenon is shown to promote pXO16 transfer while not being mandatory for transfer. Transfer of pXO16 to B. thuringiensis recipient strains that do not display aggregation is observed as well, hence enlarging the previously defined host range. The use of variant calling analysis of transconjugants allowed for observation of up to 791 kb chromosomal regions mobilization. Previous analysis of pXO16 did not reveal any Type IV Secretion System (T4SS) homologs, which suggested the presence of an unusual conjugative system. A FtsK/SpOIIIE ATPase gene proved here to be necessary for conjugative transfer. Additionally, the analysis of natural restriction-modification systems in both conjugative partners gave credit to a ssDNA transfer mechanism. A 'transfer israelensis plasmid' (tip) region containing this ATPase gene was shown to code for other potential T4SS proteins, illustrating a conjugative system distantly related to the other known Gram-positive T4SSs.
Collapse
Affiliation(s)
- Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
11
|
Makart L, Commans F, Gillis A, Mahillon J. Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis. Plasmid 2017; 91:76-81. [DOI: 10.1016/j.plasmid.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 01/25/2023]
|
12
|
Bolotin A, Gillis A, Sanchis V, Nielsen-LeRoux C, Mahillon J, Lereclus D, Sorokin A. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:331-344. [PMID: 27810477 DOI: 10.1016/j.resmic.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/15/2016] [Accepted: 10/21/2016] [Indexed: 02/04/2023]
Abstract
Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature.
Collapse
Affiliation(s)
- Alexandre Bolotin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Vincent Sanchis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
13
|
Gillis A, Guo S, Bolotin A, Makart L, Sorokin A, Mahillon J. Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:319-330. [PMID: 27793675 DOI: 10.1016/j.resmic.2016.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis has long been recognized to carry numerous extrachromosomal molecules. Of particular interest are the strains belonging to the B. thuringiensis subsp. israelensis lineage, as they can harbor at least seven extrachromosomal molecules. One of these elements seems to be a cryptic molecule that may have been disregarded in strains considered plasmid-less. Therefore, this work focused on this cryptic molecule, named pBtic235. Using different approaches that included transposition-tagging, large plasmid gel electrophoresis and Southern blotting, conjugation and phage-induction experiments, in combination with bioinformatics analyses, it was found that pBtic235 is a hybrid molecule of 235,425 bp whose genome displays potential plasmid- and phage-like modules. The sequence of pBtic235 has been identified in all sequenced genomes of B. thuringiensis subsp. israelensis strains. Here, the pBtic235 sequence was considered identical to that of plasmid pBTHD789-2 from strain HD-789. Despite the fact that the pBtic235 genome possesses 240 putative CDSs, many of them have no homologs in the databases. However, CDSs coding for potential proteins involved in replication, genome packaging and virion structure, cell lysis, regulation of lytic-lysogenic cycles, metabolite transporters, stress and metal resistance, were identified. The candidate plasmidial prophage pBtic235 exemplifies the notable diversity of the extrachromosomal realm found in B. thuringiensis.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Suxia Guo
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexandre Bolotin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexei Sorokin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Makart L, Gillis A, Mahillon J. pXO16 from Bacillus thuringiensis serovar israelensis: Almost 350 kb of terra incognita. Plasmid 2015; 80:8-15. [PMID: 25770691 DOI: 10.1016/j.plasmid.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/21/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
Bacillus thuringiensis strains usually harbor large sets of plasmids, some of which carrying the entomopathogenic δ-endotoxins. B. thuringiensis serovar israelensis, active on Dipteran larvae, carries the very large conjugative plasmid pXO16 (350 kb). pXO16 displays a macroscopic aggregation phenotype when liquid cultures of conjugative partners are mixed. Its conjugative apparatus is able of transferring itself and other non-conjugative and non-mobilizable plasmids in a fast and very efficient manner. Even though its conjugative kinetics and capabilities have been extensively studied, the genetic bases for this unique transfer system remain largely unknown. In this work, the sequence of pXO16 has been identified in the existing sequenced genome of B. thuringiensis sv. israelensis HD-789 as corresponding to the p01 plasmid. Despite pXO16 sequence being highly coding, few CDS possess homologs in the databases. However, potential regions responsible for the aggregation phenotype and the plasmid replication have been highlighted. The common orientation of all CDS and the presence of a high number of potential paralogs suggested a phage-like nature. Concerning conjugative functions, no significant type IV secretion system homologs have been found, indicating that pXO16 encodes an unforeseen conjugative system.
Collapse
Affiliation(s)
- Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
15
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
16
|
Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 2014; 80:7620-30. [PMID: 25261525 DOI: 10.1128/aem.01869-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.
Collapse
|
17
|
Gillis A, Mahillon J. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl Environ Microbiol 2014; 80:4138-52. [PMID: 24795369 PMCID: PMC4068676 DOI: 10.1128/aem.00912-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/25/2014] [Indexed: 11/20/2022] Open
Abstract
GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Guo S, Mahillon J. pGIAK1, a heavy metal resistant plasmid from an obligate alkaliphilic and halotolerant bacterium isolated from the Antarctic Concordia station confined environment. PLoS One 2013; 8:e72461. [PMID: 24009682 PMCID: PMC3756968 DOI: 10.1371/journal.pone.0072461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/14/2013] [Indexed: 11/18/2022] Open
Abstract
pGIAK1 is a 38-kb plasmid originating from the obligate alkaliphilic and halotolerant Bacillaceae strain JMAK1. The strain was originally isolated from the confined environments of the Antarctic Concordia station. Analysis of the pGIAK1 38,362-bp sequence revealed that, in addition to its replication region, this plasmid contains the genetic determinants for cadmium and arsenic resistances, putative methyltransferase, tyrosine recombinase, spore coat protein and potassium transport protein, as well as several hypothetical proteins. Cloning the pGIAK1 cad operon in Bacillus cereus H3081.97 and its ars operon in Bacillus subtilis 1A280 conferred to these hosts cadmium and arsenic resistances, respectively, therefore confirming their bona fide activities. The pGIAK1 replicon region was also shown to be functional in Bacillus thuringiensis, Bacillus subtilis and Staphylococcus aureus, but was only stably maintained in B. subtilis. Finally, using an Escherichia coli - B. thuringiensis shuttle BAC vector, pGIAK1 was shown to display conjugative properties since it was able to transfer the BAC plasmid among B. thuringiensis strains.
Collapse
Affiliation(s)
- Suxia Guo
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
19
|
Sun S, Cheng Z, Fan J, Cheng X, Pang Y. The utility of camptothecin as a synergist of Bacillus thuringiensis var. kurstaki and nucleopolyhedroviruses against Trichoplusia ni and Spodoptera exigua. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1164-1170. [PMID: 22928294 DOI: 10.1603/ec12014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We studied the effect of combining microbial pesticides with camptothecin (CPT) on the mortality of two lepidopteran insects: Trichoplusia ni (Hübner) and Spodoptera exigua (Hübner). CPT is an alkaloid that is often used as an anticancer agent. Here, CPT was evaluated as a microbial pesticide synergist of Bacillus thuringiensis (Bt) and insect baculovirus. The toxicity of CPT and its synergistic effects on two microbial pesticides were studied using the diet overlay method. Bioassay results showed that CPT significantly enhances the toxicity of Bt variety kurstaki to S. exigua and T ni. In addition, CPT strongly enhanced the infectivity of Autographa californica (Speyer) multinucleocapsid nucleopolyhedrovirus (AcMNPV) and S. exigua nucleopolyhedrovirus (SeMNPV). Using light microscopy, we found that CPT disrupts the peritrophic membrane of T. ni larvae and severely affects the structure of the midgut, resulting in an abnormal gut lumen morphology. We speculate that CPT increases toxicity by affecting the permeability of the peritrophic membrane.
Collapse
Affiliation(s)
- Shifeng Sun
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, No. 135 XingangXi Road, Guangzhou, Guangdong 510275, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Gillis A, Dupres V, Delestrait G, Mahillon J, Dufrêne YF. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy. NANOSCALE 2012; 4:1585-1591. [PMID: 22159046 DOI: 10.1039/c1nr11161b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2, Box L7.05.12, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
21
|
Misra RV, Ahmod NZ, Parker R, Fang M, Shah H, Gharbia S. Developing an integrated proteo-genomic approach for the characterisation of biomarkers for the identification of Bacillus anthracis. J Microbiol Methods 2011; 88:237-47. [PMID: 22178189 DOI: 10.1016/j.mimet.2011.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 02/02/2023]
Abstract
Bacillus anthracis is the causative agent of anthrax, an acute and often fatal disease in humans. Due to the high genomic relatedness within the Bacillus cereus group of species it is a challenge to identify B. anthracis consistently. Alternative strategies such as proteomics coupled with mass spectrometry (MS) provide a powerful approach for biomarker discovery. However, validating and evaluating these markers, particularly for genetically homogeneous species such as B. anthracis are challenging. The objective of this study is to develop a robust biomarker discovery and validation pipeline, using proteomic methodology combined with in silico and molecular approaches, to determine a biomarker list, using B. anthracis as a model. In this exploratory study we profiled the proteome of B. anthracis and genetically related species using GeLC-Liquid Chromatography MS/MS (GeLC-LC MS/MS), identifying peptides that could be used to detect B. anthracis. Peptides were filtered to remove low quality identifications. Using comparative bioinformatic approaches, matching and searching against genomic sequence data a shortlist of peptide biomarkers was determined and validated using DNA sequencing, against a panel of closely related strains, to determine marker specificity. Further validation was performed using MS quantitation methods to assess sensitivity and specificity. A biomarker discovery pipeline was successfully developed in this study, comprising four distinct stages: proteome profiling, comparative bioinformatic validation, DNA sequencing and MS validation. Using the pipeline, 5379 peptides specific for Bacillus species and 36 peptides specific for B. anthracis were identified and validated. The 36 peptides, representing 30 proteins were derived from over 15 different clusters of orthologous group categories, including proteins involved in transcription, energy production/conservation as well as multifunctional proteins. We demonstrated that the peptide biomarkers identified in this study could be detected in a complex background, in which 0.1 μg of protein extract from B. anthracis was spiked into 9.90 μg of B. cereus protein extracts. The integration of both stable non-redundant peptides with molecular methodology for marker discovery and validation, improves the robustness of identifying and characterising candidate biomarkers for the identification of bacteria such as B. anthracis.
Collapse
Affiliation(s)
- Raju V Misra
- Department for Bioanalysis and Horizon Technologies, Health Protection Agency, 61 Colindale Avenue, London NW95EQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.
Collapse
|
23
|
Timmery S, Hu X, Mahillon J. Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. ASTROBIOLOGY 2011; 11:323-34. [PMID: 21563959 DOI: 10.1089/ast.2010.0573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus and related genera comprise opportunist and pathogen species that can threaten the health of a crew in confined stations required for long-term missions. In this study, 43 Bacilli from confined environments, that is, the Antarctic Concordia station and the International Space Station, were characterized in terms of virulence and plasmid exchange potentials. No specific virulence feature, such as the production of toxins or unusual antibiotic resistance, was detected. Most of the strains exhibited small or large plasmids, or both, some of which were related to the replicons of the Bacillus anthracis pXO1 and pXO2 virulence elements. One conjugative element, the capacity to mobilize and retromobilize small plasmids, was detected in a Bacillus cereus sensu lato isolate. Six out of 25 tested strains acquired foreign DNA by conjugation. Extremophilic bacteria were identified and exhibited the ability to grow at high pH and salt concentrations or at low temperatures. Finally, the clonal dispersion of an opportunist isolate was demonstrated in the Concordia station. Taken together, these results suggest that the virulence potential of the Bacillus isolates in confined environments tends to be low but genetic transfers could contribute to its capacity to spread.
Collapse
Affiliation(s)
- Sophie Timmery
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
24
|
Beuls E, Van Houdt R, Leys N, Dijkstra C, Larkin O, Mahillon J. Bacillus thuringiensis conjugation in simulated microgravity. ASTROBIOLOGY 2009; 9:797-805. [PMID: 19845449 DOI: 10.1089/ast.2009.0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.
Collapse
Affiliation(s)
- Elise Beuls
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Hu X, Swiecicka I, Timmery S, Mahillon J. Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiol Ecol 2009; 70:344-55. [PMID: 19780824 DOI: 10.1111/j.1574-6941.2009.00771.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Eighty soil-borne Bacillus cereus group isolates were collected from two neighbouring geographical sites in Belgium. Their genetic relationships and population structure were assessed using Multilocus sequence typing analysis of five chromosomal genes, while the contribution of extrachromosomal elements to the population dynamics was gauged by the presence, diversity and transfer capacity of pXO1- and pXO2-like plasmids. Globally, the bacterial population displayed a broad diversity, including an important subpopulation of psychrotolerant isolates related to Bacillus weihenstephanensis. pXO1- and pXO2-like replicons were present in 12% and 21% of the isolates, but no Bacillus anthracis-related toxin genes were found. Furthermore, only one of the isolates containing a pXO2-related plasmid was shown to be able to mobilize small non-self-conjugative plasmids. Interestingly, several B. cereus sensu lato isolates displaying the same sequence type were observed to have different plasmid contents, suggesting the occurrence of horizontal gene exchange. Similarly, a number of pXO2-like replicons with identical sequences were found in distinct bacterial isolates, therefore strongly arguing for lateral transfers among sympatric bacteria.
Collapse
Affiliation(s)
- Xiaomin Hu
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
26
|
Porwal S, Lal S, Cheema S, Kalia VC. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 2009; 4:e4438. [PMID: 19212464 PMCID: PMC2639701 DOI: 10.1371/journal.pone.0004438] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed.
Collapse
Affiliation(s)
- Shalini Porwal
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
- Department of Biotechnology, University of Pune, Pune, India
| | - Sadhana Lal
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| | - Simrita Cheema
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| |
Collapse
|
27
|
Abstract
Conjugation, mobilization, and retromobilization are three related mechanisms of horizontal gene transfer in bacteria. They have been extensively studied in gram-negative species, where retromobilization, the capture of DNA from a recipient by a donor cell, was shown to result from two successive steps: the transfer of the conjugative plasmid from the donor to the recipient followed by the retrotransfer of the mobilizable plasmid to the donor. This successive model was established for gram-negative bacteria but was lacking experimental data from the gram-positive counterparts. In the present work, the mobilization and retromobilization abilities of the conjugative plasmid pXO16 from Bacillus thuringiensis subsp. israelensis were studied using the mobilizable plasmids pUB110 and pE194 and the "nonmobilizable" element pC194 lacking the mob and oriT features (all from Staphylococcus aureus). Experimental data suggested a successive model, since different retromobilization frequencies were observed between the small plasmids. More importantly, retromobilization was shown to be delayed by 50 and 150 min for pUB110 and pE194, respectively, compared to pXO16 conjugation. Natural liquid foods (cow milk, soy milk, and rice milk) were used to evaluate the putative ecological impact of these transfers. In cow and soy milk, conjugation, mobilization, and retromobilization were shown to occur at frequencies of 8.0 x 10(-1), 1.0 x 10(-2), and 1.2 x 10(-4) transconjugants per recipient, respectively. These data are comparable to those obtained with LB medium and about 10-fold lower than in the case of rice milk. Taken together, these results emphasize the potential role of plasmid capture played by B. thuringiensis in natural environments.
Collapse
|
28
|
Abstract
A clear imperative exists to generate radically different antibacterial technologies that will reduce the usage of conventional chemical antibiotics. Here we trace one route into this new frontier of drug discovery, a concept that we call the bacterial conjugation-based technologies (BCBT). One of the objectives of the BCBT is to exploit plasmid biology for combating the rising tide of antibiotic-resistant bacteria. Specifically, the concept utilizes conjugationally delivered plasmids as antimicrobial agents, and it builds on the accumulated work of many scientists dating back to the discoveries of conjugation and plasmids themselves. Each of the individual components that comprise the approach has been demonstrated to be feasible. We discuss the properties of bacterial plasmids to be employed in BCBT.
Collapse
|
29
|
Van der Auwera GA, Timmery S, Mahillon J. Self-transfer and mobilisation capabilities of the pXO2-like plasmid pBT9727 from Bacillus thuringiensis subsp. konkukian 97-27. Plasmid 2008; 59:134-8. [PMID: 18272219 DOI: 10.1016/j.plasmid.2007.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/15/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
Abstract
Recent characterisations of plasmids related to the anthrax virulence plasmids pXO1 and pXO2 in clinical isolates of Bacillus cereus and Bacillus thuringiensis have contributed to the emerging picture of a virulence-associated plasmid pool in the B. cereus sensu lato group. The family of pXO2-like plasmids includes the conjugative plasmid pAW63 from the biopesticide strain B. thuringiensis subsp. kurstaki HD73 and the heretofore cryptic plasmid pBT9727 from the clinical strain B. thuringiensis subsp. konkukian 97-27. Comparative sequence analysis of these three plasmids suggested that they were derived from an ancestral conjugative plasmid, with pAW63 retaining its self-transfer capabilities, and pXO2 having lost them through genetic drift. Such properties had not been investigated in pBT9727, but sequence homologies led us to predict that it may possess self-transfer capabilities. Here, we report that pBT9727 is indeed conjugative, and is able to promote its own transfer as well as that of small mobilisable plasmids.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
30
|
Wilcks A, Smidt L, Bahl MI, Hansen BM, Andrup L, Hendriksen NB, Licht TR. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats. J Appl Microbiol 2007; 104:1252-9. [PMID: 18042185 DOI: 10.1111/j.1365-2672.2007.03657.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS To study the ability of Bacillus thuringiensis subsp. israelensis spores to germinate and subsequently transfer a conjugative plasmid in the intestinal tract of gnotobiotic rats. METHODS AND RESULTS Germination was studied by feeding germ-free rats with spores of a B. thuringiensis strain harbouring a plasmid encoding green fluorescent protein (GFP), which enabled quantification of germinated bacteria by flow cytometry. To study in vivo conjugation, germ-free rats were first associated with a B. thuringiensis recipient strain and after 1 week an isogenic donor strain harbouring the conjugative plasmid pXO16 was introduced. Both strains were given as spores and transfer of pXO16 was observed from the donor to the recipient strain. CONCLUSIONS Bacillus thuringiensis is able to have a full life cycle in the intestine of gnotobiotic rats including germination of spores, several cycles of growth and sporulation of vegetative cells. For the first time conjugative plasmid transfer in a mammalian intestinal tract was shown between two B. thuringiensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY Strains of B. thuringiensis are used worldwide to combat insect pests, and this study brings new insights into the nature of B. thuringiensis showing the potential of the bacteria to germinate and transfer DNA in the mammalian intestinal tract.
Collapse
Affiliation(s)
- A Wilcks
- Department of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sarrafzadeh MH, Bigey F, Capariccio B, Mehrnia MR, Guiraud JP, Navarro JM. Simple indicators of plasmid loss during fermentation of Bacillus thuringiensis. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Yuan YM, Hu XM, Liu HZ, Hansen BM, Yan JP, Yuan ZM. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Arch Microbiol 2007; 187:425-31. [PMID: 17216168 DOI: 10.1007/s00203-006-0206-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The cry toxin encoding plasmid pHT73 was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to six B. cereus group strains in three lepidopteran (Spodoptera exigua, Plutella xyllostella and Helicoverpa armigera) larvae by conjugation. The conjugation kinetics of the plasmid was precisely studied during the larval infection using a new protocol. The infections were performed with both vegetative and sporulated strains. However, larval death only occurred when infections were made with spore and toxin preparations. Likewise, spore germinations of both donor and recipient strains were only observed in killed larvae, 44-56 h post-infection. Accordingly, kinetics showed that gene transfer between B. thuringiensis strain KT0 and other B. cereus strains only took place in dead larvae among vegetatively growing bacteria. The conjugational transfer ratios varied among different strain combinations and different larvae. The highest transfer ratio reached 5.83 x 10(-6) CFU/donor between the KT0 and the AW05R recipient in Helicoverpa armigera, and all transconjugants gained the ability to produce the insecticidal crystal. These results indicated that horizontal gene transfer among B. cereus group strains might play a key role for the acquisition of extra plasmids and evolution of these strains in toxin susceptible insect larvae.
Collapse
Affiliation(s)
- Y M Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
33
|
Van der Auwera GA, Timmery S, Hoton F, Mahillon J. Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int J Food Microbiol 2006; 113:164-72. [PMID: 16996631 DOI: 10.1016/j.ijfoodmicro.2006.06.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/31/2006] [Accepted: 06/11/2006] [Indexed: 11/17/2022]
Abstract
The Bacillus cereus sensu lato group is genetically very close and possesses a remarkable plasmid gene pool that encodes a variety of functions such as virulence and self-transfer capabilities. The potential for horizontal transfer among the various subspecies of this group, which includes the human opportunistic pathogens B. cereus sensu stricto and B. anthracis as well as the biopesticide B. thuringiensis, has led to growing concerns regarding food safety and public health. In this study, the conjugative behaviour of B. thuringiensis strains was compared in LB medium, milk and rice pudding using the pXO16 and pAW63 conjugative systems, as well as the mobilisable plasmid pC194, in bi- and triparental matings. Conjugation and mobilisation of these plasmids were shown to occur at significant levels in both food products, attaining the highest transfer frequencies in milk, with an approximately ten-fold increase in conjugative transfer in this growth medium as compared to liquid LB. Furthermore, the ability of an emetic strain of B. cereus to function as either plasmid donor or recipient partner in heterologous biparental matings with B. thuringiensis was demonstrated in these food matrices.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
34
|
Gammon K, Jones GW, Hope SJ, de Oliveira CMF, Regis L, Silva Filha MHNL, Dancer BN, Berry C. Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus sphaericus. Appl Environ Microbiol 2006; 72:1766-70. [PMID: 16517620 PMCID: PMC1393184 DOI: 10.1128/aem.72.3.1766-1770.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/12/2005] [Indexed: 11/20/2022] Open
Abstract
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.
Collapse
Affiliation(s)
- Katherine Gammon
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu X, Hansen BM, Yuan Z, Johansen JE, Eilenberg J, Hendriksen NB, Smidt L, Jensen GB. Transfer and expression of the mosquitocidal plasmid pBtoxis in Bacillus cereus group strains. FEMS Microbiol Lett 2005; 245:239-47. [PMID: 15837378 DOI: 10.1016/j.femsle.2005.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/06/2005] [Accepted: 03/07/2005] [Indexed: 11/23/2022] Open
Abstract
The toxicity of Bacillus thuringiensis subsp. israelensis to dipteran larvae (mosquitoes and black flies) depends on the presence of the pBtoxis plasmid. In this paper, two antibiotic resistance tagged pBtoxis were transferred by conjugation to other Bacillus cereus group strains. Among 15 potential recipients, only a lepidopteran active B. thuringiensis subspecies kurstaki and a B. cereus strain received the plasmid pBtoxis with a low transfer rate of about 10(-8) transconjugants/recipient. The resulting B. thuringiensis subspecies kurstaki transconjugant was active to both lepidopteran and dipteran targets and the B. cereus transconjugant was active against dipteran insects. Phase contrast microscopy showed that the B. cereus transconjugants could produce only round crystalline inclusion bodies while B. thuringiensis subspecies kurstaki transconjugant could produce both round and bipyramidal crystals during sporulation. SDS-PAGE revealed that all the major mosquitocidal proteins from pBtoxis could express in the two transconjugants, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa and Cyt1Aa. However, none of the experiment showed any indications of mobilising abilities of pBtoxis. The limited number of strains, which could receive and maintain pBtoxis using a conjugational helper plasmid, indicates a very narrow host range of the B. thuringiensis subsp. israelensis pBtoxis plasmid.
Collapse
Affiliation(s)
- Xiaomin Hu
- National Environmental Research Institute, 4000 Roskilde, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jensen GB, Fisker N, Sparsø T, Andrup L. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP. Int J Food Microbiol 2005; 104:113-20. [PMID: 16005534 DOI: 10.1016/j.ijfoodmicro.2005.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 03/12/2005] [Accepted: 03/19/2005] [Indexed: 11/20/2022]
Abstract
Based on a combination of PCR and restriction endonuclease (RE) digestion (PCR-RE digestion), we have examined the possibility of differentiating members of the Bacillus cereus group. Fragments of the gyrB gene (362 bp) from pure cultures of 12 B. cereus, 25 B. thuringiensis, 25 B. mycoides and two B. anthracis strains were amplified and subsequently digested with Sau3A1. Furthermore, a majority of the amplicons were sequenced directly to verify the PCR-RE results. The results obtained suggest that only the B. mycoides generates specific fragments following PCR-RE. Conversely, it was not possible to discriminate between the B. cereus and the B. thuringiensis strains using the methods described.
Collapse
Affiliation(s)
- Gert B Jensen
- Thomsen Bioscience A/S, Strømmen 6, DK-9400 Nørresundby, Denmark.
| | | | | | | |
Collapse
|
37
|
Poluektova EU, Fedorina EA, Prozorov AA. Conjugative Transfer of the Large Plasmid p19 in Various Bacillus subtilis Strains. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0114-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Verheust C, Fornelos N, Mahillon J. GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J Bacteriol 2005; 187:1966-73. [PMID: 15743944 PMCID: PMC1064052 DOI: 10.1128/jb.187.6.1966-1973.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most notable characteristics of Tectiviridae resides in their double-layer coats: the double-stranded DNA is located within a flexible lipoprotein vesicle covered by a rigid protein capsid. Despite their apparent rarity, tectiviruses have an extremely wide distribution compared to other phage groups. Members of this family have been found to infect gram-negative (PRD1 and relatives) as well as gram-positive (Bam35, GIL01, AP50, and phiNS11) hosts. Several reports have shown that tectiviruses infecting gram-negative bacteria are closely related, whereas no information is currently available on the genetic relationship among those infecting gram-positive bacteria. The present study reports the sequence of GIL16, a new isolate originating from Bacillus thuringiensis, and a genetic comparison of this isolate with the tectiviral bacteriophages Bam35 and GIL01, which originated from B. thuringiensis serovars Alesti and Israelensis, respectively. In contrast to PRD1 and its relatives, these are temperate bacteriophages existing as autonomous linear prophages within the host cell. Mutations in a particular motif in both the GIL01 and GIL16 phages are also shown to correlate with a switch to the lytic cycle. Interestingly, both bacterial viruses displayed narrow, yet slightly different, host spectrums. We also explore the hypothesis that pBClin15, a linear plasmid hosted by the Bacillus cereus reference strain ATCC 14579, is also a prophage. Sequencing of its inverted repeats at both extremities and a comparison with GIL01 and GIL16 emphasize its relationship to the Tectiviridae.
Collapse
|
39
|
Rasko DA, Altherr MR, Han CS, Ravel J. Genomics of theBacillus cereusgroup of organisms. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2004.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
Poluektova EU, Fedorina EA, Lotareva OV, Prozorov AA. Plasmid transfer in bacilli by a self-transmissible plasmid p19 from a Bacillus subtilis soil strain. Plasmid 2004; 52:212-7. [PMID: 15518877 DOI: 10.1016/j.plasmid.2004.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/30/2004] [Indexed: 11/17/2022]
Abstract
The cryptic 95-kb plasmid p19 of the Bacillus subtilis 19 soil strain promotes the transfer of a small kanamycin resistance plasmid pUB110. To facilitate direct selection for p19 transfer, a plasmid derivative carrying the chloramphenicol resistance gene was constructed. The frequency of transfer of the large plasmid between cells of B. subtilis 19 approached 100% but was more than two orders of magnitude lower when the strain B. subtilis 168 was a recipient. However, when the restriction-deficient strain B. subtilis 168 was a recipient, the transfer efficiency was almost completely recovered. The effectiveness of pUB110 mobilization was virtually not altered in all these cases. pC194 was not mobilized by p19. The kinetics of p19 conjugative transfer is also presented.
Collapse
Affiliation(s)
- E U Poluektova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin street 3, GSP-1, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
41
|
Verheust CÃ, Fornelos N, Mahillon J. The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09709.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 2004; 37:409-33. [PMID: 14616068 DOI: 10.1146/annurev.genet.37.110801.143042] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures and modes of action. In many cases, the toxins consist of unique folds or novel combinations of domains having known protein folds. Some of the toxins display a similar structure and mode of action to certain toxins of mammalian pathogens, suggesting a common evolutionary origin. Most of these toxins are produced in large amounts during sporulation and have the remarkable feature that they are localized in parasporal crystals. Localization of multiple toxin-encoding genes on plasmids together with mobilizable elements enables bacteria to shuffle their armory of toxins. Recombination between toxin genes and sequence divergence has resulted in a wide range of host specificities.
Collapse
Affiliation(s)
- Ruud A de Maagd
- Plant Research International B.V., 6700 AA Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Hu X, Hansen BM, Eilenberg J, Hendriksen NB, Smidt L, Yuan Z, Jensen GB. Conjugative transfer, stability and expression of a plasmid encoding acry1Ac gene inBacillus cereusgroup strains. FEMS Microbiol Lett 2004; 231:45-52. [PMID: 14769465 DOI: 10.1016/s0378-1097(03)00925-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 11/16/2022] Open
Abstract
The plasmid pHT73 containing cry1Ac and tagged with an erythromycin resistance gene was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to several Bacillus cereus group strains by conjugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and phase contrast microscopy showed that the transconjugants containing plasmid pHT73 could express Cry1Ac toxin and produce bipyramidal crystalline inclusion bodies during sporulation. The study demonstrated that pHT73 could be transferred to B. thuringiensis subsp. kurstaki, several B. cereus strains and Bacillus mycoides. Under non-selective conditions, the stability of the pHT73 plasmid in the transconjugants was found to be 58.2-100% after 100 generations and 4-96% after 200 generations. The variations are mainly caused by the choice of receptor strain.
Collapse
Affiliation(s)
- Xiaomin Hu
- National Environmental Research Institute, 4000 Roskilde, Denmark.
| | | | | | | | | | | | | |
Collapse
|
44
|
Verheust C, Jensen G, Mahillon J. pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2083-2092. [PMID: 12904548 DOI: 10.1099/mic.0.26307-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus thuringiensis serovar israelensis harbours, in addition to several circular plasmids, a small linear molecule of about 15 kb. Sequence analysis of this molecule, named pGIL01, showed the presence of at least 30 ORFs, five of which displayed similarity with proteins involved in phage systems: a B-type family DNA polymerase, a LexA-like repressor, two potential muramidases and a DNA-packaging protein (distantly related to the P9 protein of the tectiviral phage PRD1). Experimental evidence confirmed that pGIL01 indeed corresponds to the linear prophage of a temperate phage. This bacteriophage, named GIL01, produces small turbid plaques and is sensitive to organic solvents, which suggests the presence of lipid components in its capsid. Experiments using proteases and exonucleases also revealed that proteins are linked to the genomes of both pGIL01 prophage and GIL01 phage at their 5' extremities. Altogether, these features are reminiscent of those of phages found in the Tectiviridae family, and more specifically of those of PRD1, a broad-host-range phage of Gram-negative bacteria. Dot-blot hybridization, PFGE, PCR and RFLP analyses also showed the presence of pGIL01 variants in the Bacillus cereus group.
Collapse
Affiliation(s)
- Céline Verheust
- Université Catholique de Louvain, Place Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Gert Jensen
- National Institute of Occupational Health, Lersø Parkallé, DK-2100, Copenhagen, Denmark
| | - Jacques Mahillon
- Université Catholique de Louvain, Place Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
45
|
Abstract
Bacillus cereus sensu lato, the species group comprising Bacillus anthracis, Bacillus thuringiensis and B. cereus (sensu stricto), has previously been scrutinized regarding interspecies genetic correlation and pathogenic characteristics. So far, little attention has been paid to analysing the biological and ecological properties of the three species in their natural environments. In this review, we describe the B. cereus sensu lato living in a world on its own; all B. cereus sensu lato can grow saprophytically under nutrient-rich conditions, which are only occasionally found in the environment, except where nutrients are actively collected. As such, members of the B. cereus group have recently been discovered as common inhabitants of the invertebrate gut. We speculate that all members disclose symbiotic relationships with appropriate invertebrate hosts and only occasionally enter a pathogenic life cycle in which the individual species infects suitable hosts and multiplies almost unrestrained.
Collapse
Affiliation(s)
- G B Jensen
- National Institute of Occupational Health, Lersø Parkalle 105, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
46
|
Andrup L, Jensen GB, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 2003; 49:205-32. [PMID: 12749835 DOI: 10.1016/s0147-619x(03)00015-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.
Collapse
Affiliation(s)
- Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
47
|
Jensen GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl Environ Microbiol 2002; 68:4900-5. [PMID: 12324337 PMCID: PMC126423 DOI: 10.1128/aem.68.10.4900-4905.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical to those of strains isolated from the commercial products used. Work processes (i.e., spraying) correlated with the presence of B. thuringiensis in the fecal samples (10(2) to 10(3) CFU/g of feces). However, no gastrointestinal symptoms correlated with the presence of B. thuringiensis in the fecal samples.
Collapse
Affiliation(s)
- Gert B Jensen
- Department of Chemical Working Environments, National Institute of Occupational Health, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Thomas DJI, Morgan JAW, Whipps JM, Saunders JR. Transfer of plasmid pBC16 between Bacillus thuringiensis strains in non-susceptible larvae. FEMS Microbiol Ecol 2002; 40:181-90. [DOI: 10.1111/j.1574-6941.2002.tb00951.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Thomas DJ, Morgan JA, Whipps JM, Saunders JR. Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Appl Environ Microbiol 2001; 67:330-8. [PMID: 11133463 PMCID: PMC92578 DOI: 10.1128/aem.67.1.330-338.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid transfer between strains of Bacillus thuringiensis subsp. israelensis was studied under a range of environmentally relevant laboratory conditions in vitro, in river water, and in mosquito larvae. Mobilization of pBC16 was detected in vitro at a range of temperatures, pH values, and available water conditions, and the maximum transfer ratio was 10(-3) transconjugant per recipient under optimal conditions. Transfer of conjugative plasmid pXO16::Tn5401 was also detected under this range of conditions. However, a maximum transfer ratio of 1.0 transconjugant per recipient was attained, and every recipient became a transconjugant. In river water, transfer of pBC16 was not detected, probably as a result of the low transfer frequency for this plasmid and the formation of spores by the introduced donor and recipient strains. In contrast, transfer of plasmid pXO16::Tn5401 was detected in water, but at a lower transfer ratio (ca. 10(-2) transconjugant per donor). The number of transconjugants increased over the first 7 days, probably as a result of new transfer events between cells, since growth of both donor and recipient cells in water was not detected. Mobilization of pBC16 was not detected in killed mosquito larvae, but transfer of plasmid pXO16::Tn5401 was evident, with a maximum rate of 10(-3) transconjugant per donor. The reduced transfer rate in insects compared to broth cultures may be accounted for by competition from the background bacterial population present in the mosquito gut and diet or by the maintenance of a large population of B. thuringiensis spores in the insects.
Collapse
Affiliation(s)
- D J Thomas
- Department of Plant Pathology and Microbiology, Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, United Kingdom
| | | | | | | |
Collapse
|
50
|
Chen Y, Braathen P, Léonard C, Mahillon J. MIC231, a naturally occurring mobile insertion cassette from Bacillus cereus. Mol Microbiol 1999; 32:657-68. [PMID: 10320586 DOI: 10.1046/j.1365-2958.1999.01388.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent dissection of numerous plasmids and transposable elements has given more credence to the modular organization of these genetic and genomic entities. Although many variations on each theme exist, the number of basic functional cassettes is thought to be relatively limited. In this paper, a novel type of mobile cassette is described. A naturally occurring assemblage consisting of two left IS231 ends flanking a D-stereospecific endopeptidase (adp) gene was found in several natural isolates of Bacillus cereus. This 1.9 kb genetic entity was shown to transpose in the presence of IS231A transposase, not only in Escherichia coli but also in Bacillus. The acronym MIC231 is proposed for this mobile insertion cassette trans-activated (teletransposed) by IS231. Using (D-Phe)4 tetrapeptide as substrate, the endopeptidase activity of the MIC231 adp gene could be demonstrated in E. coli and B. subtilis. Interestingly, this D-stereospecific endopeptidase activity was not limited to the original B. cereus isolates but was also detected in all but one of the 69 B. cereus sensu lato strains tested, indicating its important, yet dispensable, biological function. However, inactivation of the MIC231 adp gene in two B. cereus strains did not result in any detectable variation of their activity on (D-Phe)4, suggesting the presence of other distantly related adp gene(s). Thus, although the exact role of MIC231 adp remains elusive, its presence inside a mobile cassette represents the archetype of a novel insertion sequence modular organization.
Collapse
Affiliation(s)
- Y Chen
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, Place Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|