1
|
Dujardin C, Habeler W, Aprile P, Dellaquila A, Monville C, Letourneur D, Simon-Yarza T. Engineered micro-structured biomimetic material for modelling the outer blood-retinal barrier. Biomaterials 2025; 322:123357. [PMID: 40311520 DOI: 10.1016/j.biomaterials.2025.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
The outer blood-retinal barrier (oBRB) is compromised in several retinal pathologies, such as age-related macular degeneration affecting over 200 million people worldwide. This 200-350 μm thick tissue includes the retinal pigment epithelium (RPE), the Bruch's membrane, and the vascularized choroid supplying the outer retina. Degeneration of the RPE and/or choroid leads to photoreceptor loss and, ultimately, blindness. Current in vitro co-culture oBRB models developed to better understand the diseases and to propose therapeutic alternatives are often simplistic, focusing on 2D cultures, or face limitations including non-physiological dimensions or low throughput. This study presents an innovative scaffold-driven approach to model the oBRB using a polysaccharide membrane engineered by freeze-drying. Our specific protocol allowed to mimic the oBRB structure, within physiological dimensions, generating a non-porous surface to culture the hiPSC-derived RPE monolayer, and an internal 3D porous structure for the choroidal network. Results showed that the inner porous structure promoted physiological self-organization of endothelial cells and pericytes. Our single-piece functional material allowed the cultivation of both RPE and choroidal compartments in close proximity, favoring cellular interactions, while maintaining them in their designated locations. This cyto-compatible, easy-to-use, and off-the-shelf membrane, produced at large amounts and low costs, provides a physiologically relevant biomaterial for oBRB tissue modelling.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| | - Walter Habeler
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France; I-Stem, CECS, Corbeil-Essonnes, 91100, France
| | - Paola Aprile
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Christelle Monville
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| |
Collapse
|
2
|
Sakthivel S, Thangavel P, Saravanakumar I, Muthuvijayan V. Fabrication of Thymol-loaded Isabgol/Konjac Glucomannan-based Microporous Scaffolds with Enriched Antioxidant and Antibacterial Properties for Skin Tissue Engineering Applications. Chem Asian J 2024; 19:e202400839. [PMID: 39340792 DOI: 10.1002/asia.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
An antioxidant, antibacterial, and biocompatible biomaterial is essential to repair skin wounds effectively. Here, we have employed two natural biopolymers, isabgol (ISAB) and konjac glucomannan (KGM), to prepare microporous scaffolds by freezing and lyophilization. The scaffolds are loaded with thymol (THY) to impart potent antioxidant and antibacterial activities. The physicochemical properties of the ISAB+KGM+THY scaffold, like porosity (41.8±2.4 %), swelling, and biodegradation, were optimal for tissue regeneration application. Compared to the control, ISAB+KGM+THY scaffolds promote attachment, migration, and proliferation of L929 fibroblasts. The antioxidant activity of the ISAB+KGM+THY scaffold was significantly improved after loading THY. This would protect the tissues from oxidative damage. The antibacterial activity of the ISAB+KGM+THY scaffold was significantly higher than that of the control, which would help prevent bacterial infection. The vascularization ability of the ISAB+KGM scaffold was not altered by incorporating THY in the ISAB+KGM scaffold. Therefore, a strong antioxidant, antibacterial, and biocompatible nature of the ISAB+KGM+THY scaffold could be useful for various biomedical applications.
Collapse
Affiliation(s)
- Shruthi Sakthivel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
3
|
Santamaría E, Lizarreta N, Vílchez S, González C, Maestro A. Formation of Microcapsules of Pullulan by Emulsion Template Mechanism: Evaluation as Vitamin C Delivery Systems. Gels 2024; 10:355. [PMID: 38920902 PMCID: PMC11202853 DOI: 10.3390/gels10060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as active ingredient release systems for the food industry. Due to the slow gelation kinetics of pullulan with sodium trimetaphosphate (STMP), capsules cannot be formed through the conventional method of dropping into a solution of the gelling agent, as with other polysaccharides, since the pullulan chains migrate to the medium before the capsules can form by gelation. Pullulan microcapsules have been obtained by using inverse water-in-oil emulsions as templates. The emulsion that acts as a template has been characterized by monitoring its stability and by optical microscopy, and the size of the emulsion droplets has been correlated with the size of the microcapsules obtained, demonstrating that it is a good technique for their production. Although some flocs of droplets form, these remain dispersed during the gelation process and two capsule size distributions are obtained: those of the non-flocculated droplets and the flocculated droplets. The microcapsules have been evaluated as vitamin C release systems, showing zero-order release kinetics for acidic pH and Fickian mechanism for neutral pH. On the other hand, the microcapsules offer good protection of vitamin C against oxidation during an evaluation period of 14 days.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Naroa Lizarreta
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
| | - Susana Vílchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carme González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
4
|
Reynolds M, Stoy LM, Sun J, Opoku Amponsah PE, Li L, Soto M, Song S. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels 2024; 10:115. [PMID: 38391444 PMCID: PMC10888113 DOI: 10.3390/gels10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the electrical and mechanical properties of PEDOT:PSS, providing a more promising interface with biological tissues. Here we study the effects of incorporating crosslinking additives, such as glycerol and sodium trimetaphosphate (STMP), in developing interpenetrating PEDOT:PSS-based conductive hydrogels. The addition of glycerol at a low concentration maintained the PEDOT:PSS conductivity with enhanced wettability but decreased the mechanical stiffness. Increasing the concentration of STMP allowed sufficient physical crosslinking with PEDOT:PSS, resulting in improved hydrogel conductivity, wettability, and rheological properties without glycerol. The STMP-based PEDOT:PSS conductive hydrogels also exhibited shear-thinning behaviors, which are potentially favorable for extrusion-based 3D bioprinting applications. We demonstrate an interpenetrating conducting polymer hydrogel with tunable electrical and mechanical properties for cellular interactions and future tissue engineering applications.
Collapse
Affiliation(s)
- Madelyn Reynolds
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Lindsay M Stoy
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Jindi Sun
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | | | - Lin Li
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Misael Soto
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Shang Song
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
- Departments of Materials Science and Engineering, Neuroscience GIDP, and BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
5
|
Santamaría E, Anjinho de Barros L, González C, Maestro A. Rheological Study of the Formation of Pullulan Hydrogels and Their Use as Carvacrol-Loaded Nanoemulsion Delivery Systems. Gels 2023; 9:644. [PMID: 37623099 PMCID: PMC10453457 DOI: 10.3390/gels9080644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydrogels have been extensively studied as delivery systems for lipophilic compounds. Pullulan hydrogels were prepared, and their gelation kinetics were studied over time. Pullulan exhibited a relatively slow gelling reaction in basic medium (KOH) using trisodium metaphosphate (STMP) as a cross-linking agent, so capsules cannot be obtained by dripping as easily as in the case of alginate and chitosan. The kinetics of pullulan gelation were studied through rheological analysis over time. An optimal [Pullulan]/[KOH] ratio was found for a fixed [Pullulan]/[STMP] ratio. For this given relationship, gelling time measurements indicated that when the concentration of pullulan increased, the gelation time decreased from 60 min for 6% w/w pullulan to 10 min for 10% w/w. After the gel point, a hardening of the hydrogel was observed over the next 5 h. The formed hydrogels presented high degrees of swelling (up to 1800%). Freeze-dried gels were capable of being rehydrated, obtaining gels with rheological characteristics and visual appearance similar to fresh gels, which makes them ideal to be freeze-dried for storage and rehydrated when needed. The behavior of the hydrogels obtained as active ingredient release systems was studied. In this case, the chosen molecule was carvacrol (the main component of oregano oil). As carvacrol is hydrophobic, it was incorporated into the droplets of an oil-in-water nanoemulsion, and the nanoemulsion was incorporated into the hydrogel. The release of the oil was studied at different pHs. It was observed that as the pH increased (from pH 2 to pH 7), the released amount of carvacrol for the gel with pullulan 10% w/w reached 100%; for the other cases, the cumulative release amount was lower. It was attributed to two opposite phenomena in the porous structure of the hydrogel, where more porosity implied a faster release of carvacrol but also a higher degree of swelling that promoted a higher entry of water flow in the opposite direction. This flow of water prevented the active principle from spreading to the release medium.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona Marti i Franques, 1, 08028 Barcelona, Spain; (L.A.d.B.); (C.G.); (A.M.)
| | | | | | | |
Collapse
|
6
|
Pelin IM, Silion M, Popescu I, Rîmbu CM, Fundueanu G, Constantin M. Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023; 15:1674. [PMID: 37376122 PMCID: PMC10301438 DOI: 10.3390/pharmaceutics15061674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The therapeutic efficiency of plant extracts has been limited by their poor pharmaceutical availability. Hydrogels have promising potential to be applied as wound dressings due to their high capacity to absorb exudates and their enhanced performance in loading and releasing plant extracts. In this work, pullulan/poly (vinyl alcohol) (P/PVA) hydrogels were first prepared using an eco-friendly method based on both a covalent and physical cross-linking approach. Then, the hydrogels were loaded with the hydroalcoholic extract of Calendula officinalis by a simple post-loading immersion method. Different loading capacities were investigated in terms of the physico-chemical properties, chemical composition, mechanical properties, and water absorption. The hydrogels exhibited high loading efficiency due to the hydrogen bonding interactions between polymer and extract. The water retention capacity as well as the mechanical properties decreased with the increase in the extract amount in hydrogel. However, higher amounts of extract in the hydrogel improved the bioadhesiveness. The release of extract from hydrogels was controlled by the Fickian diffusion mechanism. Extract-loaded hydrogels expressed high antioxidant activity, reaching 70% DPPH radical scavenging after 15 min immersion in buffer solution at pH 5.5. Additionally, loaded hydrogels showed a high antibacterial activity against Gram-positive and Gram-negative bacteria and were non-cytotoxic against HDFa cells.
Collapse
Affiliation(s)
- Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Mihaela Silion
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Cristina Mihaela Rîmbu
- Faculty of Veterinary Medicine “Ion Ionescu de la Brad”, University of Life Science, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| |
Collapse
|
7
|
Dangi D, Mattoo M, Kumar V, Sharma P. Synthesis and characterization of galactomannan polymer hydrogel and sustained drug delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
8
|
Engineering a semi-interpenetrating constructed xylan-based hydrogel with superior compressive strength, resilience, and creep recovery abilities. Carbohydr Polym 2022; 294:119772. [DOI: 10.1016/j.carbpol.2022.119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
|
9
|
Grenier J, Duval H, Lv P, Barou F, Le Guilcher C, Aid R, David B, Letourneur D. Interplay between crosslinking and ice nucleation controls the porous structure of freeze-dried hydrogel scaffolds. BIOMATERIALS ADVANCES 2022; 139:212973. [PMID: 35891598 DOI: 10.1016/j.bioadv.2022.212973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Freeze-drying is a process of choice to texture hydrogel scaffolds with pores formed by an ice-templating mechanism. Using state-of-the-art microscopies (cryo-EBSD, μCT, CLSM), this work evidences and quantifies the effect of crosslinking and ice nucleation temperature on the porous structure of thin hydrogel scaffolds freeze-dried at a low cooling rate. We focused on a polysaccharide-based hydrogel and developed specific protocols to monitor or trigger ice nucleation for this study. At a fixed number of intermolecular crosslinks per primary molecule (p = 5), the mean pore size in the dry state decreases linearly from 240 to 170 μm, when ice nucleation temperature decreases from -6 °C to -18 °C. When ice nucleation temperature is fixed at -10 °C, the mean pore size decreases from 250 to 150 μm, as the crosslinking degree increases from p = 3 to p = 7. Scaffold infiltration ability was quantified with synthetic microspheres. The seeding efficiency was assessed with MC3T3-E1 individual cells and HepaRG™ spheroids. These data collapse into a single master curve that exhibits a sharp transition from 100 % to 0 %-efficiency as the entity diameter approaches the mean pore size in the dry state. Altogether, we can thus precisely tune the porosity of these 3D materials of interest for 3D cell culture and cGMP production for tissue engineering.
Collapse
Affiliation(s)
- Jérôme Grenier
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France; Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique de Paris-Saclay, 91190 Gif-sur-Yvette, France; Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Hervé Duval
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France.
| | - Pin Lv
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), F-51110 Pomacle, France
| | - Fabrice Barou
- Géosciences Montpellier, UMR 5243, Université Montpellier, CNRS, Montpellier Cedex 05, 34095, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Rachida Aid
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Bertrand David
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique de Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| |
Collapse
|
10
|
Atila D, Karataş A, Keskin D, Tezcaner A. Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. Int J Biol Macromol 2022; 218:760-774. [PMID: 35902017 DOI: 10.1016/j.ijbiomac.2022.07.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Vitamin C&E (VtC&VtE)-loaded bilayer wound dressings were prepared using bacterial cellulose (BC) synthesized by Acetobacter species and pullulan (PUL). VtC-containing PUL hydrogels (100 μg/mL) were immobilized onto BC by crosslinking. BC/PUL-VtC was loaded with VtE (100 μM in ethanol) by immersion for 2 h. No delamination between the layers was observed via SEM. Despite the porous inner PUL side, the outer BC side exhibited nanofibrous morphology serving as barriers to prevent microorganism invasion. Equilibrium water content of BC/PUL was above 85 % due to the hydrogel characteristics of PUL side, suitable to absorb exudate in wound bed. PUL layer lost >90 % of its weight in simulated wound fluid and > 99 % in lysozyme solution within 14 days, mediating co-release of VtC&VtE. Thin BC side possessed adequate strength (⁓22 MPa) and strain (>30 %) to endure against tensile stress generated by bending on wound surface without rupture, whereas thick PUL side was flexible (>70 % strain) to fit into wound bed under compressive stress without causing harm. In vitro studies using L929 fibroblasts elucidated PUL side was anti-adhesive and removable. Synergistic effect of VtC&VtE on antioxidant activity, wound closure, and collagen synthesis was observed. Thus, BC/PUL-VtC/VtE hold promise as cheap and eco-friendly temporary wound dressing.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayten Karataş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34758, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
11
|
Peled S, Livney YD. Oligosaccharide-lactoferrin shell-crosslinked particles for selective targeting of proteins to probiotic bacteria in the colon. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Zhu C, Tang N, Gan J, Zhang X, Li Y, Jia X, Cheng Y. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (γ-glutamic acid): Synthesis, characterization and swelling behavior. Int J Biol Macromol 2021; 185:229-239. [PMID: 34119552 DOI: 10.1016/j.ijbiomac.2021.06.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022]
Abstract
A novel pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared by using konjac glucomannan (KGM) and poly (γ-glutamic acid) (γ-PGA) with sodium trimetaphosphate (STMP) as the crosslinking agent. The structure of the semi-IPN hydrogels was characterized by FTIR spectra, thermogravimetric analysis (TGA), X-ray diffraction (XRD), rheological measurements, and scanning electron microscopy (SEM). The pH-sensitive effects were investigated by calculating the equilibrium swelling ratio (ESR) in buffer solutions (pH 2, 4, 6, and 8, respectively) at 37 °C. These results showed that the content of cross-linker and γ-PGA has a significant influence on the hydrogels' structure and swelling behavior. In vitro drug release behavior of semi-IPN hydrogels was investigated under simulated gastric and intestinal fluids using model drug Nicotinamide (NTM), and various models were applied to describe the drug release behaviors. The obtained results indicated that our synthesized semi-IPN hydrogel had the potential to be used as a suitable biomaterial carrier for functional components or drug delivery in the intestine.
Collapse
Affiliation(s)
- Chongyang Zhu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, PR China
| | - Xiaojun Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yang Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion. Carbohydr Polym 2021; 265:118066. [PMID: 33966830 DOI: 10.1016/j.carbpol.2021.118066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
This study aims to develop a novel intraperitoneal two- or three-layered patch with immunomodulatory property for treatment of hernia, regeneration of abdominal wall and prevention of intraperitoneal adhesions. Polypropylene (PP) mesh, middle layer, was intended to provide mechanical support whereas pullulan (PUL) hydrogel coating layer was designed to prevent intraperitoneal adhesions. Fibroin/chitosan oligosaccharide lactate (F/COS) layer electrospun on one side of pullulan was chosen for immunomodulation and abdominal wall regeneration. Physical and mechanical properties and regenerative capacity of intraperitoneal patches were determined. Immunomodulatory property of electrospun layer and whole patch was studied by determining nitric oxide amount produced by RAW 264.7 macrophages. 25 % (w/v) PUL hydrogel and F/COS with 90:10 (w/w) ratio yielded optimal results. Here, we report that fabricated intraperitoneal patches successfully prevented cell adhesion on one side and increased cell viability and proliferation on other side, along with immunomodulation, in vitro.
Collapse
|
14
|
Yoshiba K, Ujiie I, Yamamoto T, Dobashi T. Gel growth of aqueous konjac glucomannan solution containing sodium trimetaphosphate dialyzed with dilute sodium hydroxide. Carbohydr Polym 2021; 255:117329. [PMID: 33436172 DOI: 10.1016/j.carbpol.2020.117329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
The growth rate of the hydrogel of the aqueous konjac glucomannan (KGM) solution containing sodium trimetaphosphate (STMP) dialyzed with aqueous NaOH was investigated in a rectangular cell. The growth rate of the KGM-STMP gel depended on both the KGM and STMP concentrations in addition to the NaOH concentration. The initial growth rate of the KGM-STMP gel was closely related to the diffusion of NaOH into the KGM-STMP solution, leading to the ring-opening reaction of STMP and the deacetylation of KGM at the interface. The time course of the gelation of the KGM-STMP solution was analyzed on the basis of the moving boundary picture theory by introducing the characteristic length to express the consumption of NaOH in the gel layer accompanying the decomposition of STMP. Dynamic mechanical measurements were performed to compare the gelation of the KGM-STMP solution mixed homogeneously with dilute NaOH and the gel dynamics by the dialysis method.
Collapse
Affiliation(s)
- Kazuto Yoshiba
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Ikumi Ujiie
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Takao Yamamoto
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Toshiaki Dobashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
15
|
Simon-Yarza T, Labour MN, Aid R, Letourneur D. Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111369. [DOI: 10.1016/j.msec.2020.111369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
16
|
Yao Y, Zaw AM, Anderson DEJ, Hinds MT, Yim EKF. Fucoidan functionalization on poly(vinyl alcohol) hydrogels for improved endothelialization and hemocompatibility. Biomaterials 2020; 249:120011. [PMID: 32304872 PMCID: PMC7748769 DOI: 10.1016/j.biomaterials.2020.120011] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
The performance of clinical synthetic small diameter vascular grafts remains disappointing due to the fast occlusion caused by thrombosis and intimal hyperplasia formation. Poly(vinyl alcohol) (PVA) hydrogels have tunable mechanical properties and a low thrombogenic surface, which suggests its potential value as a small diameter vascular graft material. However, PVA does not support cell adhesion and thus requires surface modification to encourage endothelialization. This study presents a modification of PVA with fucoidan. Fucoidan is a sulfated polysaccharide with anticoagulant and antithrombotic properties, which was shown to potentially increase endothelial cell adhesion and proliferation. By mixing fucoidan with PVA and co-crosslinked by sodium trimetaphosphate (STMP), the modification was achieved without sacrificing mechanical properties. Endothelial cell adhesion and monolayer function were significantly enhanced by the fucoidan modification. In vitro and ex-vivo studies showed low platelet adhesion and activation and decreased thrombin generation with fucoidan modified PVA. The modification proved to be compatible with gamma sterilization. In vivo evaluation of fucoidan modified PVA grafts in rabbits exhibited increased patency rate, endothelialization, and reduced intimal hyperplasia formation. The fucoidan modification presented here benefited the development of PVA vascular grafts and can be adapted to other blood contacting surfaces.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
17
|
Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr Polym 2020; 245:116457. [PMID: 32718599 DOI: 10.1016/j.carbpol.2020.116457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.
Collapse
|
18
|
Labour MN, Le Guilcher C, Aid-Launais R, El Samad N, Lanouar S, Simon-Yarza T, Letourneur D. Development of 3D Hepatic Constructs Within Polysaccharide-Based Scaffolds with Tunable Properties. Int J Mol Sci 2020; 21:ijms21103644. [PMID: 32455711 PMCID: PMC7279349 DOI: 10.3390/ijms21103644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.
Collapse
Affiliation(s)
- Marie-Noëlle Labour
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- École Pratique des Hautes Études, Paris Sciences et Lettres (PSL) Research University, 4-14 rue Ferrus, 75014 Paris, France
| | - Camile Le Guilcher
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Rachida Aid-Launais
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM UMS-34, FRIM Université de Paris, X Bichat School of Medicine, F-75018 Paris, France
| | - Nour El Samad
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Soraya Lanouar
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Teresa Simon-Yarza
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- Correspondence:
| |
Collapse
|
19
|
Tabernero A, Cardea S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110940. [PMID: 32409086 DOI: 10.1016/j.msec.2020.110940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Microbial exopolysaccharides are polymers that show a great potential for biomedical applications, such as tissue engineering applications and drug delivery, due to their biocompatibility, biodegradability and their gelling properties. These polysaccharides are obtained from a microorganism culture with a relatively straightforward downstream process thanks to their extracellular character, and can be processed to obtain aerogels, fibers and micro- or nano-particles with conventional techniques. However, these techniques present several disadvantages in that they involve time-consuming processes and the use of toxic solvents. Supercritical carbon dioxide techniques can overcome these drawbacks, but their use for processing microbial exopolysaccharides is not extended in the scientific community. This review describes the most frequently used exopolysaccharides in biomedical applications and how they can be obtained, as well as the different supercritical carbon dioxide techniques that can be used for processing them and their challenges. Specifically, high pressure shows a great potential to process and sterilize exopolysaccharide biomaterials for biomedical applications (e.g. tissue engineering or drug delivery systems) in spite of the disadvantage concerning the hydrophilicity of this type of polymers.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, SA, Spain
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
20
|
Saeaeh K, Thummarungsan N, Paradee N, Choeichom P, Phasuksom K, Lerdwijitjarud W, Sirivat A. Soft and highly responsive multi-walled carbon nanotube/pullulan hydrogel composites as electroactive materials. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Adv Colloid Interface Sci 2019; 269:296-308. [PMID: 31128461 DOI: 10.1016/j.cis.2019.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.
Collapse
|
22
|
Wang Y, Su Q, Wang H, Zhao X, Liang S. Molded environment-friendly flame-retardant foaming material with high strength based on corn starch modified by crosslinking and grafting. J Appl Polym Sci 2018. [DOI: 10.1002/app.47193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanbin Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province; College of Chemical Engineering, Northwest Minzu University; Lanzhou 730030 People's Republic of China
| | - Qiong Su
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province; College of Chemical Engineering, Northwest Minzu University; Lanzhou 730030 People's Republic of China
| | - Hongling Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province; College of Chemical Engineering, Northwest Minzu University; Lanzhou 730030 People's Republic of China
| | - Xiangfei Zhao
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province; College of Chemical Engineering, Northwest Minzu University; Lanzhou 730030 People's Republic of China
| | - Shuang Liang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province; College of Chemical Engineering, Northwest Minzu University; Lanzhou 730030 People's Republic of China
| |
Collapse
|
23
|
Liu Z, Xu D, Xia N, Zhao X, Kong F, Wang S, Fatehi P. Preparation and Application of Phosphorylated Xylan as a Flocculant for Cationic Ethyl Violet Dye. Polymers (Basel) 2018; 10:E317. [PMID: 30966352 PMCID: PMC6414869 DOI: 10.3390/polym10030317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, phosphorylated birchwood xylan was produced under alkali conditions using trisodium trimetaphosphate. Three single-factor experiments were used to explore the influences of time, temperature, and the molar ratio of trisodium trimetaphosphate to xylan on the degree of substitution (DS) and charge density of xylan. The response surface methodology was used to explore the interaction of these three factors. Phosphorylated xylan with a maximum DS of 0.79 and a charge density of -3.40 mmol/g was produced under the optimal conditions of 80 °C, 4 h, and a molar ratio of xylan/sodium trimetaphosphate (STMP) of 1/3. Fourier transform infrared (FTIR), ascorbic acid method analyses, and inductively coupled plasma⁻atomic emission spectrometer (ICP-AES) analyses confirmed that the phosphate groups were successfully attached to xylan. Thermogravimetric analysis confirmed that phosphorylated xylan was less stable than birchwood xylan. Furthermore, the phosphorylated xylan was applied as a flocculant for removing ethyl violet dye from a simulated dye solution. The results indicated that more than 95% of the dye was removed from the solution. The theoretical and experimental values of charge neutralization for the dye removal were close to one another, confirming that charge neutralization was the main mechanism for the interaction of dye and phosphorylated xylan. The impacts of salts on the flocculation efficiency of phosphorylated xylan were also analyzed.
Collapse
Affiliation(s)
- Zhongming Liu
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Dingding Xu
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Nannan Xia
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xin Zhao
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shoujuan Wang
- Key Laboratory of Pulp & Paper Science and Technology Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
24
|
Riahi N, Liberelle B, Henry O, De Crescenzo G. Impact of RGD amount in dextran-based hydrogels for cell delivery. Carbohydr Polym 2017; 161:219-227. [DOI: 10.1016/j.carbpol.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/01/2023]
|
25
|
Rafe A, Razavi SM. Scaling law, fractal analysis and rheological characteristics of physical gels cross-linked with sodium trimetaphosphate. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Atila D, Keskin D, Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1103-15. [PMID: 27612808 DOI: 10.1016/j.msec.2016.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/23/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022]
Abstract
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P80/CA20, P50/CA50, and P20/CA80%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10min. Fiber morphologies of P50/CA50 were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P20/CA80 and P50/CA50 were higher than that of P80/CA20. After crosslinking strain values of P50/CA50 scaffolds were improved and these scaffolds became more stable. Unlike P80/CA20, uncrosslinked P50/CA50 and P20/CA80 were not lost in PBS. Among all groups, crosslinked P50/CA50 scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P50/CA50 scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P50/CA50 scaffolds were proposed as candidate cell carriers for bone tissue engineering applications.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey.
| |
Collapse
|
27
|
Wintgens V, Lorthioir C, Dubot P, Sébille B, Amiel C. Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate. Carbohydr Polym 2015; 132:80-8. [DOI: 10.1016/j.carbpol.2015.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
|
28
|
Jiang X, Nai MH, Lim CT, Le Visage C, Chan JKY, Chew SY. Polysaccharide nanofibers with variable compliance for directing cell fate. J Biomed Mater Res A 2014; 103:959-68. [DOI: 10.1002/jbm.a.35237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University; Singapore 138642
| | - Mui Hoon Nai
- Mechanobiology Institute, National University of Singapore; Singapore 117411
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore; Singapore 117411
- Department of Bioengineering; National University of Singapore; Singapore 117576
| | - Catherine Le Visage
- Inserm, U791, LIOAD, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes; Nantes France
| | - Jerry K. Y. Chan
- Department of Obstetrics and Gynecology; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 119074
- Department of Reproductive Medicine; KK Women's and Children's Hospital; Singapore 229899
- Cancer & Stem Cell Biology Program; Duke-NUS Graduate Medical School; Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University; Singapore 138642
| |
Collapse
|