1
|
Al-Hammood O, Oladzadabbasabadi N, Mohammed AH, Al-Musawi MH, PourvatanDoust S, Ghorbani M. Electrospun-modified xanthan gum nanofibers enhanced with nisin for food packaging applications. Int J Biol Macromol 2025; 307:141961. [PMID: 40074136 DOI: 10.1016/j.ijbiomac.2025.141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker. Conversely, nisin reduced MC to 25.13 ± 0.93 %, WS to 43.45 ± 4.32 %, and increased porosity to 61.5 ± 4.25 % and WVP to 1.75 ± 0.08 × 103 g/h·m2·Pa. Tensile strength significantly improved with higher nisin concentrations, rising from 10.8 ± 2.35 MPa to 20.31 ± 2.94 MPa, attributed to Schiff base crosslinking. Additionally, nisin-containing nanofibers exhibited enhanced antioxidant properties, increasing radical scavenging activity by 65 %. These findings highlight the potential of PVA/OXG/nisin-based nanofibers to address gaps in food packaging by offering robust mechanical strength, superior barrier properties, and bioactive functionality, paving the way for next-generation packaging solutions that extend shelf life and reduce environmental impact.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - Asmaa Hadi Mohammed
- Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Mastafa H Al-Musawi
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sepideh PourvatanDoust
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad. University, Tehran, Iran
| | - Marjan Ghorbani
- Iran Petrochemical Institute, P.O. Box: 1496/15, Tehran, Iran.
| |
Collapse
|
2
|
Singh V, Marimuthu T, Lesotho NF, Makatini MM, Ntombela T, Van Eyk A, Choonara YE. Synthesis of a retro-GFOGER Adamantane-Based Collagen Mimetic Peptide Imbibed in a Hyaluronic Acid Hydrogel for Enhanced Wound Healing. ACS APPLIED BIO MATERIALS 2025. [PMID: 39970309 DOI: 10.1021/acsabm.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This study reported the synthesis and formulation of an adamantane-based collagen mimetic peptide (CMP) hydrogel containing the integrin-binding motif retro-GFOGER, designed to enable the controlled delivery of CMPs with the ability of direct wound healing for the potential treatment of acute wounds. Initially, two adamantane-functionalized CMPs (peptides NL008 and NL010) were synthesized, characterized, and comparatively screened for their in vitro biocompatibility and bioactivity. In vitro evaluations of scratch closure and biocompatibility were assessed on human-derived keratinocytes. Release and permeation of the peptides were evaluated in vitro and ex vivo. Wound closure rates and histological evaluations were performed on male Sprague-Dawley rats over 3, 7, and 14 days for the NL010-HAgel formulation. Peptide NL010 was found to be the most suitable candidate among the adamantane CMPs. For a comparative study, peptide NL010 and its palmitic acid analogue, NL009, were loaded into a hyaluronic acid (HA) hydrogel and lyophilized. The CMP hydrogels exhibited porosity (<30 μm) and were viscoelastic solids. The physicomechanical properties of the formulations showed optimal characteristics for application as wound dressings in terms of textural profile. Peptide NL008 exhibited lower bioactivity and cell viability compared to NL009 and NL010 across various concentrations and cell lines. Peptide release from NL009-HAgel and NL010-HA gel was 74% and 83%, respectively. Across an ex vivo porcine skin membrane, the CMP-HAgel showed good permeation and was retained in the epidermis and superficial dermis. CMP-HAgel at 0.1% (w/v) showed better HaCaT cell viabilities. In vitro assays demonstrated that the NL010-HA gel achieved scratch closure (99.9%) within 24 h, while the NL009-HAgel showed scratch closure (93.7%) within the same time frame. In vivo, NL010-HAgel improved healing by enhancing epithelialization and granulation tissue deposition (via fibroblast and collagen responses). The findings of this study suggested that the CMP cell-instructive hydrogel is a promising platform with the potential to accelerate wound healing.
Collapse
Affiliation(s)
- Variksha Singh
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ntlama F Lesotho
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, Johannesburg 2050, South Africa
| | - Maya M Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, Johannesburg 2050, South Africa
| | - Thandokuhle Ntombela
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, Johannesburg 2050, South Africa
| | - Armorel Van Eyk
- Division of Pharmacology, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Ren C, Zhang S, Zhang Z, Li H, Sheng W, Wang X, Li P, Zhang X, Li X, Lin H, Duan H, Guan S, Wang L. Injectable and self-healing carboxymethyl chitosan/carboxymethyl cellulose/marine snail peptide hydrogel for infected wound healing. Int J Biol Macromol 2025; 288:138784. [PMID: 39675611 DOI: 10.1016/j.ijbiomac.2024.138784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Treatment of bacterial infected full-thickness wounds remains a great challenge in clinic. Herein, a HYP hydrogel was prepared using carboxymethyl chitosan, dialdehyde carboxymethyl cellulose, and marine snail peptide (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg) as starting materials. The marine snail peptide with good antioxidant activity could remove the reactive oxygen species in wound sites, thereby alleviating the excessive inflammatory response. The dynamic Schiff-base bonds endowed HYP with good injectable and self-healing abilities. HYP exhibited suitable gelation time, good rheological properties, and unique porosity structure, which were conducive to wound healing. In vitro biological studies indicated that HYP showed good biocompatibility, low hemolysis ratio, and improved antibacterial and antioxidant activities. In vivo study revealed that HYP could promote wound healing in a bacterial infected full-thickness skin defect rat model. The wound tissues showed reduced number of inflammatory cells, newly formed hair follicles, and obvious collagen deposition. The expression of inflammatory and angiogenesis related biomarkers (IL-6, IL-10, CD31, and α-SMA) significantly improved. Therefore, HYP hydrogel showed great application prospect as a wound dressing for bacterial infected wound.
Collapse
Affiliation(s)
- Chengkun Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Zhihan Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Li
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China; Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China.
| |
Collapse
|
4
|
Tokasi S, Mehrnia MR, Roudsari FP. Antibacterial gelatin/tragacanth gum films containing galbanum essential oil for in vitro scratch-healing. Int J Biol Macromol 2024; 281:136284. [PMID: 39368589 DOI: 10.1016/j.ijbiomac.2024.136284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Natural substances and bioactive agents possess great potential in wound care based on their ability to promote healing and prevent infection. This study focused on the fabrication of antibacterial wound dressings by combining gelatin (G), tragacanth gum (TG), and galbanum essential oil (GEO) as a loaded drug. TG addition resulted in more elastic and flexible films besides enabling encapsulation of the hydrophobic GEO into the biopolymeric matrix. GEO was utilized as an antibacterial and a wound-healing enhancer for open wounds such as incisions. Field emission scanning electron microscopy (FE-SEM) analysis revealed a porous film structure after GEO incorporation. Higher GEO concentration caused reduced swelling and slower degradation. Water vapor transfer rate varied from 596 to 894 g/m2.day, making the films suitable for wound dressings. GEO release exhibited a two-phase profile with prolonged diffusion-controlled release for a higher content of GEO. The films demonstrated dose-dependent antimicrobial activity against S. aureus and E. coli strains. Effectiveness and noteworthy application of this research were approved by scratch assay on human dermal fibroblast cells, and films with 3 % GEO showed 79.42 % wound closure, which is significantly higher than the control sample (55.15 %), indicating promoted cell migration and promising wound healing properties.
Collapse
Affiliation(s)
- Samin Tokasi
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563 Tehran, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563 Tehran, Iran.
| | | |
Collapse
|
5
|
Mujtaba AG, Toprak Ö, Karakeçili A. A grafting approach for nisin-chitosan bio-based antibacterial films: preparation and characterization. Biomed Mater 2024; 19:055029. [PMID: 39079550 DOI: 10.1088/1748-605x/ad6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognızed as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Institute of Biotechnology, Ankara University, Gümüşdere 60. Yıl Yerleşkesi, Keçiören, 06135 Ankara, Turkey
| | - Özge Toprak
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
| |
Collapse
|
6
|
Yuan X, Zhang J, Shi J, Liu W, Kritchenkov AS, Van Vlierberghe S, Wang L, Liu W, Gao J. Cotton Fabric-Reinforced Hydrogels with Excellent Mechanical and Broad-Spectrum Photothermal Antibacterial Properties. Polymers (Basel) 2024; 16:1346. [PMID: 38794537 PMCID: PMC11124890 DOI: 10.3390/polym16101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment.
Collapse
Affiliation(s)
- Xiangnan Yuan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jun Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jiayin Shi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Wenfu Liu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Andreii S. Kritchenkov
- Institute of Environmental Engineering, Department of Human Ecology and Bioelementology, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Technical Acoustics NAS of Belarus, 210009 Vitebsk, Belarus
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Wanjun Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Alishahi M, Aboelkheir M, Chowdhury R, Altier C, Shen H, Uyar T. Functionalization of cotton nonwoven with cyclodextrin/lawsone inclusion complex nanofibrous coating for antibacterial wound dressing. Int J Pharm 2024; 652:123815. [PMID: 38242260 DOI: 10.1016/j.ijpharm.2024.123815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-β-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of ∼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited ∼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
8
|
Qu H, Yao Q, Chen T, Wu H, Liu Y, Wang C, Dong A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv Colloid Interface Sci 2024; 325:103099. [PMID: 38330883 DOI: 10.1016/j.cis.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microbial contamination poses a serious threat to human life and health. Through the intersection of material science and modern medicine, advanced bionic hydrogels have shown great potential for biomedical applications due to their unique bioactivity and ability to mimic the extracellular matrix environment. In particular, as a promising antimicrobial material, the synthesis and practical biomedical applications of peptide-based antimicrobial hydrogels have drawn increasing research interest. The synergistic effect of peptides and hydrogels facilitate the controlled release of antimicrobial agents and mitigation of their biotoxicity while achieving antimicrobial effects and protecting the active agents from degradation. This review reports on the progress and trends of researches in the last five years and provides a brief outlook, aiming to provide theoretical background on peptide-based antimicrobial hydrogels and make suggestions for future related work.
Collapse
Affiliation(s)
- Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, People's Republic of China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
9
|
Mittal RK, Mishra R, Uddin R, Sharma V. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications. Curr Pharm Biotechnol 2024; 25:1436-1451. [PMID: 38288792 DOI: 10.2174/0113892010281021231229100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. METHODS Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. RESULTS The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. CONCLUSION In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Collapse
Affiliation(s)
- Ravi K Mittal
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Knowledge Park II, Greater Noida-201306, Uttar Pradesh, India
- GLA University, Mathura-281406, Uttar Pradesh, India
| | - Rehan Uddin
- Sir Madanlal Institute of Pharmacy, Etawah-206001 Uttar Pradesh, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| |
Collapse
|
10
|
Wu SY, Tsai WB. Development of an In Situ Photo-Crosslinking Antimicrobial Collagen Hydrogel for the Treatment of Infected Wounds. Polymers (Basel) 2023; 15:4701. [PMID: 38139953 PMCID: PMC10748037 DOI: 10.3390/polym15244701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial hydrogels have received considerable attention in the treatment of bacteria-infected wounds. Herein, we develop a neutral, soluble collagen via modification with maleic anhydride, serving as a hydrogel precursor. Maleic anhydride-modified collagen (ColME) could form a gel after exposure to UV light and be loaded with the antimicrobial agents, nisin and levofloxacin, to acquire antimicrobial ability. The ColME hydrogel containing nisin and levofloxacin had good cytocompatibility and effectively killed pathogenic bacterial strains, such as Escherichia coli and Staphylococcus aureus. The antimicrobial ColME hydrogels effectively supported the healing of a full-thickness skin wound infected with S. aureus in a mouse model. Our results demonstrate the potential of antimicrobial hydrogels as effective wound dressings via in situ photogelation for the healing of infected wounds.
Collapse
Affiliation(s)
- Song-Yi Wu
- Department of Chemical Engineering & Program of Green Materials and Precision Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan;
- Guangdong Victory Biotech Co., Ltd., 4F., A11, Guangdong New Light Source Industrial Park, Luocun, Shishan Town, Nanhai District, Foshan 528226, China
- Guangxi Shenguan Collagen Biological Group Company Limited, No. 39 Xijiang 4th Rd., Wuzhou 543099, China
| | - Wei-Bor Tsai
- Department of Chemical Engineering & Program of Green Materials and Precision Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan;
| |
Collapse
|
11
|
Fratini C, Weaver E, Moroni S, Irwin R, Dallal Bashi YH, Uddin S, Casettari L, Wylie MP, Lamprou DA. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. BIOMATERIALS ADVANCES 2023; 153:213557. [PMID: 37441958 DOI: 10.1016/j.bioadv.2023.213557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Costanza Fratini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Sofia Moroni
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton Park, Abingdon OX14 4RY, United Kingdom
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
12
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
13
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
14
|
Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int J Biol Macromol 2023; 240:124321. [PMID: 37019198 DOI: 10.1016/j.ijbiomac.2023.124321] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Wound healing is a complex project, and effectively promoting skin repair is a huge clinical challenge. Hydrogels have great prospect in the field of wound dressings because their physical properties are very similar to those of living tissue and have excellent properties such as high water content, oxygen permeability and softness. However, the single performance of traditional hydrogels limits their application as wound dressings. Therefore, natural polymers such as chitosan, alginate and hyaluronic acid, which are non-toxic and biocompatible, are individually or combined with other polymer materials, and loaded with typical drugs, bioactive molecules or nanomaterials. Then, the development of novel multifunctional hydrogel dressings with good antibacterial, self-healing, injectable and multi-stimulation responsiveness by using advanced technologies such as 3D printing, electrospinning and stem cell therapy has become a hot topic of current research. This paper focuses on the functional properties of novel multifunctional hydrogel dressings such as chitosan, alginate and hyaluronic acid, which lays the foundation for the research of novel hydrogel dressings with better performance.
Collapse
|
15
|
Jayakumar S, Philip J. Antimicrobial property of polyvinyl alcohol films containing extracts of Lawsonia inermis and Tamarindus indica. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
16
|
Shao M, Shi Z, Zhang X, Zhai B, Sun J. Synthesis and Properties of Biodegradable Hydrogel Based on Polysaccharide Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1358. [PMID: 36836988 PMCID: PMC9967607 DOI: 10.3390/ma16041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds, which result in significant pain in patients. At present, there is no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal wound dressing for medical nursing because of its abilities to absorb exudate and maintain wound wetting, its excellent biocompatibility, and its ability to provide a moist environment for wound repair. Because of these features, hydrogel overcomes the shortcomings of traditional dressings. Therefore, hydrogel has high medical value and is widely studied. In this study, a biodegradable hydrogel based on polysaccharide was synthesized and used as a wound dressing. The swelling degree and degradability of hydrogel were characterized as the characteristics of the wound dressing. The results showed that the prepared hydrogel was degraded with trypsin and in the soil environment. Furthermore, the wound dressing can effectively inhibit the bacterial environment, promote the deposition of the collagen structure of the wound tissue, and accelerate the healing of the wound. The proposed hydrogel has value in practical medical nursing application.
Collapse
|
17
|
Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater Today Bio 2022; 16:100429. [PMID: 36164504 PMCID: PMC9508611 DOI: 10.1016/j.mtbio.2022.100429] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
The wound healing process is usually susceptible to different bacterial infections due to the complex physiological environment, which significantly impairs wound healing. The topical application of antibiotics is not desirable for wound healing because the excessive use of antibiotics might cause bacteria to develop resistance and even the production of super bacteria, posing significant harm to human well-being. Wound dressings based on adhesive, biocompatible, and multi-functional hydrogels with natural antibacterial agents have been widely recognized as effective wound treatments. Hydrogels, which are three-dimensional (3D) polymer networks cross-linked through physical interactions or covalent bonds, are promising for topical antibacterial applications because of their excellent adhesion, antibacterial properties, and biocompatibility. To further improve the healing performance of hydrogels, various modification methods have been developed with superior biocompatibility, antibacterial activity, mechanical properties, and wound repair capabilities. This review summarizes hundreds of typical studies on various ingredients, preparation methods, antibacterial mechanisms, and internal antibacterial factors to understand adhesive hydrogels with natural antibacterial agents for wound dressings. Additionally, we provide prospects for adhesive and antibacterial hydrogels in biomedical applications and clinical research.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Minjun Bae
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| |
Collapse
|
18
|
Li H, Li Y, Wang Y, Liu L, Dong H, Zhang C, Satoh T. Physically crosslinked PAA/Lys-BPEA hydrogel with rapid self-healing and long-term antibacterial activities. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Chen T, Xu G, Bao J, Huang Y, Yang W, Hao W. One-pot preparation of hydrogel wound dressings from Bletilla Striata polysaccharide and polyurethane with dual network structure. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Fabrication of two hydrogels composites through the coupling of gelatin with ethyl vanillin/polyvinyl alcohol using electron beam irradiation for ciprofloxacin delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Liu J, Jiang W, Xu Q, Zheng Y. Progress in Antibacterial Hydrogel Dressing. Gels 2022; 8:503. [PMID: 36005104 PMCID: PMC9407327 DOI: 10.3390/gels8080503] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Antibacterial hydrogel has excellent antibacterial property and good biocompatibility, water absorption and water retention, swelling, high oxygen permeability, etc.; therefore, it widely applied in biomedicine, intelligent textiles, cosmetics, and other fields, especially for medical dressing. As a wound dressing, the antibacterial hydrogel has the characteristics of absorbing wound liquid, controlling drug release, being non-toxic, being without side effects, and not causing secondary injury to the wound. Its preparation method is simple, and can crosslink via covalent or non-covalent bond, such as γ-radiation croFsslinking, free radical polymerization, graft copolymerization, etc. The raw materials are easy to obtain; usually these include chondroitin sulfate, sodium alginate, polyvinyl alcohol, etc., with different raw materials being used for different antibacterial modes. According to the hydrogel matrix and antibacterial mode, the preparation method, performance, antibacterial mechanism, and classification of antibacterial hydrogels are summarized in this paper, and the future development direction of the antibacterial hydrogel as wound dressing is proposed.
Collapse
Affiliation(s)
- Jie Liu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| | - Wenqi Jiang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Qianyue Xu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Yongjie Zheng
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
22
|
Aboelmagd LA, Tolba E, AbdelAziz ZA. Chitosan-organosilica hybrid decorated with silver nanoparticles for antimicrobial wearable cotton fabrics. Polym Bull (Berl) 2022; 80:4229-4243. [PMID: 35601986 PMCID: PMC9110278 DOI: 10.1007/s00289-022-04250-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 10/25/2022]
Abstract
Functional cotton fabrics using silver-based nanoparticles (AgNPs) have attracted a lot of attention as a new generation of healthcare wearable textile. In this study, cotton fabrics were coated via impregnation with silver nanoparticles using chitosan (Cs) and (or) chitosan-organosilica (Cs-OSH) solutions as adhesives matrices. The physicochemical properties were studied using UV-VIS spectroscopy, and transmission electron microscopy (TEM) and scanning electron microscope coupled with energy-dispersive X-ray spectroscopy methods (SEM-EDX). The antibacterial activity of the silver-treated fabrics was determined using agar diffusion method. However, nanosize spherical AgNPs were observed in Cs and Cs-OSH solution. The average particle diameter was around 10 nm for Cs/AgNPs sample and close 21 nm for Cs-OSH/AgNPs. Microscopy images showed the deposition of Ag NPs on the surface of cotton fibers. The results indicated that the cotton fibers treated with Cs-OSH/AgNPs solution showed good stability against washing and maintained higher antimicrobial activity even after being exposed to 10 consecutive home laundering conditions. Thus, this work suggests the use of chitosan-organosilicon matrix to improve the bonding between AgNPs and cotton fibers for better and long-term antimicrobial activity.
Collapse
Affiliation(s)
- Lamis Ahmed Aboelmagd
- Home Economics Department, Faculty of Specific Education, Mansoura University, Mansoura, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. BOX 12622, Giza, Egypt
| | - Zeinab Ahmed AbdelAziz
- Home Economics Department, Faculty of Specific Education, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep 2022; 12:7213. [PMID: 35508533 PMCID: PMC9068811 DOI: 10.1038/s41598-022-11282-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14–198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.
Collapse
|
24
|
|
25
|
van Rensburg W, Rautenbach M. Creating Robust Antimicrobial Materials with Sticky Tyrocidines. Antibiotics (Basel) 2022; 11:antibiotics11020174. [PMID: 35203778 PMCID: PMC8868332 DOI: 10.3390/antibiotics11020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
Modified antimicrobial and antifouling materials and surfaces can be used to limit the propagation of microorganisms on various surfaces and minimise the occurrence of infection, transfer, and spoilage. Increased demand for ‘green’ solutions for material treatment has pushed the focus towards to naturally produced antimicrobials. Tyrocidines, cyclo-decapeptides naturally produced by a soil bacterium Brevibacillus parabrevis, have a broad spectrum of activity against Gram-positive and Gram-negative bacteria, filamentous fungi, and yeasts. Continual losses in tyrocidine production highlighted the possible association of peptides to surfaces. It was found in this study that tyrocidines readily associates with many materials, with a selectivity towards polysaccharide-type materials, such as cellulose. Peptide-treated cellulose was found to remain active after exposure to a broad pH range, various temperatures, salt solutions, water washes, and organic solvents, with the sterilising activity only affected by 1% SDS and 70% acetonitrile. Furthermore, a comparison to other antimicrobial peptides showed the association between tyrocidines and cellulose to be unique in terms of antimicrobial activity. The robust association between the tyrocidines and various materials holds great promise in applications focused on preventing surface contamination and creating self-sterilising materials.
Collapse
|
26
|
Reczyńska-Kolman K, Hartman K, Kwiecień K, Brzychczy-Włoch M, Pamuła E. Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. Int J Mol Sci 2021; 23:ijms23010321. [PMID: 35008746 PMCID: PMC8745171 DOI: 10.3390/ijms23010321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Due to growing antimicrobial resistance to antibiotics, novel methods of treatment of infected wounds are being searched for. The aim of this research was to develop a composite wound dressing based on natural polysaccharides, i.e., gellan gum (GG) and a mixture of GG and alginate (GG/Alg), containing lipid nanoparticles loaded with antibacterial peptide-nisin (NSN). NSN-loaded stearic acid-based nanoparticles (NP_NSN) were spherical with an average particle size of around 300 nm and were cytocompatible with L929 fibroblasts for up to 500 µg/mL. GG and GG/Alg sponges containing either free NSN (GG + NSN and GG/Alg + NSN) or NP_NSN (GG + NP_NSN and GG/Alg + NP_NSN) were highly porous with a high swelling capacity (swelling ratio above 2000%). Encapsulation of NSN within lipid nanoparticles significantly slowed down NSN release from GG-based samples for up to 24 h (as compared to GG + NSN). The most effective antimicrobial activity against Gram-positive Streptococcus pyogenes was observed for GG + NP_NSN, while in GG/Alg it was decreased by interactions between NSN and Alg, leading to NSN retention within the hydrogel matrix. All materials, except GG/Alg + NP_NSN, were cytocompatible with L929 fibroblasts and did not cause an observable delay in wound healing. We believe that the developed materials are promising for wound healing application and the treatment of bacterial infections in wounds.
Collapse
Affiliation(s)
- Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
- Correspondence: (K.R.-K.); (E.P.); Tel.: +48-126-172-338 (K.R.-K.); +48-12-617-44-48 (E.P.)
| | - Kinga Hartman
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, Ul. Czysta 18, 31-121 Kraków, Poland;
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
- Correspondence: (K.R.-K.); (E.P.); Tel.: +48-126-172-338 (K.R.-K.); +48-12-617-44-48 (E.P.)
| |
Collapse
|