1
|
Xu L, Li Y, Dai X, Jin X, Zhao Q, Tian B, Zhou Y. Symbiotic fungal inoculation promotes the growth of Pinus tabuliformis seedlings in relation to the applied nitrogen form. BMC PLANT BIOLOGY 2025; 25:10. [PMID: 39754061 PMCID: PMC11697505 DOI: 10.1186/s12870-024-05883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH4+/ NO3- ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts. In this study, the effects of four nitrogen sources, N free, NH4Cl, L-glutamic acid, and Na(NO3)2 (N-, NH4+-N, Org-N, and NO3--N) on four fungal species, Suillus granulatus (Sg), Pisolithus tinctorius (Pt), Pleotrichocladium opacum (Po), and Pseudopyrenochaeta sp. (Ps), which were isolated from the roots of Pinus tabulaeformis, were studied in vitro. The effects of inoculation with the four fungi on the growth performance, nutrient uptake and nitrogen metabolism-related enzymes of Pinus tabuliformis under different nitrogen source conditions were subsequently studied. RESULTS The biomass and N concentration of the Sg and Po strains were the highest under the NO3--N treatment, while the biomass and N concentration of the Pt and Ps strains were significantly greater under the NH4+-N and NO3--N treatments than under the Org-N and N- treatments. All four fungi could effectively colonize the roots of P. tabuliformis and formed a symbiotic relationship with it. Under all nitrogen conditions, the inoculation of the four fungi had positive effects on the growth, root development and nutrient concentration of the P. tabuliformis seedlings. Under the Org-N and NO3--N treatments, the nitrate reductase (NR) activity of the inoculated plants was significantly greater than that of the noninoculated control (CK) plants. Under all nitrogen conditions, the glutamine synthetase (GS) activity of the inoculated plants was significantly greater than that of the CK plants. CONCLUSIONS The four fungi can establish good symbiotic relationships with P. tabuliformis seedlings and promote their growth and development under different nitrogen source treatments.
Collapse
Affiliation(s)
- Lingjie Xu
- Hebei Agricultural University, Baoding, China
| | - Yanhui Li
- Hebei Agricultural University, Baoding, China
| | - Xiaoyu Dai
- Hebei Agricultural University, Baoding, China
| | - Xueyu Jin
- Hebei Agricultural University, Baoding, China
| | | | - Boyu Tian
- Hebei Agricultural University, Baoding, China
| | - Yong Zhou
- Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Zhang P, Zhang Y, Pang W, Alonazi MA, Alwathnani H, Rensing C, Xie R, Zhang T. Cenococcum geophilum impedes cadmium toxicity in Pinus massoniana by modulating nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174296. [PMID: 38944303 DOI: 10.1016/j.scitotenv.2024.174296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.
Collapse
Affiliation(s)
- Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhu Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Madeha A Alonazi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
4
|
Pena R, Bluhm SL, Ammerschubert S, Agüi-Gonzalez P, Rizzoli SO, Scheu S, Polle A. Mycorrhizal C/N ratio determines plant-derived carbon and nitrogen allocation to symbiosis. Commun Biol 2023; 6:1230. [PMID: 38053000 PMCID: PMC10698078 DOI: 10.1038/s42003-023-05591-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.
Collapse
Affiliation(s)
- Rodica Pena
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Sustainable Land Management, School of Agriculture Policy and Development, University of Reading, Reading, UK
| | - Sarah L Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Silke Ammerschubert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
6
|
Nuclear Genome Sequence and Gene Expression of an Intracellular Fungal Endophyte Stimulating the Growth of Cranberry Plants. J Fungi (Basel) 2023; 9:jof9010126. [PMID: 36675947 PMCID: PMC9861600 DOI: 10.3390/jof9010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Ericaceae thrive in poor soil, which we postulate is facilitated by microbes living inside those plants. Here, we investigate the growth stimulation of the American cranberry (Vaccinium macrocarpon) by one of its fungal endosymbionts, EC4. We show that the symbiont resides inside the epidermal root cells of the host but extends into the rhizosphere via its hyphae. Morphological classification of this fungus is ambiguous, but phylogenetic inference based on 28S rRNA identifies EC4 as a Codinaeella species (Chaetosphaeriaceae, Sordariomycetes, Ascomycetes). We sequenced the genome and transcriptome of EC4, providing the first 'Omics' information of a Chaetosphaeriaceae fungus. The 55.3-Mbp nuclear genome contains 17,582 potential protein-coding genes, of which nearly 500 have the capacity to promote plant growth. For comparing gene sets involved in biofertilization, we annotated the published genome assembly of the plant-growth-promoting Trichoderma hamatum. The number of proteins involved in phosphate transport and solubilization is similar in the two fungi. In contrast, EC4 has ~50% more genes associated with ammonium, nitrate/nitrite transport, and phytohormone synthesis. The expression of 36 presumed plant-growth-promoting EC4 genes is stimulated when the fungus is in contact with the plant. Thus, Omics and in-plantae tests make EC4 a promising candidate for cranberry biofertilization on nutrient-poor soils.
Collapse
|
7
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Khanal S, Schroeder L, Nava-Mercado OA, Mendoza H, Perlin MH. Role for nitrate assimilatory genes in virulence of Ustilago maydis. Fungal Biol 2021; 125:764-775. [PMID: 34537172 DOI: 10.1016/j.funbio.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.
Collapse
Affiliation(s)
- Sunita Khanal
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Luke Schroeder
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | | | - Hector Mendoza
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
9
|
Rani M, Jogawat A, Loha A. Sugar Transporters in Plant–Fungal Symbiosis. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tong J, Walk TC, Han P, Chen L, Shen X, Li Y, Gu C, Xie L, Hu X, Liao X, Qin L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC PLANT BIOLOGY 2020; 20:464. [PMID: 33036562 PMCID: PMC7547492 DOI: 10.1186/s12870-020-02648-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND High-affinity nitrate transporter 2 (NRT2) genes have been implicated in nitrate absorption and remobilization under nitrogen (N) starvation stress in many plant species, yet little is known about this gene family respond to various stresses often occurs in the production of rapeseed (Brassica napus L.). RESULTS This report details identification of 17 NRT2 gene family members in rapeseed, as well as, assessment of their expression profiles using RNA-seq analysis and qRT-PCR assays. In this study, all BnNRT2.1 members, BnNRT2.2a and BnNRT2.4a were specifically expressed in root tissues, while BnNRT2.7a and BnNRT2.7b were mainly expressed in aerial parts, including as the predominantly expressed NRT2 genes detected in seeds. This pattern of shoot NRT expression, along with homology to an Arabidopsis NRT expressed in seeds, strongly suggests that both BnNRT2.7 genes play roles in seed nitrate accumulation. Another rapeseed NRT, BnNRT2.5 s, exhibited intermediate expression, with transcripts detected in both shoot and root tissues. Functionality of BnNRT2s genes was further outlined by testing for adaptive responses in expression to exposure to a series of environmental stresses, including N, phosphorus (P) or potassium (K) deficiency, waterlogging and drought. In these tests, most NRT2 gene members were up-regulated by N starvation and restricted by the other stresses tested herein. In contrast to this overall trend, transcription of BnNRT2.1a was up-regulated under waterlogging and K deficiency stress, and BnNRT2.5 s was up-regulated in roots subjected to waterlogging. Furthermore, the mRNA levels of BnNRT2.7 s were enhanced under both waterlogging stress and P or K deficiency conditions. These results suggest that these three BnNRT2 genes might participate in crosstalk among different stress response pathways. CONCLUSIONS The results presented here outline a diverse set of NRT2 genes present in the rapeseed genome that collectively carry out specific functions throughout rapeseed development, while also responding not just to N deficiency, but also to several other stresses. Targeting of individual BnNRT2 members that coordinate rapeseed nitrate uptake and transport in response to cues from multiple stress response pathways could significantly expand the genetic resources available for improving rapeseed resistance to environmental stresses.
Collapse
Affiliation(s)
- Jiafeng Tong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | | | - Peipei Han
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Institute of Agriculture Science in Jiangsu Coastal Area, Yancheng, 224002, P. R. China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xinjie Shen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| |
Collapse
|
11
|
Stuart EK, Plett KL. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. FRONTIERS IN PLANT SCIENCE 2020; 10:1658. [PMID: 31993064 PMCID: PMC6971170 DOI: 10.3389/fpls.2019.01658] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023]
Abstract
Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.
Collapse
Affiliation(s)
| | - Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
12
|
Nehls U, Plassard C. Nitrogen and phosphate metabolism in ectomycorrhizas. THE NEW PHYTOLOGIST 2018; 220:1047-1058. [PMID: 29888395 DOI: 10.1111/nph.15257] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 05/23/2023]
Abstract
1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Bremen, 28359, Germany
| | - Claude Plassard
- Eco & Sols, Université de Montpellier, INRA, CIRAD, IRD, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
13
|
Liang L, Heveran C, Liu R, Gill RT, Nagarajan A, Cameron J, Hubler M, Srubar WV, Cook SM. Rational Control of Calcium Carbonate Precipitation by Engineered Escherichia coli. ACS Synth Biol 2018; 7:2497-2506. [PMID: 30384588 DOI: 10.1021/acssynbio.8b00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ureolytic bacteria ( e.g., Sporosarcina pasteurii) can produce calcium carbonate (CaCO3). Tailoring the size and shape of biogenic CaCO3 may increase the range of useful applications for these crystals. However, wild type Sporosarcina pasteurii is difficult to genetically engineer, limiting control of the organism and its crystal precipitates. Therefore, we designed, constructed, and compared different urease operons and expression levels for CaCO3 production in engineered Escherichia coli strains. We quantified urease expression and calcium uptake and characterized CaCO3 crystal phase and morphology for 13 engineered strains. There was a weak relationship between urease expression and crystal size, suggesting that genes surrounding the urease gene cluster affect crystal size. However, when evaluating strains with a wider range of urease expression levels, there was a negative relationship between urease activity and polycrystal size (e.g., larger crystals with lower activity). The resulting range of crystal morphologies created by the rationally designed strains demonstrates the potential for controlling biogenic CaCO3 precipitation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey Cameron
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | | | | | | |
Collapse
|
14
|
Back to the past—forever young: cutting-edge biochemical and microbiological tools for cultural heritage conservation. Appl Microbiol Biotechnol 2018; 102:6815-6825. [DOI: 10.1007/s00253-018-9121-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023]
|
15
|
Reynolds HT, Slot JC, Divon HH, Lysøe E, Proctor RH, Brown DW. Differential Retention of Gene Functions in a Secondary Metabolite Cluster. Mol Biol Evol 2017; 34:2002-2015. [DOI: 10.1093/molbev/msx145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Barraco-Vega M, Romero H, Richero M, Cerdeiras MP, Cecchetto G. Functional characterization of two novel purine transporters from the Basidiomycota Phanerochaete chrysosporium. Gene 2017; 601:1-10. [PMID: 27923672 DOI: 10.1016/j.gene.2016.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022]
Abstract
Purine transporters as substrate entry points in organisms, are involved in a number of cellular processes such as nitrogen source uptake, energy metabolism and synthesis of nucleic acids. In this study, two nucleobase transporter genes (phZ, phU) from Phanerochaete chrysosporium were cloned, identified, and functionally characterized. Our results show that PhZ is a transporter of adenine and hypoxanthine, and a protein belonging to the AzgA-like family, whilst PhU belongs to the NAT/NCS2 family, transporting xanthine and uric acid. No other sequences belonging to these families were detected in P. chrysosporium's genome. Phylogenetic analyses show that AzgA-like sequences form monophyletic groups for each major lineage (Ascomycota, Basidiomycota and Zygomycota). In contrast, Ascomycota and Basidiomycota NAT/NCS2 sequences do not form monophyletic groups and several copies of this protein are distributed across the tree. Expression of phU was significantly downregulated in the presence of a primary source like ammonium, and enhanced if purines were present or if the mycelium was nitrogen starved. phZ was clearly induced by its substrates (hypoxanthine, adenine), very lightly induced by xanthine, suppressed by urea and amino acids and expressed at a basal level when uric acid or ammonium was the nitrogen source or when the mycelium was starved for nitrogen. In order to perform substrate analyses, both P. chrysosporium proteins (PhZ, PhU) were expressed in Aspergillus nidulans. Epifluorescent microscopy showed that under inducing conditions, PhZ-GFP and PhU-GFP were present at the plasma membrane of A. nidulans transformed strains, and were internalized in repressed conditions. Our results suggest that in the white-rot fungus P. chrysosporium, phU has a catabolic role and phZ, (less dependent of the nitrogen source), plays a key role in purine acquisition to provide biosynthetic components. These are the first purine transporters characterized in Basidiomycota.
Collapse
Affiliation(s)
- Mariana Barraco-Vega
- Microbiología Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay.
| | - Héctor Romero
- Laboratorio de Organización y Evolución del Genoma, Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Mariana Richero
- Microbiología Instituto de Química Biológica, Facultad de Ciencias - Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - María Pía Cerdeiras
- Microbiología Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Gianna Cecchetto
- Microbiología Instituto de Química Biológica, Facultad de Ciencias - Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
17
|
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. THE NEW PHYTOLOGIST 2017; 213:365-379. [PMID: 27859287 DOI: 10.1111/nph.14279] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/19/2016] [Indexed: 05/03/2023]
Abstract
Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.
Collapse
Affiliation(s)
- Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Annegret Kohler
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Vasanth R Singan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Erika A Lindquist
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie W Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | | | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| |
Collapse
|
18
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
19
|
Phylogenomic analysis supports a recent change in nitrate assimilation in the White-nose Syndrome pathogen, Pseudogymnoascus destructans. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Abstract
Fungi contribute extensively to a wide range of ecosystem processes, including decomposition of organic carbon, deposition of recalcitrant carbon, and transformations of nitrogen and phosphorus. In this review, we discuss the current knowledge about physiological and morphological traits of fungi that directly influence these processes, and we describe the functional genes that encode these traits. In addition, we synthesize information from 157 whole fungal genomes in order to determine relationships among selected functional genes within fungal taxa. Ecosystem-related traits varied most at relatively coarse taxonomic levels. For example, we found that the maximum amount of variance for traits associated with carbon mineralization, nitrogen and phosphorus cycling, and stress tolerance could be explained at the levels of order to phylum. Moreover, suites of traits tended to co-occur within taxa. Specifically, the genetic capacities for traits that improve stress tolerance-β-glucan synthesis, trehalose production, and cold-induced RNA helicases-were positively related to one another, and they were more evident in yeasts. Traits that regulate the decomposition of complex organic matter-lignin peroxidases, cellobiohydrolases, and crystalline cellulases-were also positively related, but they were more strongly associated with free-living filamentous fungi. Altogether, these relationships provide evidence for two functional groups: stress tolerators, which may contribute to soil carbon accumulation via the production of recalcitrant compounds; and decomposers, which may reduce soil carbon stocks. It is possible that ecosystem functions, such as soil carbon storage, may be mediated by shifts in the fungal community between stress tolerators and decomposers in response to environmental changes, such as drought and warming.
Collapse
Affiliation(s)
- Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
21
|
Wisecaver JH, Rokas A. Fungal metabolic gene clusters-caravans traveling across genomes and environments. Front Microbiol 2015; 6:161. [PMID: 25784900 PMCID: PMC4347624 DOI: 10.3389/fmicb.2015.00161] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Metabolic gene clusters (MGCs), physically co-localized genes participating in the same metabolic pathway, are signature features of fungal genomes. MGCs are most often observed in specialized metabolism, having evolved in individual fungal lineages in response to specific ecological needs, such as the utilization of uncommon nutrients (e.g., galactose and allantoin) or the production of secondary metabolic antimicrobial compounds and virulence factors (e.g., aflatoxin and melanin). A flurry of recent studies has shown that several MGCs, whose functions are often associated with fungal virulence as well as with the evolutionary arms race between fungi and their competitors, have experienced horizontal gene transfer (HGT). In this review, after briefly introducing HGT as a source of gene innovation, we examine the evidence for HGT's involvement on the evolution of MGCs and, more generally of fungal metabolism, enumerate the molecular mechanisms that mediate such transfers and the ecological circumstances that favor them, as well as discuss the types of evidence required for inferring the presence of HGT in MGCs. The currently available examples indicate that transfers of entire MGCs have taken place between closely related fungal species as well as distant ones and that they sometimes involve large chromosomal segments. These results suggest that the HGT-mediated acquisition of novel metabolism is an ongoing and successful ecological strategy for many fungal species.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
22
|
Wisecaver JH, Slot JC, Rokas A. The evolution of fungal metabolic pathways. PLoS Genet 2014; 10:e1004816. [PMID: 25474404 PMCID: PMC4256263 DOI: 10.1371/journal.pgen.1004816] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/12/2014] [Indexed: 01/07/2023] Open
Abstract
Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.
Collapse
Affiliation(s)
- Jennifer H. Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason C. Slot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCS); (AR)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JCS); (AR)
| |
Collapse
|
23
|
Behie SW, Bidochka MJ. Nutrient transfer in plant-fungal symbioses. TRENDS IN PLANT SCIENCE 2014; 19:734-740. [PMID: 25022353 DOI: 10.1016/j.tplants.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Almost all plant species form symbioses with soil fungi, and nutrient transfer to plants is largely mediated through this partnership. Studies of fungal nutrient transfer to plants have largely focused on the transfer of limiting soil nutrients, such as nitrogen and phosphorous, by mycorrhizal fungi. However, certain fungal endophytes, such as Metarhizium and Beauveria, are also able to transfer nitrogen to their plant hosts. Here, we review recent studies that have identified genes and their encoded transporters involved in the movement of nitrogen, phosphorous, and nonlimiting soil nutrients between symbionts. These recent advances in our understanding could lead to applications in agricultural and horticultural settings, and to the development of model fungal systems that could further elucidate the role of fungi in these symbioses.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
24
|
Dhami NK, Reddy MS, Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 2014; 5:304. [PMID: 25018751 PMCID: PMC4071612 DOI: 10.3389/fmicb.2014.00304] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/03/2014] [Indexed: 11/13/2022] Open
Abstract
Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of biotic and abiotic factors. These causative agents have affected not only the esthetic appearance of these structures, but also lead to deterioration of their strength and durability. The present review emphasizes about different causative agents leading to deterioration and application of microbially induced calcium carbonate precipitation as a novel and potential technology for dealing with these problems. The study also sheds light on benefits of microbial carbonate binders over the traditional agents and future directions.
Collapse
Affiliation(s)
| | | | - Abhijit Mukherjee
- Department of Civil Engineering, Curtin University Perth, WA, Australia
| |
Collapse
|
25
|
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D. Biotrophic transportome in mutualistic plant-fungal interactions. MYCORRHIZA 2013; 23:597-625. [PMID: 23572325 DOI: 10.1007/s00572-013-0496-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a 'fair trade' between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant-fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.
Collapse
Affiliation(s)
- Leonardo Casieri
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garcia K, Haider MZ, Delteil A, Corratgé-Faillie C, Conéjero G, Tatry MV, Becquer A, Amenc L, Sentenac H, Plassard C, Zimmermann S. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Fungal Genet Biol 2013; 58-59:53-61. [DOI: 10.1016/j.fgb.2013.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
|
27
|
Kemppainen MJ, Pardo AG. LbNrt RNA silencing in the mycorrhizal symbiont Laccaria bicolor reveals a nitrate-independent regulatory role for a eukaryotic NRT2-type nitrate transporter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:353-366. [PMID: 23754716 DOI: 10.1111/1758-2229.12029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/13/2012] [Indexed: 06/02/2023]
Abstract
Fungal nitrogen metabolism plays a fundamental role in function of mycorrhizal symbiosis and consequently in nutrient cycling of terrestrial ecosystems. Despite its global ecological relevance the information on control and molecular regulation of nitrogen utilization in mycorrhizal fungi is very limited. We have extended the nitrate utilization RNA silencing studies of the model mycorrhizal basidiomycete, Laccaria bicolor, by altering the expression of LbNrt, the sole nitrate transporter-encoding gene of the fungus. Here we report the first nutrient transporter mutants for mycorrhizal fungi. Silencing of LbNrt results in fungal strains with minimal detectable LbNrt transcript levels, significantly reduced growth capacity on nitrate and altered symbiotic interaction with poplar. Transporter silencing also creates marked co-downregulation of whole Laccaria fHANT-AC (fungal high-affinity nitrate assimilation cluster). Most importantly, this effect on the nitrate utilization pathway appears independent of extracellular nitrate or nitrogen status of the fungus. Our results indicate a novel and central nitrate uptake-independent regulatory role for a eukaryotic nitrate transporter. The possible cellular mechanisms behind this regulation mode are discussed in the light of current knowledge on NRT2-type nitrate transporters in different eukaryotes.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
28
|
Avolio M, Müller T, Mpangara A, Fitz M, Becker B, Pauck A, Kirsch A, Wipf D. Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum. MYCORRHIZA 2012; 22:515-24. [PMID: 22302131 DOI: 10.1007/s00572-011-0428-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/20/2011] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.
Collapse
Affiliation(s)
- Meghan Avolio
- University Bonn, IZMB, Transport in Ectomycorrhiza, Kirschallee 1, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Horst RJ, Zeh C, Saur A, Sonnewald S, Sonnewald U, Voll LM. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth. EUKARYOTIC CELL 2012; 11:368-80. [PMID: 22247264 PMCID: PMC3294441 DOI: 10.1128/ec.05191-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
Abstract
Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis.
Collapse
Affiliation(s)
- Robin J Horst
- Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Siemens JA, Calvo-Polanco M, Zwiazek JJ. Hebeloma crustuliniforme facilitates ammonium and nitrate assimilation in trembling aspen (Populus tremuloides) seedlings. TREE PHYSIOLOGY 2011; 31:1238-1250. [PMID: 22011965 DOI: 10.1093/treephys/tpr104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study examined the role of ectomycorrhizal associations in nitrogen assimilation of Populus tremuloides seedlings. Seedlings were inoculated with Hebeloma crustuliniforme and compared with non-inoculated plants. Nitrogen-metabolizing enzymatic properties were also determined in H. crustuliniforme grown in sterile culture. The seedlings and fungal cultures were subjected to nitrogen treatments (including NO₃⁻, NH₄⁺ and a combination of NO₃⁻ + NH₄⁺) for 2 months to examine the effects on growth, nitrogen-assimilating enzyme activities and xylem sap concentrations of NH₄⁺ and NO₃⁻. Seedlings were also provided for 3 days with ¹⁵N-labeled NH₄⁺ and NO₃⁻, and leaf and root ¹⁵N content relative to total nitrogen was measured. Both NO₃⁻ and NH₄⁺ were effective in supporting seedling growth when either form was provided separately. When NO₃⁻ and NH₄⁺ were provided together, seedling growth decreased while enzymatic assimilation of NH₄⁺ increased. Additionally, nitrogen assimilation in inoculated seedlings was less affected by the form of nitrogen compared with non-inoculated plants. Fungal ability to enzymatically respond to and assimilate NH₄⁺ combined with aspen's enzymatic responsiveness to NO₃⁻ was likely the reason for efficient assimilation of both nitrogen forms by mycorrhizal plants.
Collapse
Affiliation(s)
- J Aurea Siemens
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB T6G2E3, Canada
| | | | | |
Collapse
|
31
|
Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME JOURNAL 2011; 5:1771-83. [PMID: 21562596 PMCID: PMC3197165 DOI: 10.1038/ismej.2011.53] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.
Collapse
|
32
|
Kemppainen MJ, Alvarez Crespo MC, Pardo AG. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by l-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:541-53. [PMID: 23766224 DOI: 10.1111/j.1758-2229.2009.00111.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In boreal and temperate forest ectomycorrhizal fungi play a crucial role in nitrogen cycling by assimilating nitrogenous compounds from soil and transferring them to tree hosts. The expression profile of fHANT-AC genes, nitrate transporter (Lbnrt), nitrate reductase (Lbnr) and nitrite reductase (Lbnir), responsible for nitrate utilization in the ectomycorrhizal fungus Laccaria bicolor, was studied on variable N regimens. The three genes were shown to be under a common regulation: repressed in the presence of ammonium while growth on nitrate resulted in high transcripts accumulation. The presence of nitrate was shown not to be indispensable for activation of Laccaria fHANT-AC as also N starvation and growth on urea and l-asparagine resulted in high transcript levels. Equally high expression of Laccaria fHANT-AC genes was detected in mycelia grown on variable concentrations of l-glutamine. This finding shows that in L. bicolor N metabolite repression of fHANT-AC is not signalled via l-glutamine like described in ascomycetes. The expression patterns of Lbnrt and Lbnir were also studied in an Lbnr RNA-silenced Laccaria strain. No differences were observed on the N source regulation or the degree of transcript accumulation of these genes, indicating that the presence of high nitrate reductase activity is not a core regulator of L. bicolor fHANT-AC expression. The simultaneous utilization of nitrate and organic N sources, already suggested by high transcript levels of Laccaria fHANT-AC genes on organic N, was supported by the increase of culture medium pH as a result of nitrate transporter activity. The possible ecological and evolutionary significance of the herein reported high regulatory flexibility of Laccaria nitrate utilization pathway for ectomycorrizal fungi and the ectomycorrhizal symbiosis is discussed.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352 (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | | | | |
Collapse
|
33
|
Slot JC, Hallstrom KN, Matheny PB, Hosaka K, Mueller G, Robertson DL, Hibbett DS. Phylogenetic, structural and functional diversification of nitrate transporters in three ecologically diverse clades of mushroom-forming fungi. FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2009.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Parrent JL, Peay K, Arnold AE, Comas LH, Avis P, Tuininga A. Moving from pattern to process in fungal symbioses: linking functional traits, community ecology and phylogenetics. THE NEW PHYTOLOGIST 2010; 185:882-886. [PMID: 20356343 DOI: 10.1111/j.1469-8137.2010.03190.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
35
|
Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS. Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 2009; 75:2266-74. [PMID: 19233951 PMCID: PMC2675211 DOI: 10.1128/aem.02142-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/08/2009] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins (MTs) are small cysteine-rich peptides involved in metal homeostasis and detoxification. We have characterized two MT genes, HcMT1 and HcMT2, from the ectomycorrhizal fungus Hebeloma cylindrosporum in this study. Expression of HcMT1 and HcMT2 in H. cylindrosporum under metal stress conditions was studied by competitive reverse transcription-PCR analysis. The full-length cDNAs were used to perform functional complementation in mutant strains of Saccharomyces cerevisiae. As revealed by heterologous complementation assays in yeast, HcMT1 and HcMT2 each encode a functional polypeptide capable of conferring increased tolerance against Cd and Cu, respectively. The expression levels of HcMT1 were observed to be at their maximum at 24 h, and they increased as a function of Cu concentration. HcMT2 was also induced by Cu, but the expression levels were lower than those for HcMT1. The mRNA accumulation of HcMT1 was not influenced by Cd, whereas Cd induced the transcription of HcMT2. Zn, Pb, and Ni did not affect the transcription of HcMT1 or of HcMT2. Southern blot analysis revealed that both of these genes are present as a single copy in H. cylindrosporum. While the promoters of both HcMT1 and HcMT2 contained the standard stress response elements implicated in the metal response, the numbers and varieties of potential regulatory elements were different in these promoters. These results show that ectomycorrhizal fungi encode different MTs and that each of them has a particular pattern of expression, suggesting that they play critical specific roles in improving the survival and growth of ectomycorrhizal trees in ecosystems contaminated by heavy metals.
Collapse
Affiliation(s)
- G Ramesh
- Thapar University, Department of Biotechnology, Bhadson Road, Patiala 147 004, India
| | | | | | | | | |
Collapse
|
36
|
Rékangalt D, Pépin R, Verner MC, Debaud JC, Marmeisse R, Fraissinet-Tachet L. Expression of the nitrate transporter nrt2 gene from the symbiotic basidiomycete Hebeloma cylindrosporum is affected by host plant and carbon sources. MYCORRHIZA 2009; 19:143-148. [PMID: 19125303 DOI: 10.1007/s00572-008-0221-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/10/2008] [Indexed: 05/27/2023]
Abstract
Although the function of the extramatrical mycelium of ectomycorrhizal fungi is considered essential for the acquisition of nitrogen by forest trees, gene regulation in this fungal compartment is poorly characterized. In this study, the expression of the nitrate transporter gene nrt2 from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum was shown to be regulated by plant host and carbon sources. In the presence of a low fructose concentration, nrt2 expression could not be detected in the free-living mycelium but was high in the extramatrical symbiotic mycelium associated to the host plant Pinus pinaster. In the absence of nitrogen or in the presence of nitrate, high sugar concentrations in the medium were able to enhance nrt2 expression. Nevertheless, in the presence of high fructose concentration, high ammonium concentration still completely repressed nrt2 expression indicating that the nitrogen repression overrides sugar stimulation. This is the first report revealing an effect of host plant and of carbon sources on the expression of a fungal nitrate transporter-encoding gene.
Collapse
Affiliation(s)
- David Rékangalt
- Université de Lyon, 69622, Lyon, France
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Régis Pépin
- Université de Lyon, 69622, Lyon, France
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Marie-Christine Verner
- Université de Lyon, 69622, Lyon, France
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Jean-Claude Debaud
- Université de Lyon, 69622, Lyon, France
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Roland Marmeisse
- Université de Lyon, 69622, Lyon, France
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Laurence Fraissinet-Tachet
- Université de Lyon, 69622, Lyon, France.
- CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne, Bât. Lwoff, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
37
|
Guescini M, Stocchi L, Sisti D, Zeppa S, Polidori E, Ceccaroli P, Saltarelli R, Stocchi V. Characterization and mRNA expression profile of the TbNre1 gene of the ectomycorrhizal fungus Tuber borchii. Curr Genet 2008; 55:59-68. [DOI: 10.1007/s00294-008-0222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/11/2008] [Accepted: 11/16/2008] [Indexed: 11/30/2022]
|
38
|
Nygren CMR, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AFS. Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. THE NEW PHYTOLOGIST 2008; 180:875-889. [PMID: 18783355 DOI: 10.1111/j.1469-8137.2008.02618.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ectomycorrhizal (ECM) fungi are often considered to be most prevalent under conditions where organic sources of N predominate. However, ECM fungi are increasingly exposed to nitrate from anthropogenic sources. Currently, the ability of ECM fungi to metabolize this nitrate is poorly understood. Here, growth was examined among 106 isolates, representing 68 species, of ECM fungi on nitrate as the sole N source. In addition, the occurrence of genes coding for the nitrate reductase enzyme (nar gene) in a broad range of ectomycorrhizal fungi was investigated. All isolates grew on nitrate, but there was a strong taxonomic signature in the biomass production, with the Russulaceae and Amanita showing the lowest growth. Thirty-five partial nar sequences were obtained from 43 tested strains comprising 31 species and 10 genera. These taxa represent three out of the four clades of the Agaricales within which ECM fungi occur. No nar sequences were recovered from the Russulaceae and Amanita, but Southern hybridization showed that the genes were present. The results demonstrate that the ability to utilize nitrate as an N source is widespread in ECM fungi, even in those fungi from boreal forests where the supply of nitrate may be very low.
Collapse
Affiliation(s)
- Cajsa M R Nygren
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, PO Box 7026, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
39
|
Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. A gene repertoire for nitrogen transporters in Laccaria bicolor. THE NEW PHYTOLOGIST 2008; 180:343-364. [PMID: 18665901 DOI: 10.1111/j.1469-8137.2008.02580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhizal interactions established between the root systems of terrestrial plants and hyphae from soil-borne fungi are the most ecologically widespread plant symbioses. The efficient uptake of a broad range of nitrogen (N) compounds by the fungal symbiont and their further transfer to the host plant is a major feature of this symbiosis. Nevertheless, we far from understand which N form is preferentially transferred and what are the key molecular determinants required for this transfer. Exhaustive in silico analysis of N-compound transporter families were performed within the genome of the ectomycorrhizal model fungus Laccaria bicolor. A broad phylogenetic approach was undertaken for all families and gene regulation was investigated using whole-genome expression arrays. A repertoire of proteins involved in the transport of N compounds in L. bicolor was established that revealed the presence of at least 128 gene models in the genome of L. bicolor. Phylogenetic comparisons with other basidiomycete genomes highlighted the remarkable expansion of some families. Whole-genome expression arrays indicate that 92% of these gene models showed detectable transcript levels. This work represents a major advance in the establishment of a transportome blueprint at a symbiotic interface, which will guide future experiments.
Collapse
Affiliation(s)
- Eva Lucic
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Claire Fourrey
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annegret Kohler
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Francis Martin
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Michel Chalot
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annick Brun-Jacob
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
40
|
Slot JC, Hibbett DS. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2007; 2:e1097. [PMID: 17971860 PMCID: PMC2040219 DOI: 10.1371/journal.pone.0001097] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/08/2007] [Indexed: 11/19/2022] Open
Abstract
High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biology, Clark University, Worcester, Massachusetts, United States of America.
| | | |
Collapse
|
41
|
Gobert A, Plassard C. Kinetics of NO3(-) net fluxes in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association, as affected by the presence of NO3(-) and NH4+. PLANT, CELL & ENVIRONMENT 2007; 30:1309-19. [PMID: 17727420 DOI: 10.1111/j.1365-3040.2007.01705.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The impact of mineral N supply, N-free or NO3(-) with or without NH4+, on the subsequent uptake of NO3(-) by maritime pine seedlings associated with the ectomycorrhizal fungus Rhizopogon roseolus was studied using ion-selective microelectrodes. NO3(-) net fluxes into N-starved non-mycorrhizal short roots (NMSRs) were low and measurable only over the NO3(-) concentration range of 0-70 microM. The simple kinetics observed in those roots may reflect the dominant operation of a high-affinity NO3(-) transport system (HATS) which is constitutive. NO3(-) pretreatment increased the NO3(-) net fluxes and led to a complex kinetics that may reflect the operation of other HATS. A simple kinetics was observed in plants pre-incubated at high NH4+ concentration. In contrast, NO3(-) uptake kinetics presented only one saturation phase in the fungus, whether associated with the plant or not. NO3(-) uptake was greater after a pretreatment in N-free or NO3 (-) solution, but NH4+ pretreatment led to a threefold reduction in NO3 (-) uptake. These results suggest that the regulation of NO3(-) transport systems varies between the host and the fungal partner. This variation is likely to contribute to the positive effect of mycorrhizal association on N uptake in plants when the N supply is low and fluctuating.
Collapse
Affiliation(s)
- Anthony Gobert
- UMR 1222 INRA/SupAgro, Rhizosphère & Symbiose, 2, Place Viala, 34060 Montpellier Cedex 01, France
| | | |
Collapse
|
42
|
Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H. Molecular and functional characterization of a Na(+)-K(+) transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 2007; 282:26057-66. [PMID: 17626012 DOI: 10.1074/jbc.m611613200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectomycorrhizal symbiosis between fungi and woody plants strongly improves plant mineral nutrition and constitutes a major biological process in natural ecosystems. Molecular identification and functional characterization of fungal transport systems involved in nutrient uptake are crucial steps toward understanding the improvement of plant nutrition and the symbiotic relationship itself. In the present report a transporter belonging to the Trk family is identified in the model ectomycorrhizal fungus Hebeloma cylindrosporum and named HcTrk1. The Trk family is still poorly characterized, although it plays crucial roles in K(+) transport in yeasts and filamentous fungi. In Saccharomyces cerevisiae K(+) uptake is mainly dependent on the activity of Trk transporters thought to mediate H(+):K(+) symport. The ectomycorrhizal HcTrk1 transporter was functional when expressed in Xenopus oocytes, enabling the first electrophysiological characterization of a transporter from the Trk family. HcTrk1 mediates instantaneously activating inwardly rectifying currents, is permeable to both K(+) and Na(+), and displays channel-like functional properties. The whole set of data and particularly a phenomenon reminiscent of the anomalous mole fraction effect suggest that the transport does not occur according to the classical alternating access model. Permeation appears to occur through a single-file pore, where interactions between Na(+) and K(+) might result in Na(+):K(+) co-transport activity. HcTrk1 is expressed in external hyphae that explore the soil when the fungus grows in symbiotic condition. Thus, it could play a major role in both the K(+) and Na(+) nutrition of the fungus (and of the plant) in nutrient-poor soils.
Collapse
Affiliation(s)
- Claire Corratgé
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, CNRS/INRA/SupAgro/UM2 and Rhizosphère and Symbiose, UMR1222 INRA/SupAgro, Place Viala, F-34060 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Slot JC, Hallstrom KN, Matheny PB, Hibbett DS. Diversification of NRT2 and the Origin of Its Fungal Homolog. Mol Biol Evol 2007; 24:1731-43. [PMID: 17513882 DOI: 10.1093/molbev/msm098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the origin and diversification of the high-affinity nitrate transporter NRT2 in fungi and other eukaryotes using Bayesian and maximum parsimony methods. To assess the higher-level relationships and origins of NRT2 in eukaryotes, we analyzed 200 amino acid sequences from the Nitrate/Nitrite Porter (NNP) Family (to which NRT2 belongs), including 55 fungal, 41 viridiplantae (green plants), 11 heterokonts (stramenopiles), and 87 bacterial sequences. To assess evolution of NRT2 within fungi and other eukaryotes, we analyzed 116 amino acid sequences of NRT2 from 58 fungi, 40 viridiplantae (green plants), 1 rhodophyte, and 5 heterokonts, rooted with 12 bacterial sequences. Our results support a single origin of eukaryotic NRT2 from 1 of several clades of mostly proteobacterial NNP transporters. The phylogeny of bacterial NNP transporters does not directly correspond with bacterial taxonomy, apparently due to ancient duplications and/or horizontal gene transfer events. The distribution of NRT2 in the eukaryotes is patchy, but the NRT2 phylogeny nonetheless supports the monophyly of major groups such as viridiplantae, flowering plants, monocots, and eudicots, as well as fungi, ascomycetes, basidiomycetes, and agaric mushrooms. At least 1 secondary origin of eukaryotic NRT2 via horizontal transfer to the fungi is suggested, possibly from a heterokont donor. Our analyses also suggest that there has been a horizontal transfer of nrt2 from a basidiomycete fungus to an ascomycete fungus and reveal a duplication of nrt2 in the ectomycorrhizal mushroom genus, Hebeloma.
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biology, Clark University, MA, USA.
| | | | | | | |
Collapse
|
44
|
Rekangalt D, Verner MC, Kües U, Walser PJ, Marmeisse R, Debaud JC, Fraissinet-Tachet L. Green fluorescent protein expression in the symbiotic basidiomycete fungusHebeloma cylindrosporum. FEMS Microbiol Lett 2007; 268:67-72. [PMID: 17263849 DOI: 10.1111/j.1574-6968.2006.00564.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The symbiotic basidiomycete Hebeloma cylindrosporum is a model fungal species used to study ectomycorrhizal symbiosis at the molecular level. In order to have a vital marker, we developed a green fluorescent protein (GFP) reporter system efficiently expressed in H. cylindrosporum using the sgfp coding region bordered by two introns fused to the saprophytic basidiomycete Coprinopsis cinerea cgl1 promoter. Expression of this reporter system was tested under different environmental conditions in two transformants, and glucose was shown to repress gfp expression. Such a reporter system will be used in plant-fungus interaction to evaluate sugar supply by the plant to the compatible mycorrhizal symbiont and to compare the expression of various genes of interest in the free-living mycelia, in the symbiotic (mycorrhizas) and the reproductive (fruit bodies) structures formed by H. cylindrosporum.
Collapse
Affiliation(s)
- David Rekangalt
- Université de Lyon, Université Lyon 1, Ecologie Microbienne (UMR CNRS 5557, USC INRA 1193), Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Kosola KR, Workmaster BAA, Spada PA. Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx. THE NEW PHYTOLOGIST 2007; 176:184-196. [PMID: 17803649 DOI: 10.1111/j.1469-8137.2007.02149.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite the ubiquitous presence of ericoid mycorrhizal (ERM) fungi in cranberry (Vaccinium macrocarpon), no prior studies have examined the effect of ERM colonization on NO(3)(-) influx kinetics. Here, (15)NO(3)(-) influx was measured in nonmycorrhizal and mycorrhizal cranberry in hydroponics. Mycorrhizal cranberry were inoculated with the ERM fungus Rhizoscyphus (syn. Hymenoscyphus) ericae. (15)NO(3)(-) influx by R. ericae in solution culture was also measured. Rhizoscyphus ericae NO(3)(-) influx kinetics were linear when mycelium was exposed for 24 h to 3.8 mm NH(4)(+), and saturable when pretreated with 3.8 mm NO(3)(-), 50 microm NO(3)(-), or 50 microm NH(4)(+). Both low-N pretreatments induced greater NO(3)(-) influx than either of the high-N pretreatments. Nonmycorrhizal cranberry exhibited linear NO(3)(-) influx kinetics. By contrast, mycorrhizal cranberry had saturable NO(3)(-) influx kinetics, with c. eightfold greater NO(3)(-) influx than nonmycorrhizal cranberry at NO(3)(-) concentrations from 20 microm to 2 mm. There was no influence of pretreatments on cranberry NO(3)(-) influx kinetics, regardless of mycorrhizal status. Inoculation with R. ericae increased the capacity of cranberry to utilize NO(3)(-)-N. This finding is significant both for understanding the potential nutrient niche breadth of cranberry and for management of cultivated cranberry when irrigation water sources contain nitrate.
Collapse
Affiliation(s)
- Kevin R Kosola
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| | - Beth Ann A Workmaster
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| | - Piero A Spada
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
46
|
Bailly J, Debaud JC, Verner MC, Plassard C, Chalot M, Marmeisse R, Fraissinet-Tachet L. How does a symbiotic fungus modulate expression of its host-plant nitrite reductase? THE NEW PHYTOLOGIST 2007; 175:155-165. [PMID: 17547675 DOI: 10.1111/j.1469-8137.2007.02066.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
* In the mycorrhizal association, changes in the metabolic activities expressed by the plant and fungal partners could result from modulations in the quantity and nature of nutrients available at the plant-fungus interface. This hypothesis was tested for the nitrite reductase gene in the association Hebeloma cylindrosporumxPinus pinaster. * Transcripts from plant and fungal nitrite reductases and a fungal ammonium transporter were quantified in control uninoculated roots, extraradical mycelia and mycorrhizas formed by either wild-type or nitrate reductase deficient fungal strains. * The fungal genes were downregulated in mycorrhizas compared with extraradical hyphae. The plant nitrite reductase was induced only transiently by NO(3)(-) in the association with a wild-type strain, but permanently expressed at a high level in mycorrhizas formed by the deficient mutant. * These results suggest that reduced nitrogen compounds transferred from the fungus to the root cortical cells repress the plant nitrite reductase, thus highlighting a plant gene regulation by the nutrients available in the Hartig net.
Collapse
Affiliation(s)
- Julie Bailly
- Université de Lyon, Lyon, F-69003, France; Université Lyon1, Lyon, F-69003, France; IFR 41, Lyon, Villeurbanne, F-69622, France; Laboratoire CNRS, UMR5557, USC INRA 1193, Ecologie Microbienne, Bâtiment A. Lwoff, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Jean-Claude Debaud
- Université de Lyon, Lyon, F-69003, France; Université Lyon1, Lyon, F-69003, France; IFR 41, Lyon, Villeurbanne, F-69622, France; Laboratoire CNRS, UMR5557, USC INRA 1193, Ecologie Microbienne, Bâtiment A. Lwoff, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Marie-Christine Verner
- Université de Lyon, Lyon, F-69003, France; Université Lyon1, Lyon, F-69003, France; IFR 41, Lyon, Villeurbanne, F-69622, France; Laboratoire CNRS, UMR5557, USC INRA 1193, Ecologie Microbienne, Bâtiment A. Lwoff, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Claude Plassard
- INRA, UMR 1222, Rhizosphère & Symbiose, 2 Place Viala, F-34060 Montpellier Cedex 01, France
| | - Michel Chalot
- Nancy-University, Research Unit 1136 INRA/UHP 'Tree-microbe Interactions', BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Roland Marmeisse
- Université de Lyon, Lyon, F-69003, France; Université Lyon1, Lyon, F-69003, France; IFR 41, Lyon, Villeurbanne, F-69622, France; Laboratoire CNRS, UMR5557, USC INRA 1193, Ecologie Microbienne, Bâtiment A. Lwoff, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Laurence Fraissinet-Tachet
- Université de Lyon, Lyon, F-69003, France; Université Lyon1, Lyon, F-69003, France; IFR 41, Lyon, Villeurbanne, F-69622, France; Laboratoire CNRS, UMR5557, USC INRA 1193, Ecologie Microbienne, Bâtiment A. Lwoff, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
47
|
Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V. The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr Genet 2006; 51:31-41. [PMID: 17082947 DOI: 10.1007/s00294-006-0105-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/02/2006] [Accepted: 10/07/2006] [Indexed: 11/25/2022]
Abstract
Ectomycorrhizal symbiosis is a ubiquitous association between plant roots and numerous fungal species. One of the main aspects of the ectomycorrhizal association are the regulation mechanisms of fungal genes involved in nitrogen acquisition. We report on the genomic organisation of the nitrate gene cluster and functional regulation of tbnir1, the nitrite reductase gene of the ectomycorrhizal ascomycete Tuber borchii. The sequence data demonstrate that clustering also occurs in this ectomycorrhizal fungus. Within the TBNIR1 protein sequence, we identified three functional domains at conserved positions: the FAD box, the NADPH box and the two (Fe/S)-siroheme binding site signatures. We demonstrated that tbnir1 presents an expression pattern comparable to that of nitrate transporter. In fact, we found a strong down-regulation in the presence of primary nitrogen sources and a marked tbnir1 mRNA accumulation following transfer to either nitrate or nitrogen limited conditions. The real-time PCR assays of tbnir1 and nitrate transporter revealed that both nitrate transporter and nitrite reductase expression levels are about 15-fold and 10-fold higher in ectomycorrhizal tissues than in control mycelia, respectively. The results reported herein suggest that the symbiotic fungus Tuber borchii contributes to improving the host plant's ability to make use of nitrate/nitrite in its nitrogen nutrition.
Collapse
Affiliation(s)
- M Guescini
- Institute of Biological Chemistry G. Fornaini, University of Urbino Carlo Bo, Via Saffi, 2, 61029 Urbino (PU), Italy
| | | | | | | | | | | |
Collapse
|
48
|
Montanini B, Gabella S, Abbà S, Peter M, Kohler A, Bonfante P, Chalot M, Martin F, Ottonello S. Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 2006; 43:630-41. [PMID: 16698294 DOI: 10.1016/j.fgb.2006.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 03/31/2006] [Accepted: 04/02/2006] [Indexed: 01/04/2023]
Abstract
The focus of this work is on the nitrogen starvation stress responses operating in a plant symbiotic fungus. A cDNA array profiling analysis was conducted on N-limited mycelia of the mycorrhizal ascomycete Tuber borchii. Fifty-one unique transcripts, out of 2062 redundant arrayed cDNAs, were differentially expressed by at least 1.5-fold in response to N deprivation. Only two N assimilation components-a nitrate transporter and a high-affinity ammonium transporter-were found among differentially expressed genes. All the other N status responsive genes code for as yet unidentified hypothetical proteins or components not directly involved in N assimilation or metabolism, especially carbohydrate binding proteins and oligosaccharide as well as lipid modifying enzymes. A subset of cDNA array data were confirmed and extended by Northern blot analysis, which showed that most of the latter components respond not only to nitrogen, but also to carbon source depletion.
Collapse
Affiliation(s)
- Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D. Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. MYCORRHIZA 2006; 16:437-442. [PMID: 16912848 DOI: 10.1007/s00572-006-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 05/09/2006] [Indexed: 05/11/2023]
Abstract
Hebeloma cylindrosporum is a model fungus for mycorrhizal studies because of its fast growth rate, simple nutritional requirements, and completion of its life cycle in vitro, and because it is amenable to transformation. To advance cell biological research during establishment of symbiosis, a tool that would enable the direct visualisation of fusion proteins in the different symbiotic tissues [namely, the expression of reporter genes such as Green Fluorescent Protein (GFP)] was still a missing tool. In the present study, H. cylindrosporum was transformed using Agrobacterium carrying the binary plasmid pBGgHg containing the Escherichia coli hygromycin B phosphotransferase (hph) and the EGFP genes, both under the control of the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter. EGFP expression was successfully detected in transformants. The fluorescence was uniformly distributed in the hyphae, while no significant background signal was detected in control hyphae. The suitability of EGFP for reporter gene studies in Hebeloma cylindrosporum was demonstrated opening up new perspectives in the Hebeloma genetics.
Collapse
Affiliation(s)
- Tobias Müller
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Mariam Benjdia
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Meghan Avolio
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Boris Voigt
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Diedrik Menzel
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Alejandro Pardo
- Programa de Investigacion en Interacciones Biologicas, Universidad Nacional de Quilmes, Roque Saenz Peña 180, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Wolf B Frommer
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Daniel Wipf
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany.
| |
Collapse
|
50
|
Montanini B, Viscomi A, Bolchi A, Martin Y, Siverio J, Balestrini R, Bonfante P, Ottonello S. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochem J 2006; 394:125-34. [PMID: 16201972 PMCID: PMC1386010 DOI: 10.1042/bj20051199] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/12/2005] [Accepted: 10/05/2005] [Indexed: 11/17/2022]
Abstract
Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (K(m)=4.7 microM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils.
Collapse
Key Words
- gene regulation
- hansenula polymorpha
- mycorrhiza
- nitrate/nitrite transport
- nitrogen deficiency
- tuber borchii nrt2 family transporter (tbnrt2)
- est, expressed sequence tag
- gst, glutathione s-transferase
- mfs, major facilitator superfamily
- ncbi, national center for biotechnology information
- nin/out, n-terminus intracellular/extracellular
- nir, nitrite reductase
- nr, nitrate reductase
- ns, nitrate signature
- nt, nitrate transporter
- orf, open reading frame
- ssm, synthetic solid medium
- tbnrt2,tuber borchii nrt2 family transporter
- tm, transmembrane
Collapse
Affiliation(s)
- Barbara Montanini
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Arturo R. Viscomi
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Angelo Bolchi
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | - Yusé Martin
- †Instituto Universitario de Enfermedades Tropicales y Salud Pública, Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206, La Laguna, Spain
| | - José M. Siverio
- †Instituto Universitario de Enfermedades Tropicales y Salud Pública, Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206, La Laguna, Spain
| | - Raffaella Balestrini
- ‡Dipartimento di Biologia Vegetale, Università di Torino and Istituto per la Protezione delle Piante (Sezione di Micologia), Consiglio Nazionale delle Ricerche, 10125 Torino, Italy
| | - Paola Bonfante
- ‡Dipartimento di Biologia Vegetale, Università di Torino and Istituto per la Protezione delle Piante (Sezione di Micologia), Consiglio Nazionale delle Ricerche, 10125 Torino, Italy
| | - Simone Ottonello
- *Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| |
Collapse
|