1
|
Ayala Schimpf AR, Ortellado LE, Gamarra MD, Fonseca MI, Zapata PD. Catalytic function of the laccase enzyme in response to chlorpyrifos and 2,4-dichlorophenoxyacetic acid: behavior in controlled and simulated environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61927-61949. [PMID: 39455518 DOI: 10.1007/s11356-024-35260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Enzymes secreted by white-rot fungi, such as laccase, offer a promising solution for treating xenobiotic compounds dangerous to the environment and human health. This study aimed to perform a comprehensive analysis of the tolerance of Pleurotus pulmonarius LBM 105 and its laccase activity toward the pesticides 2,4-D and chlorpyrifos both in vitro and in silico. The fungal strain was able to grow in different concentrations of the pesticides, showing evident morphological alterations. Laccase activity and a 53 kDa electromorph were present in all treatments, showing significant stability with peak activity achieved at a pH of 5.6 and within a temperature range of 50-60 °C. Three laccase genes were mapped, annotated, and characterized from the genome. PplacI obtained better structural validation and affinity energy of - 5.05 and - 7.65 kcal mol-1 with 2,4-D and chlorpyrifos, respectively. The Molecular Mechanics/Poisson-Boltzmann Surface Area analysis at 250 ns confirmed the docking results, revealing the existence of stronger hydrophobic interactions between laccase and chlorpyrifos and highlighting the importance of the Phe341 residue in stabilizing both complexes. Understanding the impact of pesticides on laccase's catalytic function is key to formulating and applying future biotechnological strategies with this enzyme.
Collapse
Affiliation(s)
- Alan Rolando Ayala Schimpf
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - Laura Ester Ortellado
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Marcelo Daniel Gamarra
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
| | - María Isabel Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bucchieri D, Mangiagalli M, Martani F, Butti P, Lotti M, Serra I, Branduardi P. A novel laccase from Trametes polyzona with high performance in the decolorization of textile dyes. AMB Express 2024; 14:32. [PMID: 38506984 PMCID: PMC10954600 DOI: 10.1186/s13568-024-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Laccases are multicopper oxidases able to oxidize several phenolic compounds and find application in numerous industrial applications. Among laccase producers, white-rot fungi represent a valuable source of multiple isoforms and isoenzymes of these multicopper oxidases. Here we describe the identification, biochemical characterization, and application of laccase 2 from Trametes polyzona (TP-Lac2), a basidiomycete fungus emerged among others that have been screened by plate assay. This enzyme has an optimal temperature of 50 °C and in acidic conditions it is able to oxidize both phenolic and non-phenolic compounds. The ability of TP-Lac2 to decolorize textile dyes was tested in the presence of natural and synthetic mediators at 30 °C and 50 °C. Our results indicate that TP-Lac2 most efficiently decolorizes (decolorization rate > 75%) malachite green oxalate, orange G, amido black10B and bromocresol purple in the presence of acetosyringone and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate)-ABTS. Overall, the laccase mediator system consisting of TP-Lac2 and the natural mediator acetosyringone has potential as an environmentally friendly alternative for wastewater treatment in the textile industry.
Collapse
Affiliation(s)
- Daniela Bucchieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
- Department of Material Science and Nanotechnology, CORIMAV Program, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Pietro Butti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy.
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| |
Collapse
|
3
|
Ganji F, Mojerlou S, Safaie N. Evaluation of copper-tolerant fungi isolated from Sarcheshmeh copper mine of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110715-110724. [PMID: 37792187 DOI: 10.1007/s11356-023-30135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Mycoremediation, a subset of bioremediation, is considered an advanced method to eliminate environmental contaminations. To identify tolerant fungi to copper contamination and study the related gene expression, sampling was carried out from the soil of "Sarcheshmeh Copper Mine," which is one of the biggest open-cast copper mines in the world. A total of 71 fungal isolates were obtained and purified. Afterward, the inhibitory effect of different concentrations (1000, 1500, 3500, 4000, and 5500 ppm) of copper sulfate on mycelial growth was evaluated. Results indicated that only 5500 ppm of copper sulfate inhibited fungal growth compared to the control. Based on the bioassay experiments, three isolates including S3-1, S3-21, and S1-7, which were able to grow on solid and broth medium containing 5500 ppm of copper sulfate at different pH conditions, were selected and identified using molecular approaches. Also, laccase and metallothionein gene expression has been assessed in these isolates. According to the molecular identification using ITS1-5.8S- ITS2 region, isolates S3-1 and S1-7 were identified as Pleurotus eryngii, and isolate S3-21 belonged to the genus Sarocladium. In addition, P. eryngii showed laccase gene expression reduction after 8 days of exposure to copper sulfate. While in the genus Sarocladium, it increased (almost 2 times) from 6 to 8 days. Besides, metallothionein gene expression has increased from 6 to 8 days of copper sulfate treatment compared to the control which reveals its role in copper tolerance of all studied isolates. In this study, Pleurotus eryngii and Sarocladium sp. are introduced as heavy metal tolerant fungi and the related gene expression to copper tolerance was studied for the first time in Iran.
Collapse
Affiliation(s)
- Ferdos Ganji
- Department of Biotechnology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Shideh Mojerlou
- Department of Horticulture and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, P. O. Box: 3619995161, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Zhang LB, Yang WWJ, Qiu TT. Genome-wide study of Cerrena unicolor 87613 laccase gene family and their mode prediction in association with substrate oxidation. BMC Genomics 2023; 24:504. [PMID: 37649000 PMCID: PMC10466755 DOI: 10.1186/s12864-023-09606-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Laccases are green biocatalysts with wide industrial applications. The study of efficient and specific laccase producers remains a priority. Cerrena species have been shown to be promising basidiomycete candidates for laccase production. Although two sets of Cerrena genome data have been publicly published, no comprehensive bioinformatics study of laccase gene family in C. unicolor has been reported, particularly concerning the analysis of their three-dimensional (3D) structures and molecular docking to substrates, like ABTS and aflatoxin B1 (AFB1). RESULTS In this study, we conducted a comprehensive genome-wide analysis of laccase gene family in C. unicolor 87613. We identified eighteen laccase genes (CuLacs) and classified them into three clades using phylogenetic analysis. We characterized these laccases, including their location in contig 5,6,9,12,15,19,26,27, gene structures of different exon-intron arrangements, molecular weight ranging from 47.89 to 141.41 kDa, acidic pI value, 5-15 conserved protein motifs, signaling peptide of extracellular secretion (harbored by 13 CuLacs) and others. In addition, the analysis of cis-acting element in laccase promoters indicated that the transcription response of CuLac gene family was regulatable and complex under different environmental cues. Furthermore, analysis of transcription pattern revealed that CuLac8, 12 and CuLac2, 13 were the predominant laccases in response to copper ions or oxidative stress, respectively. Finally, we focused on the 3D structure analysis of CuLac proteins. Seven laccases with extra transmembrane domains or special sequences were particularly interesting. Predicted structures of each CuLac protein with or without these extra sequences showed altered interacting amino acid residues and binding sites, leading to varied affinities to both ABTS and AFB1. As far as we know, it is the first time to discuss the influence of the extra sequence on laccase's affinity to substrates. CONCLUSIONS Our findings provide robust genetic data for a better understanding of the laccase gene family in C. unicolor 87613, and create a foundation for the molecular redesign of CuLac proteins to enhance their industrial applications.
Collapse
Affiliation(s)
- Long-Bin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Wu-Wei-Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Ting-Ting Qiu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| |
Collapse
|
5
|
Barh A, Sharma K, Bhatt P, Annepu SK, Nath M, Shirur M, Kumari B, Kaundal K, Kamal S, Sharma VP, Gupta S, Sharma A, Gupta M, Dutta U. Identification of Key Regulatory Pathways of Basidiocarp Formation in Pleurotus spp. Using Modeling, Simulation and System Biology Studies. J Fungi (Basel) 2022; 8:jof8101073. [PMID: 36294638 PMCID: PMC9604897 DOI: 10.3390/jof8101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pleurotus (Oyster mushroom) is an important cultivated edible mushroom across the world. It has several therapeutic effects as it contains various useful bio-molecules. The cultivation and crop management of these basidiomycete fungi depends on many extrinsic and intrinsic factors such as substrate composition, growing environment, enzymatic properties, and the genetic makeup, etc. Moreover, for efficient crop production, a comprehensive understanding of the fundamental properties viz. intrinsic–extrinsic factors and genotype-environment interaction analysis is required. The present study explores the basidiocarp formation biology in Pleurotus mushroom using an in silico response to the environmental factors and involvement of the major regulatory genes. The predictive model developed in this study indicates involvement of the key regulatory pathways in the pinhead to fruit body development process. Notably, the major regulatory pathways involved in the conversion of mycelium aggregation to pinhead formation and White Collar protein (PoWC1) binding flavin-chromophore (FAD) to activate respiratory enzymes. Overall, cell differentiation and higher expression of respiratory enzymes are the two important steps for basidiocarp formation. PoWC1 and pofst genes were participate in the structural changes process. Besides this, the PoWC1 gene is also involved in the respiratory requirement, while the OLYA6 gene is the triggering point of fruiting. The findings of the present study could be utilized to understand the detailed mechanism associated with the basidiocarp formation and to cultivate mushrooms at a sustainable level.
Collapse
Affiliation(s)
- Anupam Barh
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
- Correspondence: (A.B.); (S.K.A.)
| | - Kanika Sharma
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Sudheer Kumar Annepu
- ICAR-Indian Institute of Soil and Water Conservation, Research Center, Udhagamandalam 643 006, India
- Correspondence: (A.B.); (S.K.A.)
| | - Manoj Nath
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Mahantesh Shirur
- National Institute of Agricultural Extension Management (MANAGE), Hyderabad 500 030, India
| | - Babita Kumari
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Kirti Kaundal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Shwet Kamal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | | | - Sachin Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Annu Sharma
- Department of Plant Pathology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan 173 230, India
| | - Moni Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Upma Dutta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| |
Collapse
|
6
|
Durán-Sequeda D, Suspes D, Maestre E, Alfaro M, Perez G, Ramírez L, Pisabarro AG, Sierra R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J Fungi (Basel) 2021; 8:jof8010007. [PMID: 35049947 PMCID: PMC8780821 DOI: 10.3390/jof8010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.
Collapse
Affiliation(s)
- Dinary Durán-Sequeda
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Daniela Suspes
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Estibenson Maestre
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Gumer Perez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Antonio G. Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Rocío Sierra
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| |
Collapse
|
7
|
Chun J, Ko YH, Kim DH. Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica. J Microbiol 2021; 60:57-62. [PMID: 34826098 DOI: 10.1007/s12275-022-1498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Laccase3 is an important virulence factor of the fungus Cryphonectria parasitica. Laccase3 gene (lac3) transcription is induced by tannic acid, a group of phenolic compounds found in chestnut trees, and its induction is regulated by the hypovirus CHV1 infection. CpHsp24, a small heat shock protein gene of C. parasitica, plays a determinative role in stress adaptation and pathogen virulence. Having uncovered in our previous study that transcriptional regulation of the CpHsp24 gene in response to tannic acid supplementation and CHV1 infection was similar to that of the lac3, and that conserved phenotypic changes of reduced virulence were observed in mutants of both genes, we inferred that both genes were implicated in a common pathway. Building on this finding, in this paper we examined whether the CpHsp24 protein (CpHSP24) was a molecular chaperone for the lac3 protein (LAC3). Our pull-down experiment indicated that the protein products of the two genes directly interacted with each other. Heterologous co-expression of CpHsp24 and lac3 genes using Saccharomyces cerevisiae resulted in more laccase activity in the cotransformant than in a parental lac3-expresssing yeast strain. These findings suggest that CpHSP24 is, in fact, a molecular chaperone for the LAC3, which is critical component of fungal pathogenesis.
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Zhang Q, Yuan C, Wang F, Xu S, Li Y, Shi G, Ding Z. Roles of Small Subunits of Laccase (ssPOXA3a/b) in Laccase Production by Pleurotus eryngii var. ferulae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13113-13124. [PMID: 34696587 DOI: 10.1021/acs.jafc.1c04777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The small subunit, ssPOXA3a/b, and the large subunit, POXA3, are indispensable components of typical heterodimeric laccase (Lacc2) in white rot fungi. However, the enzymatic and biological functions of ssPOXA3a/b remain unclear. The present study revealed that neither ssPOXA3a nor ssPOXA3b per se has a catalytic ability, whereas their combination with POXA3 (and especially ssPOXA3b) enhances the activity, thermostability, and pH stability of POXA3. In Pleurotus eryngii var. ferulae, there was no regulatory relationship between ssPOXA3a/b and POXA3 at the transcriptional level. However, sspoxa3a/b overexpression had a negative feedback effect on lacc6 transcription. By contrast, poxa3 transcripts had no effect on any other laccase isoenzyme. Overexpression of sspoxa3a/b resulted in small fungal pellets, thin mycelial walls, and facilitated laccase secretion. However, poxa3 overexpression had no influence on pellet morphology. Collectively, this work elucidated the functions of ssPOXA3a/b and laid an empirical foundation for the development of high-yield laccase.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chang Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
9
|
Jeong YS, So KK, Lee JH, Kim JM, Chun GT, Chun J, Kim DH. Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae. MYCOBIOLOGY 2019; 47:512-520. [PMID: 32010473 PMCID: PMC6968546 DOI: 10.1080/12298093.2019.1661566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 °C, pH 3.5, 100 rpm, and 1 vvm in batch culture.
Collapse
Affiliation(s)
- Yong-Seob Jeong
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Korea
| | - Kum-Kang So
- Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Ju-Hee Lee
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Korea
| | - Gie-Taek Chun
- Department of Molecular Biology, Kangwon National University, Chuncheon, Korea
| | - Jeesun Chun
- Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Dae-Hyuk Kim
- Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
10
|
Rational design for fungal laccase production in the model host Aspergillus nidulans. SCIENCE CHINA-LIFE SCIENCES 2018; 62:84-94. [DOI: 10.1007/s11427-017-9304-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
|
11
|
Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin. Molecules 2018; 23:molecules23040880. [PMID: 29641470 PMCID: PMC6017272 DOI: 10.3390/molecules23040880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/17/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. Although some PoLacs have been reported in several studies, still no comprehensive bioinformatics study of the LAC family in Pleurotus ostreatus has been reported. In this study, we identified 12 laccase genes in the whole genome sequence of P. ostreatus and their physical characteristics, gene distribution, phylogenic relationships, gene structure, conserved motifs, and cis-elements were also analyzed. The expression patterns of 12 PoLac genes at different developmental stages and under different culture substrates were also analyzed. The results revealed that PoLac2 and PoLac12 may be involved in the degradation of lignin and the formation of the fruiting body, respectively. Subsequently, we overexpressed PoLac2 in P. ostreatus by the Agrobacterium tumefaciens-mediated transformation (ATMT) method. The transformants' laccase activity increased in varying degrees, and the gene expression level of PoLac2 in transformants was 2-8 times higher than that of the wild-type strain. Furthermore, the lignin degradation rate by transgenic fungus over 30 days was 2.36-6.3% higher than that of wild-type. Our data show that overexpression of PoLac2 significantly enhanced the lignin degradation of cotton-straw. To our knowledge, this study is the first report to demonstrate the functions of PoLac2 in P. ostreatus.
Collapse
|
12
|
Piscitelli A, Tarallo V, Guarino L, Sannia G, Birolo L, Pezzella C. New lipases by mining of Pleurotus ostreatus genome. PLoS One 2017; 12:e0185377. [PMID: 28945798 PMCID: PMC5612753 DOI: 10.1371/journal.pone.0185377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369), expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the “true lipase” family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
- * E-mail:
| | - Vincenzo Tarallo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Lucia Guarino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Leyla Birolo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
13
|
Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhuo R, Yuan P, Yang Y, Zhang S, Ma F, Zhang X. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
PİNAR O, TAMERLER C, YAZGAN KARATAŞ A. Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443. Turk J Biol 2017. [DOI: 10.3906/biy-1605-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
16
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
17
|
Garrido-Bazán V, Téllez-Téllez M, Herrera-Estrella A, Díaz-Godínez G, Nava-Galicia S, Villalobos-López MÁ, Arroyo-Becerra A, Bibbins-Martínez M. Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express 2016; 6:93. [PMID: 27718214 PMCID: PMC5055507 DOI: 10.1186/s13568-016-0263-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 09/01/2023] Open
Abstract
This research was conducted to extend the knowledge on the differential regulation of laccase genes in response to dyes. In order to accomplish this, we analyzed both, the expression of five laccase genes by real time RT-qPCR, and also the laccase activity and isoforms patterns during the time-course of a Pleurotus ostreatus submerged fermentation supplemented with either acetyl yellow G (AYG) or remazol brilliant blue R (RBBR) dyes. For the purpose of obtaining a stable reference gene for optimal normalization of RT-quantitative PCR gene expression assays, we tested four candidate reference genes. As a result of this analysis, gpd was selected as reference index for data normalization. The addition of dyes had an induction effect on the enzymatic activity and also modified the zymogram profile. Fermentation with RBBR showed the highest laccase activity and number of isoforms along the course of the fermentation. Laccase gene expression profiles displayed up/down regulation along the fermentation time in four laccase genes (pox4, pox3, poxa1b and pox2), while pox1 was not expressed in either of the fermentation conditions. AYG addition caused the highest induction and repression levels for genes pox3 and poxa1b respectively. The expression level for all genes in the presence of RBBR were lower than in AYG, being in both conditions this response growth time dependent. These results show the influence of the nature of dyes on the induction level of laccase activity and on the differential regulation of the laccase genes expression in P. ostreatus.
Collapse
|
18
|
Kaur K, Singh G, Gupta V, Capalash N, Sharma P. Impact of phosphate and other medium components on physiological regulation of bacterial laccase production. Biotechnol Prog 2016; 33:541-548. [PMID: 27863181 DOI: 10.1002/btpr.2408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022]
Abstract
Laccases are multicopper oxidases known to catalyze the transformation of a wide range of phenolic and non-phenolic substrates using oxygen as electron acceptor and forming water as the only by product. Their potential relevance in several industries requires the constant search for novel laccases. Positive outcome of the isolation of laccase producing bacteria depends on the nature and concentration of media constituents. Several attempts to isolate laccase producing bacteria failed when the phosphate-containing M9 minimal medium was used. Shift to phosphate-less M162 medium led to successful isolations. Seven bacterial isolates belonging to genera Bacillus, Lysinibacillus, Bhargavaea and Rheinheimera were used to study the effect of medium constituents on laccase production. Inorganic phosphate (≥50 mM) was found to regulate laccase synthesis negatively though no inhibitory effect of phosphate (10-500 mM) was seen on laccase activity. All isolates ceased laccase synthesis when grown in the presence of tryptone (0.2-1%), with R. tangshanensis as an exception, or yeast extract (1.5-2%) as the only C/N source in M162 medium. Supplementation upto 0.1% of glucose in basal M162 medium increased laccase production in five isolates but decreased at higher concentrations. The influence of medium components on laccase synthesis was further affirmed by zymographic studies. These observations offer possibilities of isolating promising laccase producers from diverse environmental sources. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:541-548, 2017.
Collapse
Affiliation(s)
- Kavleen Kaur
- Dept. of Microbiology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Biotechnology Branch, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Vijaya Gupta
- Dept. of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Dept. of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Dept. of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis. Molecules 2016; 21:molecules21081017. [PMID: 27527131 PMCID: PMC6273318 DOI: 10.3390/molecules21081017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1-8) from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases.
Collapse
|
20
|
Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lu Y, Wu G, Lian L, Guo L, Wang W, Yang Z, Miao J, Chen B, Xie B. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation. Int J Mol Sci 2015; 16:28498-509. [PMID: 26633374 PMCID: PMC4691058 DOI: 10.3390/ijms161226111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea.
Collapse
Affiliation(s)
- Yuanping Lu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guangmei Wu
- College of Horticulture Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingdan Lian
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lixian Guo
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Wang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiyun Yang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Juan Miao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bingzhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
An H, Wei D, Xiao T. Transcriptional profiles of laccase genes in the brown rot fungus Postia placenta MAD-R-698. J Microbiol 2015; 53:606-15. [DOI: 10.1007/s12275-015-4705-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
23
|
Yang J, Ng TB, Lin J, Ye X. A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. Int J Biol Macromol 2015; 77:344-9. [PMID: 25825077 DOI: 10.1016/j.ijbiomac.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
A novel laccase gene Lac1 and its cDNA were cloned from a white-rot fungus Cerrena sp. and characterized. The 1554-bp cDNA of Lac1 encoded a mature protein with 497 amino acids, preceded by a signal peptide of 20 amino acids. An unconventional intron splice site and incomplete splicing variants of Lac1 were observed. Lac1 was heterologously expressed in the yeast host Pichia pastoris, and a maximal laccase activity of 6.3UmL(-1) in the fermentation broth was achieved after fermentation for 9 days. The recombinant protein rLac1 was purified, and its enzymatic properties and functional characteristics were investigated. When ABTS was used as the substrate, the enzyme was most active at pH 3.5 and 55°C, and stable at pH 4-10 and 20-60°C. The Km and kcat values of rLac1 toward ABTS were 28.9 μM and 332.4s(-1), respectively. Furthermore, rLac1 was tolerant to common metal ions up to 100mM concentration and capable of decolorizing structurally different dyes in the absence of a redox mediator. Hence, Lac1 may be useful for industrial applications, such as dye decolorization and bioremediation.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juan Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China.
| |
Collapse
|
24
|
Knop D, Yarden O, Hadar Y. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 2014; 99:1025-38. [PMID: 25503316 DOI: 10.1007/s00253-014-6256-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.
Collapse
Affiliation(s)
- Doriv Knop
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | |
Collapse
|
25
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
26
|
Kim HI, Kwon OC, Kong WS, Lee CS, Park YJ. Genome-Wide Identification and Characterization of Novel Laccase Genes in the White-Rot Fungus Flammulina velutipes. MYCOBIOLOGY 2014; 42:322-330. [PMID: 25606003 PMCID: PMC4298835 DOI: 10.5941/myco.2014.42.4.322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/09/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to identify and characterize new Flammulina velutipes laccases from its whole-genome sequence. Of the 15 putative laccase genes detected in the F. velutipes genome, four new laccase genes (fvLac-1, fvLac-2, fvLac3, and fvLac-4) were found to contain four complete copper-binding regions (ten histidine residues and one cysteine residue) and four cysteine residues involved in forming disulfide bridges, fvLac-1, fvLac-2, fvLac3, and fvLac-4, encoding proteins consisting of 516, 518, 515, and 533 amino acid residues, respectively. Potential N-glycosylation sites (Asn-Xaa-Ser/Thr) were identified in the cDNA sequence of fvLac-1 (Asn-454), fvLac-2 (Asn-437 and Asn-455), fvLac-3 (Asn-111 and Asn-237), and fvLac4 (Asn-402 and Asn-457). In addition, the first 19~20 amino acid residues of these proteins were predicted to comprise signal peptides. Laccase activity assays and reverse transcription polymerase chain reaction analyses clearly reveal that CuSO4 affects the induction and the transcription level of these laccase genes.
Collapse
Affiliation(s)
- Hong-Il Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju 380-701, Korea
| | - O-Chul Kwon
- Department of Biomedical Chemistry, Konkuk University, Chungju 380-701, Korea
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-706, Korea
| | - Chang-Soo Lee
- Department of Biomedical Chemistry, Konkuk University, Chungju 380-701, Korea
| | - Young-Jin Park
- Department of Biomedical Chemistry, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
27
|
Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus. Curr Genet 2014; 61:127-40. [DOI: 10.1007/s00294-014-0460-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/26/2014] [Accepted: 10/29/2014] [Indexed: 01/28/2023]
|
28
|
Yang J, Lin Q, Ng TB, Ye X, Lin J. Purification and characterization of a novel laccase from Cerrena sp. HYB07 with dye decolorizing ability. PLoS One 2014; 9:e110834. [PMID: 25356987 PMCID: PMC4214704 DOI: 10.1371/journal.pone.0110834] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022] Open
Abstract
Laccases (EC 1.10.3.2) are a class of multi-copper oxidases with important industrial values. A basidiomycete strain Cerrena sp. HYB07 with high laccase yield was identified. After cultivation in the shaking flask for 4 days, a maximal activity of 210.8 U mL−1 was attained. A 58.6-kDa laccase (LacA) with 7.2% carbohydrate and a specific activity of 1952.4 U mg−1 was purified. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) was the optimal substrate, with Km and kcat being 93.4 µM and 2468.0 s−1, respectively. LacA was stable at 60°C, pH 5.0 and above, and in organic solvents. Metal ions Na+, K+, Ca2+, Mg2+, Mn2+, Zn2+ enhanced LacA activity, while Fe2+ and Li+ inhibited LacA activity. LacA decolorized structurally different dyes and a real textile effluent. Its gene and cDNA sequences were obtained. Putative cis-acting transcriptional response elements were identified in the promoter region. The high production yield and activity, robustness and dye decolorizing capacity make LacA and Cerrena sp. HYB07 potentially useful for industrial and environmental applications such as textile finishing and wastewater treatment.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China
- National Engineering Laboratory for Enzyme Expression, Fuzhou, Fujian, China
| | - Qi Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China
- National Engineering Laboratory for Enzyme Expression, Fuzhou, Fujian, China
| | - Juan Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China
- National Engineering Laboratory for Enzyme Expression, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
29
|
Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AFJ, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon MJ, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot JC, Wiebenga A, Wösten HAB, Martin F, Coutinho PM, de Vries RP, Martínez AT, Klopp C, Pontarotti P, Henrissat B, Record E. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics 2014; 15:486. [PMID: 24942338 PMCID: PMC4101180 DOI: 10.1186/1471-2164-15-486] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Anthony Levasseur
- INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Aix-Marseille Université, Polytech Marseille, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feng BZ, Li P. Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici. Braz J Microbiol 2014; 45:351-7. [PMID: 24948955 PMCID: PMC4059322 DOI: 10.1590/s1517-83822014005000021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/04/2013] [Indexed: 11/26/2022] Open
Abstract
Laccases are blue copper oxidases (E.C. 1.10.3.2) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. A novel laccase gene pclac2 and its corresponding full-length cDNA were cloned and characterized from Phytophthora capsici for the first time. The 1683 bp full-length cDNA of pclac2 encoded a mature laccase protein containing 560 amino acids preceded by a signal peptide of 23 amino acids. The deduced protein sequence of PCLAC2 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. In order to achieve a high level secretion and full activity expression of PCLAC2, expression vector pPIC9K with the Pichia pastoris expression system was used. The recombinant PCLAC2 protein was purified and showed on SDS-PAGE as a single band with an apparent molecular weight ca. 68 kDa. The high activity of purified PCLAC2, 84 U/mL, at the seventh day induced with methanol, was observed with 2,2'-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as substrate. The optimum pH and temperature for ABTS were 4.0 and 30 °C, respectively. The reported data add a new piece to the knowledge about P. Capsici laccase multigene family and shed light on potential function about biotechnological and industrial applications of the individual laccase isoforms in oomycetes.
Collapse
Affiliation(s)
- Bao Zhen Feng
- Department of Life Sciences Yuncheng University Yuncheng China
| | - Peiqian Li
- Department of Life Sciences Yuncheng University Yuncheng China
| |
Collapse
|
31
|
Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World J Microbiol Biotechnol 2014; 30:2251-62. [DOI: 10.1007/s11274-014-1646-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
32
|
Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ Microbiol 2013; 16:265-77. [PMID: 24119015 DOI: 10.1111/1462-2920.12279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022]
Abstract
Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P. ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn(2+), respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems.
Collapse
Affiliation(s)
- Tomer M Salame
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Christensen NJ, Kepp KP. Stability Mechanisms of Laccase Isoforms using a Modified FoldX Protocol Applicable to Widely Different Proteins. J Chem Theory Comput 2013; 9:3210-23. [PMID: 26583998 DOI: 10.1021/ct4002152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A recent computational protocol that accurately predicts and rationalizes protein multisite mutant stabilities has been extended to handle widely different isoforms of laccases. We apply the protocol to four isoenzymes of Trametes versicolor laccase (TvL) with variable lengths (498-503 residues) and thermostability (Topt ∼ 45-80 °C) and with 67-77% sequence identity. The extended protocol uses (i) statistical averaging, (ii) a molecular-dynamics-validated "compromise" homology model to minimize bias that causes proteins close in sequence to a structural template to be too stable due to having the benefits of the better sampled template (typically from a crystal structure), (iii) correction for hysteresis that favors the input template to overdestabilize, and (iv) a preparative protocol to provide robust input sequences of equal length. The computed ΔΔG values are in good agreement with the major trends in experimental stabilities; that is, the approach may be applicable for fast estimates of the relative stabilities of proteins with as little as 70% identity, something that is currently extremely challenging. The computed stability changes associated with variations are Gaussian-distributed, in good agreement with experimental distributions of stability effects from mutation. The residues causing the differential stability of the four isoforms are consistent with a range of compiled laccase wild type data, suggesting that we may have identified general drivers of laccase stability. Several sites near Cu, notably 79, 241, and 245, or near substrate, mainly 265, are identified that contribute to stability-function trade-offs, of relevance to the search for new proficient and stable variants of these important industrial enzymes.
Collapse
Affiliation(s)
- Niels J Christensen
- Technical University of Denmark , DTU Chemistry, Kemitorvet 206, DK-2800 Kongens Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark , DTU Chemistry, Kemitorvet 206, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Vasina DV, Loginov DS, Koroleva OV. Comparative proteomic study of the basidiomycete Trametes hirsuta grown on different substrates. BIOCHEMISTRY (MOSCOW) 2013; 78:477-84. [DOI: 10.1134/s0006297913050064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Abstract
Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members.
Collapse
|
36
|
Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One 2013; 8:e55295. [PMID: 23383142 PMCID: PMC3561346 DOI: 10.1371/journal.pone.0055295] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential.
Collapse
|
37
|
Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie van Leeuwenhoek 2013; 103:1029-39. [PMID: 23340718 PMCID: PMC3622001 DOI: 10.1007/s10482-013-9883-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL(-1) at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5-4.5 U mL(-1)). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC-MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium.
Collapse
|
38
|
Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y. Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One 2012; 7:e52446. [PMID: 23285046 PMCID: PMC3528650 DOI: 10.1371/journal.pone.0052446] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn(2+) supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn(2+) on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn(2+)-deficient media, whereas strongly repressed (to approximately 1%) in Mn(2+)-supplemented media. Accordingly, in-vitro Mn(2+)-independent activity was found to be negligible. We tested whether release of mnp4 from Mn(2+) repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn(2+) in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn(2+)-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [(14)C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn(2+) suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality.
Collapse
Affiliation(s)
- Tomer M. Salame
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doriv Knop
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Levinson
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
39
|
Mäkelä MR, Lundell T, Hatakka A, Hildén K. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biol 2012; 117:62-70. [PMID: 23332834 DOI: 10.1016/j.funbio.2012.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/06/2012] [Accepted: 11/26/2012] [Indexed: 11/15/2022]
Abstract
Production of the oxidoreductive lignin-modifying enzymes - lignin and manganese peroxidases (MnPs), and laccase - of the white-rot basidiomycete Phlebia radiata was investigated in semi-solid cultures supplemented with milled grey alder or Norway spruce and charcoal. Concentrations of nutrient nitrogen and Cu-supplement varied also in the cultures. According to extracellular activities, production of both lignin peroxidase (LiP) and MnP was significantly promoted with wood as carbon source, with milled alder (MA) and low nitrogen (LN) resulting with the maximal LiP activities (550 nkat l(-1)) and noticeable levels of MnP (3 μkat l(-1)). Activities of LiP and MnP were also elevated on high nitrogen (HN) complex medium when supplemented with spruce and charcoal. Maximal laccase activities (22 and 29 μkat l(-1)) were obtained in extra high nitrogen (eHN) containing defined and complex media supplemented with 1.5 mM Cu(2+). However, the nitrogen source, either peptone or ammonium nitrate and asparagine, caused no stimulation on laccase production without Cu-supplement. This is also the first report to demonstrate a new, on high Cu(2+) amended medium produced extracellular laccase of P. radiata with pI value of 4.9, thereby complementing our previous findings on gene expression, and cloning of a second laccase of this fungus.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter 1, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
40
|
Bao S, Teng Z, Ding S. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Mol Biol Rep 2012; 40:1927-36. [PMID: 23076537 DOI: 10.1007/s11033-012-2249-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/10/2012] [Indexed: 12/01/2022]
Abstract
Two new laccase genes, named lac1 and lac2, were cloned from the edible basidiomycete Coprinus comatus. Comparison of the deduced amino acid sequences revealed two laccases showed 66.12 % identity and clustered with lac2 and lac3 from Coprinopsis cinerea in same phylogenetic group. Lac1 and lac2 encode proteins of 517 and 523 amino acids preceded by 18 and 21-residue signal peptides, respectively. Lac1 was functionally expressed in Pichia pastoris. The optimum pHs of recombinant Lac1 were 3.0, 6.0, 5.5 and 6.0 and the optimum temperatures were 65, 55, 70 and 50 °C for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The Km values of Lac1 were 34, 4,317, 7,611 and 14 μM, and the corresponding kcat values were 465.79, 7.67, 1.15 and 0.60 (s(-1) mM), for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The enzyme activity was completely inhibited by sodium azide (NaN(3)) and 1,4-dithiothreitol (DTT) at the concentration of 5 mM. Laccase activity was also inhibited by several metal ions, especially Fe(2+), while K(+) and NH(4) (+) slightly enhanced laccase activity. Twelve synthetic dyes belonging to anthraquinone, azo and triphenylmethane dyes were decolorized by the recombinant Lac1 at different extents. The recombinant Lac1 decolorized azo dye Reactive Dark Blue KR up to 90 % without any mediator and increasing to 96 % with mediator, indicating its potential in the treatment of industrial effluent containing some recalcitrant synthetic dyes.
Collapse
Affiliation(s)
- Songyuan Bao
- Department of Biological Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | | | | |
Collapse
|
41
|
Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 2012. [PMID: 23199732 DOI: 10.1016/j.enzmictec.2012.10.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive research efforts have been dedicated to characterizing expression of laccases and peroxidases and their regulation in numerous fungal species. Much attention has been brought to these enzymes broad substrate specificity resulting in oxidation of a variety of organic compounds which brings about possibilities of their utilization in biotechnological and environmental applications. Research attempts have resulted in increased production of both laccases and peroxidases by the aid of heterologous and homologous expression. Through analysis of promoter regions, protein expression patterns and culture conditions manipulations it was possible to compare and identify common pathways of these enzymes' production and secretion. Although laccase and peroxidase proteins have been crystallized and thoroughly analyzed, there are still a lot of questions remaining about their evolutionary origin and the physiological functions. This review describes the present understanding of promoter sequences and correlation between the observed regulatory effects on laccase, manganese peroxidase and lignin peroxidase genes transcript levels and the presence of specific response elements.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
42
|
Amore A, Honda Y, Faraco V. Enhanced Green Fluorescent Protein Expression in Pleurotus ostreatus for In Vivo Analysis of Fungal Laccase Promoters. Appl Biochem Biotechnol 2012; 168:761-9. [DOI: 10.1007/s12010-012-9816-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
43
|
Karp SG, Faraco V, Amore A, Birolo L, Giangrande C, Soccol VT, Pandey A, Soccol CR. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2012; 114:735-739. [PMID: 22487128 DOI: 10.1016/j.biortech.2012.03.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Laccases are oxidative enzymes linked to biological degradation of lignin. The aim of this work was to evaluate the effect of inducers and different concentrations of nitrogen on production level of total laccase activity and pattern of laccase isoforms, produced in solid state fermentation of sugarcane bagasse by a selected strain of Pleurotus ostreatus. The addition of yeast extract 5 g/L, copper sulfate 150 μM and ferulic acid 2 mM provided highest enzymatic activity (167 U/g) and zymograms indicated the presence of six laccase isoforms (POXA1b, POXA3, POXC and three other isoforms). Results of protein identification by mass spectrometry confirmed the presence of POXC and POXA3 as the main isoenzymes, and also identified a glyoxal oxidase and three galactose oxidases. The fact that the isoenzyme POXA1b was not identified in the analyzed samples can be possibly explained by its sensitivity to protease degradation.
Collapse
Affiliation(s)
- Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, Zip Code 81531-990 Curitiba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl Environ Microbiol 2012; 78:4037-45. [PMID: 22467498 DOI: 10.1128/aem.07880-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.
Collapse
|
45
|
Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 2012; 97:705-17. [DOI: 10.1007/s00253-012-3980-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
46
|
Laccase Production by the Aquatic Ascomycete Phoma sp. UHH 5-1-03 and the White Rot Basidiomycete Pleurotus ostreatus DSM 1833 During Submerged Cultivation on Banana Peels and Enzyme Applicability for the Removal of Endocrine-Disrupting Chemicals. Appl Biochem Biotechnol 2012; 167:1144-56. [DOI: 10.1007/s12010-012-9601-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
|
47
|
del Vecchio C, Lettera V, Pezzella C, Piscitelli A, Leo G, Birolo L, Sannia G. Classical breeding in Pleurotus ostreatus: a natural approach for laccase production improvement. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.646032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Budda W, Sarnthima R, Khammuang S, Milintawis N, Naknil S. Ligninolytic Enzymes of Lentinus polychrous Grown on Solid Substrates and its Application in Black Liquor Treatment. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jbs.2012.25.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Amore A, Amoresano A, Birolo L, Henrissat B, Leo G, Palmese A, Faraco V. A family GH51 α-L-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Appl Microbiol Biotechnol 2011; 94:995-1006. [PMID: 22080345 DOI: 10.1007/s00253-011-3678-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022]
Abstract
An α-L-arabinofuranosidase produced by Pleurotus ostreatus (PoAbf) during solid state fermentation on tomato pomace was identified and the corresponding gene and cDNA were cloned and sequenced. Molecular analysis showed that the poabf gene carries 26 exons interrupted by 25 introns and has an open reading frame encoding a protein of 646 amino acid residues, including a signal peptide of 20 amino acid residues. The amino acid sequence similar to the other α-L-arabinofuranosidases indicated that the enzyme encoded by poabf can be classified as a family 51 glycoside hydrolase. Heterologous recombinant expression of PoAbf was carried out in the yeasts Pichia pastoris and Kluyveromyces lactis achieving the highest production level of the secreted enzyme (180 mg L(-1)) in the former host. rPoAbf produced in P. pastoris was purified and characterized. It is a glycosylated monomer with a molecular weight of 81,500 Da in denaturing conditions. Mass spectral analyses led to the localization of a single O-glycosylation site at the level of Ser160. The enzyme is highly specific for α-L-arabinofuranosyl linkages and when assayed with p-nitrophenyl α-L-arabinofuranoside it follows Michaelis-Menten kinetics with a K (M) of 0.64 mM and a k (cat) of 3,010 min(-1). The optimum pH is 5 and the optimal temperature 40°C. It is worth noting that the enzyme shows a very high stability in a broad range of pH. The more durable activity showed by rPoAbf in comparison to the other α-L-arabinofuranosidases enhances its potential for biotechnological applications and increases interest in elucidating the molecular bases of its peculiar properties.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Shakhova NV, Golenkina SA, Stepanova EV, Loginov DS, Psurtseva NV, Fedorova TV, Koroleva OV. Effect of submerged cultivation conditions and inducers on biosynthesis of extracellular laccase by a Trametes versicolor 1666 strain. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811090055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|