1
|
Coban I, Lamping JP, Hirsch AG, Wasilewski S, Shomroni O, Giesbrecht O, Salinas G, Krebber H. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024; 631:432-438. [PMID: 38898279 PMCID: PMC11236707 DOI: 10.1038/s41586-024-07576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.
Collapse
Affiliation(s)
- Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Sarah Wasilewski
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Giesbrecht
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Singh AK. Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1853. [PMID: 38741356 DOI: 10.1002/wrna.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
3
|
Papoutsoglou P, Pineau R, Leroux R, Louis C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M, Coulouarn C. TGFβ-induced long non-coding RNA LINC00313 activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep 2024; 25:1022-1054. [PMID: 38332153 PMCID: PMC10933437 DOI: 10.1038/s44319-024-00075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor β (TGFβ), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFβ signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFβ target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFβ induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.
Collapse
Grants
- Recurrent Funding Institut National de la Santé et de la Recherche Médicale (Inserm)
- Recurrent Funding,PhD felloship Université de Rennes 1 (University of Rennes 1)
- PhD fellowship Conseil Régional de Bretagne (Brittany Council)
- R22026NN,R21011NN Ligue Contre le Cancer (French League Against Cancer)
- R21043NN Fondation ARC pour la Recherche sur le Cancer (ARC)
- C18007NS,C20013NS,C20014NS INCa and ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé) dans le cadre du Plan cancer (Non-coding RNA in cancerology: fundamental to translational)
- R21095NN French Ministry of Health and the French National Cancer Institute, PRT-K20-136, CHU Rennes, CLCC Eugene Marquis, Rennes
- FIS PI18/01075,PI21/00922,CPII19/00008 Spanish Carlos III Health Institute (ISCIII) [(FIS PI18/01075, PI21/00922, and Miguel Servet Programme CPII19/00008) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER)] and CIBERehd (ISCIII)
- HR17-00601 'la Caixa' Foundation ('la Caixa')
- EU/2019/AMMFt/001 AMMF-The Cholangiocarcinoma Charity
- 06119JB PSC Partners US and PSC Supports UK
- 825510/ESCALON European Union Horizon 2020 Research and Innovation Program
- EU TRANSCAN23-002-2023-129,INCa_18688 Institut National Du Cancer (INCa)
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Raphaël Pineau
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Raffaële Leroux
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Anaïs L'Haridon
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - David Gilot
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, SE-48183, Mölndal, Sweden
| | - Marc Aubry
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France.
| |
Collapse
|
4
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Telomerase RNA recruits RNA polymerase II to target gene promoters to enhance myelopoiesis. Proc Natl Acad Sci U S A 2021; 118:2015528118. [PMID: 34353901 DOI: 10.1073/pnas.2015528118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.
Collapse
|
6
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
7
|
Montigny A, Tavormina P, Duboe C, San Clémente H, Aguilar M, Valenti P, Lauressergues D, Combier JP, Plaza S. Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8. Genome Biol 2021; 22:118. [PMID: 33892772 PMCID: PMC8063413 DOI: 10.1186/s13059-021-02345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/09/2021] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. RESULTS We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. CONCLUSION Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.
Collapse
Affiliation(s)
- Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Patrizia Tavormina
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Carine Duboe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Hélène San Clémente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Philippe Valenti
- Laboratoire MCD, Centre de Biologie Intégrative, Université de Toulouse 3, CNRS UMR5077, Bat 4R4, 118 route de Narbonne, 31062, Toulouse, France
| | - Dominique Lauressergues
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France.
| |
Collapse
|
8
|
Immarigeon C, Frei Y, Delbare SYN, Gligorov D, Machado Almeida P, Grey J, Fabbro L, Nagoshi E, Billeter JC, Wolfner MF, Karch F, Maeda RK. Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proc Natl Acad Sci U S A 2021; 118:e2001897118. [PMID: 33876742 PMCID: PMC8053986 DOI: 10.1073/pnas.2001897118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Yohan Frei
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Dragan Gligorov
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jasmine Grey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Léa Fabbro
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - François Karch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| |
Collapse
|
9
|
Zhao JB, Xue JF, Zhang WZ, Ren YL, Yan DM. Long Noncoding RNA FGD5-AS1 Promotes Glioma Cell Proliferation, Migration and Invasion by Regulating wnt/β-Catenin Pathway. Cancer Manag Res 2020; 12:6187-6193. [PMID: 32801867 PMCID: PMC7398887 DOI: 10.2147/cmar.s250284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the specific function of long noncoding RNA FGD5 antisense RNA 1 (lncRNA FGD5-AS1) in glioma. Materials and Methods The level of FGD5-AS1 was detected in clinical samples and cell lines by qRT-PCR. Small interfering RNA (siRNA) of FGD5-AS1 or scramble siRNA was transfected into U87 cell lines to examine the role of FGD5-AS1 on glioma development. The proliferation of glioma cells was tested by Cell Counting Kit-8 (CCK-8), the migration and invasion of glioma cells were tested by transwell assay without matrigel or with matrigel. Western blot was used to detect the protein expression, and XAV-939 was used to inhibit wnt/β-catenin pathway. The effect of FGD5-AS1 on tumorigenesis of glioma was confirmed by xenograft nude mice model. Results FGD5-AS1 was significantly increased in glioma tissues and cells. Loss of FGD5-AS1 inhibited the proliferation, migration and invasion of U87 cells. Furthermore, overexpression of FGD5-AS1 increased the mRNA and protein levels of β-catenin and cyclin D1. Blocking of wnt/β-catenin using XAV-939 reversed the promotion role of FGD3-AS1 on glioma cells’ migration and invasion. The in vivo tumor growth assay showed that FGD3-AS1 accelerated glioma tumorigenesis with activating wnt/β-catenin pathway. Conclusion Our research emphasized FGD5-AS1 acting as an oncogene by regulating wnt/β-catenin signaling pathway, thus providing some novel experimental basis for clinical treatment of glioma.
Collapse
Affiliation(s)
- Jun Bo Zhao
- Department of Neurosurgery, Jiaozuo People's Hospital, Jiaozuo 454000, Henan Province, People's Republic of China
| | - Jun Feng Xue
- Department of Neurosurgery, Jiaozuo People's Hospital, Jiaozuo 454000, Henan Province, People's Republic of China
| | - Wu Zhong Zhang
- Department of Neurosurgery, Jiaozuo People's Hospital, Jiaozuo 454000, Henan Province, People's Republic of China
| | - Yong Lu Ren
- Department of Neurosurgery, Jiaozuo People's Hospital, Jiaozuo 454000, Henan Province, People's Republic of China
| | - Dong Ming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| |
Collapse
|
10
|
Lucero L, Fonouni-Farde C, Crespi M, Ariel F. Long noncoding RNAs shape transcription in plants. Transcription 2020; 11:160-171. [PMID: 32406332 DOI: 10.1080/21541264.2020.1764312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Batiment 630 , Gif Sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| |
Collapse
|
11
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
12
|
Wang K, Sun H, Sun T, Qu H, Xie Q, Lv H, Hu B. Long non-coding RNA AFAP1-AS1 promotes proliferation and invasion in prostate cancer via targeting miR-512-3p. Gene 2019; 726:144169. [PMID: 31669642 DOI: 10.1016/j.gene.2019.144169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND (OBJECTIVE) In the development of tumor therapy, the role of long non-coding RNA actin filagenin 1 antisense RNA 1 (1ncRNA AFAP1-AS1) is quite significant, but the actual role of AFAP1-AS1 in the treatment of prostate cancer has not been determined. In view of this, the author took AFAP1-AS1 as the research object to design an experimental study, and conducted an in-depth exploration of the pathogenesis of prostate cancer. METHODS RT-qPCR was used to detect the expression of AFAP1-AS1 and miR-512-3p in prostate cancer tissues and cell lines. Perforation, flow cytometry and CCK-8 were used to detect the effects of cell proliferation, migration and invasion of mir-512-3p and a AFAP1-AS1. And the luciferase reporter gene was used to detect the downstream target gene of AFAP1-AS1, and the expression of CDK4, CDK6 and CCND1 protein was detected by Western blot. RESULTS AFAP1-AS1 is highly expressed in prostate cancer tissues and cell lines. The expression level of AFAP1-AS1 is correlated with histological grade and distant metastasis. The overall level of patients with high expression of AFAP1-AS1 is low, and their survival rate is relatively low. Silencing AFAP1-AS1 can significantly increase the proliferation and migration of prostate cancer cells. AFAP1-AS1 silencing induces cell cycle arrest at G0/G1 phase. The downstream target of AFAP1-AS1 was mir-512-3p. The role of AFAP1-AS1 in the progression of prostate cancer cells was mediated by mir-512-3p. CONCLUSION AFAP1-AS1 regulates miR-512-3p, so as to realize the regulation effect on the proliferation, invasion and migration of prostate cancer cells, and thereby promote the occurrence and development of prostate cancer, so as to provide the corresponding program for the treatment of prostate cancer. Abberivation: ADPC, androgen-dependent prostate cancer; CRPC, castrated prostate cancer; RNA1 AFAP1-Asl, Actin fiber-associated protein 1-anti-RNA1; miRNAs, MicroRNAs.
Collapse
Affiliation(s)
- Kai Wang
- Urology Department, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China
| | - Hao Sun
- Urology Department, China Medical University, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China
| | - Tao Sun
- Urology Department, Dalian Medical University, Dalian Medical University Clinical Oncology College, Shengyang City, Liaoning Province 110044, PR China
| | - Hongchen Qu
- Urology Department, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China
| | - Qingpeng Xie
- Urology Department, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China
| | - Hang Lv
- Urology Department, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China
| | - Bin Hu
- Urology Department, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shengyang City, Liaoning Province 110044, PR China.
| |
Collapse
|
13
|
The long non-coding RNA, urothelial carcinoma associated 1, promotes cell growth, invasion, migration, and chemo-resistance in glioma through Wnt/β-catenin signaling pathway. Aging (Albany NY) 2019; 11:8239-8253. [PMID: 31596734 PMCID: PMC6814589 DOI: 10.18632/aging.102317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA, urothelial carcinoma associated 1 (UCA1) has been demonstrated to play important roles in various types of cancers. This study investigated the functional role of UCA1 in glioma and explored the underlying molecular mechanisms. UCA1 was found to be highly up-regulated in glioma cells, and knock-down of UCA1 inhibited cell growth, invasion and migration, and also induced apoptosis in glioma cells. On the other hand, overexpression of UCA1 promoted cell proliferation, cell invasion and migration in glioma cells. Knock-down of UCA1 suppressed the activity of Wnt/β-catenin signaling, and treatment with lithium chloride restored the inhibitory effect of UCA1 knock-down on cell invasion and migration. More importantly, the aberrant expression of UCA1 was associated with chemo-resistance to cisplatin and temozolomide in glioma cells via interacting with Wnt/β-catenin signaling. In vivo studies showed that overexpression of UCA1 promoted the in vivo tumor growth of U87 cells in the nude mice. Clinically, UCA1 was found to be up-regulated in glioma tissues and higher expression level of UCA1 was correlated with poor survival in patients with glioma. Taken together, our results showed that UCA1 had a functional role in the regulation of glioma cell growth, invasion and migration, and chemo-resistance possibly via Wnt/β-catenin signaling pathway.
Collapse
|
14
|
Song W, Wang J, Liu H, Zhu C, Xu F, Qian L, Shen Z, Zhu J, Yin S, Qin J, Chen L, Wu D, Nashan B, Shan G, Xiao W, Zhou Y. Effects of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in a human cervical cancer cell line. Cytokine 2019; 120:165-175. [PMID: 31085454 DOI: 10.1016/j.cyto.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
This study explored the effect of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in the human cervical cancer (HCC) cell line SiHa. SiHa cells had the lowest expression of Lnc-LIF-AS in the 4 human cervical cancer cell lines (SiHa, ME-180, C-33A and HeLa) and were transfected and divided into the SiHa/con (transfected with pMIGRI) cell group, SiHa/Lnc-LIF-AS (transfected with pMIGRI-Lnc-LIF-AS) cell group, and SiHa/Lnc-LIF-AS-DN (transfected with pMIGRI-Lnc-LIF-AS-DN, in which the sequences overlapping with LIF mRNA was deleted) cell group. Overexpression of Lnc-LIF-AS could promote the proliferation, colony formation, invasion and migration in SiHa and ME-180 cells. And the low expression of Lnc-LIF-AS suppress the proliferation, colony formation invasion and migration in HeLa cells when the Lnc-LIF-AS expression has been suppressed. In the SiHa/Lnc-LIF-AS cells group, the cell cycle was mainly halted in the S phase and overexpression of Lnc-LIF-AS had no effect on the apoptosis of SiHa cells. Overexpression of Lnc-LIF-AS could promote the secretion of LIF in SiHa cells, and the supernatant from SiHa/Lnc-LIF-AS cells could promote cell proliferation in the SiHa/con cells. The STAT3 inhibitor could inhibit cell proliferation in the SiHa/Lnc-LIF-AS cells. The expression level of Lnc-LIF-AS in cervical cancer tissues was higher than that in normal tissues and the expression level of Lnc-LIF-AS was positively correlated with the level of LIF. In the SiHa/con and SiHa/Lnc-LIF-AS-DN cell groups, there were no significant differences in cell proliferation, cell migration and cell invasion. The overexpression of Lnc-LIF-AS can promote cell proliferation, migration and invasion in cervical cancer cells, and the core function domain of this lncRNA was located in the overlapping a 3'-UTR base sequence of LIF mRNA.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Chenchen Zhu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Fei Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Shuai Yin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Jiwei Qin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Liang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Björn Nashan
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Ge Shan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Weihua Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China.
| |
Collapse
|
15
|
LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene 2019; 38:5612-5626. [PMID: 30967631 DOI: 10.1038/s41388-019-0812-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is responsible for most cancer mortality, but its molecular mechanism has not been completely understood. In addition to coding genes and miRNAs, the contribution of long noncoding RNAs (lncRNAs) to tumor metastatic dissemination and the mechanisms controlling their expression are areas of intensive investigation. Here, we show that lncRNA NORAD is downregulated in lung and breast cancers, and that NORAD low expression in these cancer types is associated with lymph node metastasis and poor prognosis. NORAD is transcriptionally repressed by the Hippo pathway transducer YAP/TAZ-TEAD complex in conjunction with the action of NuRD complex. Functionally, NORAD elicits potent inhibitory effects on migration and invasion of multiple lung and breast cancer cell lines, and repression of NORAD expression participates in the migration- and invasion-stimulatory effects of the YAP pathway. Mechanistically, NORAD exploits its multiple repeated sequences to function as a multivalent platform for binding and sequestering S100P, thereby suppressing S100P-elicited pro-metastatic signaling network. Using cell and mouse models, we show that the S100P decoy function of NORAD suppresses lung and breast cancer migration, invasion, and metastasis. Together, our study identifies NORAD as a novel metastasis suppressor, elucidates its regulatory and functional mechanisms, and highlights its prognostic value.
Collapse
|
16
|
Giambruno R, Mihailovich M, Bonaldi T. Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Front Mol Biosci 2018; 5:90. [PMID: 30467545 PMCID: PMC6236024 DOI: 10.3389/fmolb.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets.
Collapse
Affiliation(s)
| | | | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
17
|
Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:1195-1213. [PMID: 29914874 PMCID: PMC6097657 DOI: 10.1261/rna.065524.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/14/2018] [Indexed: 05/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Collapse
Affiliation(s)
- Sophie R Atkinson
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Danny A Bitton
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pawel Smialowski
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Philipp Korber
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - François Bachand
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Bases of antisense lncRNA-associated regulation of gene expression in fission yeast. PLoS Genet 2018; 14:e1007465. [PMID: 29975684 PMCID: PMC6049938 DOI: 10.1371/journal.pgen.1007465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/17/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Antisense (as)lncRNAs can regulate gene expression but the underlying mechanisms and the different cofactors involved remain unclear. Using Native Elongating Transcript sequencing, here we show that stabilization of antisense Exo2-sensitivite lncRNAs (XUTs) results in the attenuation, at the nascent transcription level, of a subset of highly expressed genes displaying prominent promoter-proximal nucleosome depletion and histone acetylation. Mechanistic investigations on the catalase gene ctt1 revealed that its induction following oxidative stress is impaired in Exo2-deficient cells, correlating with the accumulation of an asXUT. Interestingly, expression of this asXUT was also activated in wild-type cells upon oxidative stress, concomitant to ctt1 induction, indicating a potential attenuation feedback. This attenuation correlates with asXUT abundance, it is transcriptional, characterized by low RNAPII-ser5 phosphorylation, and it requires an histone deacetylase activity and the conserved Set2 histone methyltransferase. Finally, we identified Dicer as another RNA processing factor acting on ctt1 induction, but independently of Exo2. We propose that asXUTs could modulate the expression of their paired-sense genes when it exceeds a critical threshold, using a conserved mechanism independent of RNAi.
Collapse
|
19
|
Biscarini S, Capauto D, Peruzzi G, Lu L, Colantoni A, Santini T, Shneider NA, Caffarelli E, Laneve P, Bozzoni I. Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS. Stem Cell Res 2018; 27:172-179. [PMID: 29449089 DOI: 10.1016/j.scr.2018.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are currently recognized as crucial players in nervous system development, function and pathology. In Amyotrophic Lateral Sclerosis (ALS), identification of causative mutations in FUS and TDP-43 or hexanucleotide repeat expansion in C9ORF72 point to the essential role of aberrant RNA metabolism in neurodegeneration. In this study, by taking advantage of an in vitro differentiation system generating mouse motor neurons (MNs) from embryonic stem cells, we identified and characterized the long non-coding transcriptome of MNs. Moreover, by using mutant mouse MNs carrying the equivalent of one of the most severe ALS-associated FUS alleles (P517L), we identified lncRNAs affected by this mutation. Comparative analysis with human MNs derived in vitro from induced pluripotent stem cells indicated that candidate lncRNAs are conserved between mouse and human. Our work provides a global view of the long non-coding transcriptome of MN, as a prerequisite toward the comprehension of the still poorly characterized non-coding side of MN physiopathology.
Collapse
Affiliation(s)
- Silvia Biscarini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Davide Capauto
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Lei Lu
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, Sapienza University of Rome, Italy.
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology of CNR, Rome, Italy.
| | - Pietro Laneve
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Irene Bozzoni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, Italy; Institute of Molecular Biology and Pathology of CNR, Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Italy.
| |
Collapse
|
20
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
21
|
Abstract
Currently, the study of the transcriptome is widely used to interpret the functional elements of the genome and molecular constituents of cells and tissues in an effort to unravel biological pathways associated with development and disease. The advent of technologies is now enabling the study of such comprehensive transcriptional characterization of mRNA, miRNA, lncRNA, and small RNA in a robust and successful manner. Transcriptomic strategies are gaining momentum across diverse areas of biological, plant sciences, medical, clinical, and pharmaceutical research for biomarker discovery, and disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Nalini Raghavachari
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, Bethesda, MD, USA.
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.
| |
Collapse
|
22
|
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13:657-669. [PMID: 28978995 DOI: 10.1038/nrrheum.2017.162] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Nagy B, Csanádi Z, Póka R. [The importance of "free" nucleic acids in the non-invasive diagnostics]. Orv Hetil 2017; 157:1900-1909. [PMID: 27889980 DOI: 10.1556/650.2016.30621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a great interest to determine the physiological role of "free" nucleic acids, and to use them in the clinical diagnostics. These could be DNA, mRNA, microRNA and long non-coding RNA molecules, they are in the body fluids, like serum, tear, saliva, etc. Their exact role in the normal and pathological physiological processes is still in the focus of the research, while their use in the diagnostics is becoming more and more important. The use of "free" DNA in the non-invasive prenatal diagnosis is the first clinical application of the new generation sequencers, these methods are able to reach 99.9% specificity and sensitivity for the detection of the most common trisomies. There are promising results in their use in the diagnosis and classification of heart and cardiovascular diseases. In oncology the possibility to use the "liquid biopsy" captured the attention of not only researchers and clinicians, but the whole community. There is not enough data until today for the clinical utility and applicability of these methods. Orv. Hetil., 2016, 157(48), 1900-1909.
Collapse
Affiliation(s)
- Bálint Nagy
- Humángenetikai Tanszék, Debreceni Egyetem, Általános Orvostudományi Kar Debrecen, Nagyerdei krt. 98., 4032
| | - Zoltán Csanádi
- Kardiológiai Intézet, Debreceni Egyetem, Általános Orvostudományi Kar Debrecen
| | - Róbert Póka
- Szülészeti és Nőgyógyászati Klinika, Debreceni Egyetem, Általános Orvostudományi Kar Debrecen
| |
Collapse
|
24
|
Bidnenko V, Nicolas P, Grylak-Mielnicka A, Delumeau O, Auger S, Aucouturier A, Guerin C, Repoila F, Bardowski J, Aymerich S, Bidnenko E. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis. PLoS Genet 2017; 13:e1006909. [PMID: 28723971 PMCID: PMC5540618 DOI: 10.1371/journal.pgen.1006909] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho-null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Nicolas
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aleksandra Grylak-Mielnicka
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Olivier Delumeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cyprien Guerin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Francis Repoila
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jacek Bardowski
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
25
|
Jarroux J, Morillon A, Pinskaya M. History, Discovery, and Classification of lncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:1-46. [PMID: 28815535 DOI: 10.1007/978-981-10-5203-3_1] [Citation(s) in RCA: 604] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Julien Jarroux
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France.
| | - Marina Pinskaya
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
26
|
Jia X, Wang Z, Qiu L, Yang Y, Wang Y, Chen Z, Liu Z, Yu L. Upregulation of LncRNA-HIT promotes migration and invasion of non-small cell lung cancer cells by association with ZEB1. Cancer Med 2016; 5:3555-3563. [PMID: 27790864 PMCID: PMC5224854 DOI: 10.1002/cam4.948] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common solid tumor and the leading cause of cancer‐related mortality worldwide. Non‐small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancer cases. The main reason of lung cancer‐related deaths is due to tumor metastasis. But, the mechanisms of NSCLC metastasis remains poorly understood. LncRNAs play pivotal roles in multiple biological processes. LncRNA‐HIT (HOXA transcript induced by TGFβ) was recently identified. LncRNA‐HIT promotes cell migration, invasion, tumor growth, and metastasis. However, the detailed role of lncRNA‐HIT in NSCLC remains unknown. In this study, for the first time, we revealed a novel role of lncRNA‐HIT in the migration and invasion of NSCLC cells. The expression of lncRNA‐HIT was significantly upregulated in NSCLC tissues and cell lines, and the expression level of lncRNA‐HIT correlates with advanced disease stage and predicts unfavorable prognosis of NSCLC patients. Functional assays demonstrated that lncRNA‐HIT markedly increased the ability of NSCLC cells to migrate and invade. Furthermore, the molecular mechanism by which lncRNA‐HIT affects NSCLC cells was associated with regulation of ZEB1 stability. LncRNA‐HIT functions as a prometastasis oncogene by directly associating with ZEB1 to regulate NSCLC. The interaction of lncRNA‐HIT and ZEB1 may be a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Xiaojing Jia
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhicheng Wang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ling Qiu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yanming Yang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yunlong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhishen Chen
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
27
|
DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics 2016; 8:92. [PMID: 27602172 PMCID: PMC5012062 DOI: 10.1186/s13148-016-0256-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023] Open
Abstract
DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (<10 %) changes to intermediate methylation levels are associated with complex disease phenotypes. This has resulted in two clear methylation paradigms. The latter “subtle change” paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences. Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5′UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein isoforms in the tissues, resulting in subtle but visible physiological variability. This review addresses the current pathophysiological and clinical associations of such characteristically small DNA methylation changes, the ever-growing roles of DNA methylation and the evidence available, particularly from the glucocorticoid receptor of the cascade of events initiated by such subtle methylation changes, as well as addressing the underlying question as to what represents a genuine biologically significant difference in methylation.
Collapse
|